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Jesús Angulo
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1 Introduction: Context and Motivation

Morphological analysis of cells (size, shape, texture, etc.) is fundamental in
quantitative cytology. Anomalies and variations from the typical cell are as-
sociated with pathological situations, e.g., useful in cancer diagnosis, in cell-
based screening of new active molecules, etc.

Mathematical morphology is a nonlinear image processing technique based
on minimum and maximum operations [SER82], i.e., the basic structure is a
complete lattice [HEI94]. This contribution aims to apply mathematical mor-
phology operators to quantify the shape of round-objects which present ir-
regularities from an ideal circular pattern. More specifically we illustrate, on
the one hand, the application of morphological granulometries for size/shape
multi-scale description and on the other hand, the radial/angular decompo-
sitions using skeletons in polar-logarithmic representation. We discuss also
the aspects related to the properties of invariance of these tools, which is
important to describe cell shapes acquired under different magnifications, ori-
entations, etc.

The performance of these mathematical shape descriptors is shown by
means of examples from haematological cytology [ANG06] (to classify red
blood cells) and from cell-based high-content screening assays [LEM06] (to
quantify the populations of hepatocytes), see Fig. 1.

Fig. 1. Microscopic cell images (left), segmented cell shapes to be analysed (right).

Let E, T be nonempty sets. We denote by F(E, T ) the power set T E ,
i.e., the set of functions from E onto T . Typically for the digital 2-D images
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E ⊂ Z
2. Let f be a grey level image, f(x) ∈ F(E, T ) (x ∈ E is the pixel

position), in the case of discrete image values T = {tmin, tmin + 1, · · · , tmax}
(in general T ⊂ Z or R, or any compact subset of Z or R) is an ordered set of
grey-levels. We suppose here that a binary image f (sometimes denoted X)
is a two-levels image, i.e., tmin = 0 and tmax = 1.

2 Multi-scale shape descriptors using granulometries

Given a grey level image f ∈ F(E, T ), the two basic morphological operators
are dilation: δnB(f(x)) = {f(y) : f(y) = sup[f(z)], z ∈ n(Bx)}, and erosion:
εnB(f(x)) = {f(y) : f(y) = inf[f(z)], z ∈ n(Bx)}, where B is a subset of Z

2

and n ∈ N a scaling factor. n(Bx) is called structuring element (shape probe)
B of size n (homotetic of factor n) centered at point x. Here we suppose
that B is plane, symmetric and compact convex. Typically, nB are families of
disks (isotropic) or of segments (orientated). Note that δ(f), ε(f) ∈ F(E, T ).
Erosion shrinks positive peaks. Peaks thinner than the structuring element
disappear. As well, it expands the valleys and the sinks. Dilation produces
the dual effects.

The two elementary operations of erosion and dilation can be com-
posed together to yield a new set of operators having desirable feature ex-
tractor properties which are opening : γnB(f) = δnB(εnB(f)), and closing :
ϕnB(f) = εnB(δnB(f)). Opening (closing) removes positive (negative) struc-
tures according to the predefined size and shape criterion of the structuring
element (smooth in a nonlinear way).

Fig. 2. Left, cell population based high content toxicity biosensor, three examples of
toxic concentration. Right, pattern spectra, PS(f, n), with openings (for size/shape
description) and closing (for aggregation study) of size n = −30 to 30.

A granulometry is a size distribution based on a pyramid of morphological
operators. Formally, it can be defined as an one-parameter family of open-

ings [MAT67] Γ = (γλ)λ≥0 such that: (1) γ0 is the identity mapping, i.e.,
γ0(f) = f ; (2) γλ is increasing, i.e., f ≤ g ⇒ γλ(f) ≤ γλ(g),∀λ ≥ 0, ∀f, g; (3)
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γλ is anti-extensive, i.e., γλ(f) ≤ f, ∀λ ≥ 0, ∀f ; (4) γλ follows the absorption
law, i.e., ∀λ ≥ 0,∀µ ≥ 0, γλγµ = γµγλ = γmax(λ,µ). Moreover, granulometries
by closings (or anti-granulometry) can also be defined as families of increasing
closings Φ = (ϕλ)λ≥0.

The morphological openings, γnB , B compact convex, satisfies the four
granulometric postulates. They also satisfy two fundamental properties: (5)
the γnB are translation invariant; (6) γn(f) = γ1(

1
n
f), i.e. there is a unit sieve

γ1, and any other sieve in the process can be evaluated by first scaling the
image by the reciprocal of the parameter, filtering by the unit sieve, and then
rescaling.

Let m(f) be the Lebesge measure of a discrete image f . Performing the
granulometric analysis is equivalent to mapping each opening of size λ with
a measure of the opened image γλ(f). The granulometry curve or pattern

spectrum [MAR89] of f with respect to Γ is defined as the following (nor-

malised) mapping: PSΓ (f, n) = PS(f, n) = m(γn(f))−m(γn+1(f))
m(f) , n ≥ 0.

PSΓ (f) maps each size n to some measure of the bright image structures
with this size: loss of bright image structures between two successive open-
ings. PSΓ (f) is a probability density function (a histogram): a large impulse
in the pattern spectrum at a given scale indicates the presence of many image
structures at that scale. By duality, the concept of pattern spectra extends
to anti-granulometry curve PSΦ(f) by closings, PSΦ(f,−n) = PS(f,−n) =
(m(ϕn(f)) − m(ϕn−1(f)))/m(f), and is used to characterise the size of dark
image structures. The pattern spectrum can be directly used to compare
shapes. Moreover different parameters (moments, partial sums, etc.) can be
derived from the pattern spectrum to measure the complexity, dispersion, etc.
of the shape [SIV97] [BAT97].

Granulometric analysis is very useful to describe the shape of individual
cells (see for instance in [ANG06] the cytoplasmic profile classification using
the partial sums of PSΓ (f, n)). Fig. 2 shows an example of application of gran-
ulometric analysis to characterise three classes of cell populations (control and
two values of toxicity). In this case, the pattern spectra PS(f, n) of segmented
cells allow us to classify the populations according to the size/shape of cells
(with the family of openings) or with respect to their aggregation (closings).

3 Radial/angular decompositions using skeletons in
log-polar coordinates

It is difficult to take advantage of radial/angular properties of round-objects
(definition of neighbourhood, adapted structuring elements, etc.) when math-
ematical morphology operators are defined in F(E, T ) (space E corresponds
to Cartesian coordinates). The conversion into logarithmic polar coordinates
as well as the derived cyclic morphology, recently studied by [LUE04], appears
to be a way that provides interesting results to obtain inclusion (extrusion) de-
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compositions by means of angular/radial closings (openings) and to describe
shape angularities by computing radial skeletons.

The log-polar transformation converts the cartesian image function f(x, y) :
E → T into another log-polar image function f◦(ρlog, θ) : Eρlogθ → T , where
the angular coordinates are placed on the vertical axis and the logarithmic
radial coordinates are placed on the horizontal one. More precisely, with re-
spect to a central point (xc, yc): ρ =

√

(x − xc)2 + (y − yc)2, ρlog = log(ρ),

0 ≤ ρlog ≤ R; θ = arctan
(

y−yc

x−xc

)

, 0 ≤ θ < 2π. The support is the space Eρlogθ,

(ρlog, θ) ∈ (Z × Zp) (discrete period of p pixels equivalent to 2π). A relation
is established where the points at the top of the image (θ = 0) are neighbors
to the ones an the bottom (θ = p − 1). The choice of (xc, yc) is relatively
critical. We propose to use the maxima of the distance function or ultimate
erosion [SER82]. The image f◦ ∈ F(Eρlogθ, T ) presents two properties useful
for shape analysis: (1) rotations in the cartesian image f(x, y) become vertical
cyclic shifts in the transformed log-pol f◦(ρlog, θ); (2) the changes of size in
f become horizontal shifts in f◦.

Fig. 3. Erythrocyte shape analysis: morphological algorithm for detecting extrusions
(left) and intrusions (right).

The use of classical structuring elements in the log-pol image is equivalent
to the use of ‘‘radial - angular” structuring elements in the original image,
e.g., g◦ = δB(f◦) where B is a vertical structuring element corresponds in g
to the dilation by an arc. (a square in g◦ corresponds to a circular sector in g).
This property yields a method for extracting inclusions/extrusions from the
contour of a relatively rounded shape with vertical openings or closings. The
proportion of the vertical size from the structuring element with respect to
the whole vertical size represents the angle affected in the original cartesian
image. With respect to a standard extraction in E, the choice of size in Eρlogθ

is not as critical.
The morphological skeleton by homotopic thinning of a binary image,

skel(f), is a transformation which produces a connected medial axis of the
shape [SER82] [HEI92]. However the skeleton of a round object in E is usu-
ally biased and for these kind of shapes is more appropriate to work in Eρlog,θ.
Two definitions are possible. The radial inner skeleton skelin(f◦) is the skele-
ton obtained by an homotopic thinning from the log-pol transformation of an
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object. In the invert transformation to cartesian coordinates, the branches of
the radial inner skeleton have radial sense and tend to converge to the center
(ρ = 0). The radial outer skeleton skelout(f

◦) is obtained from the nega-
tive image of the log-pol image and in the corresponding cartesian image,
the branches tend to diverge to an hypothetical circumference in the infinity
(ρ −→ ∞).

Fig. 3 gives an approach to extract the extrusions/intrusions of red blood
cells which is used to classify them according to their shape. The approach
for extrusions is composed of several steps: (i) f → f◦, (ii) residue of vertical
opening f◦

1 = f◦−γBvert
(f◦), (iii) radial outer skeleton f◦

2 = skelout(f
◦), (iv)

reconstruction to extract the connected components associated to the skeleton
f◦
3 = γrec(f◦

1 , f◦
2 ) and (v) f◦

3 → f3. The algorithm for the intrusions is the
same changing the opening by a closing and the radial outer skeleton by a
inner skeleton.
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