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ABSTRACT:

This paper presents an automatic method for filtering and segmenting 3D point clouds acquired from mobile LIDAR systems. Our

approach exploits 3D information by using range images and several morphological operators. Firstly, a detection of artifacts is

carried out in order to filter point clouds. The artifact detection is based on a Top-Hat of hole filling algorithm. Secondly, ground

segmentation extracts the contour between pavements and roads. The method uses a quasi-flat zone algorithm and a region adjacency

graph representation. Edges are evaluated with the local height difference along the corresponding boundary. Finally, edges with a

value compatible with the pavement/road difference (about 14[cm]) are selected. Preliminary results demonstrate the ability of this

approach to automatically filter artifacts and segment pavements from 3D data.

1 INTRODUCTION

3D urban environment modeling becomes a fundamental part in a

growing number of geo-applications as Google Earth, Microsoft

Virtual Earth, IGN - Geoportail 3D, etc. The main approaches to

model cities are based on coarse modeling, for instance: polyhe-

dral representation, main walls, roof planes and ground planes. In

recent years the laser telemetry has been gradually integrated on

board systems to digitize the 3D geometry of natural and urban

environments. The interpretation of 3D point clouds is one of the

essential tasks in the urban modeling process. This interpretation

consists in separating building façades, pavements, roads, arti-

facts (pedestrians, cars, trees, etc), and all elements which belong

to urban scenes.

Several approaches are focused on façade modeling and urban

scene segmentation. Automatic planar segmentation approaches

from 3D façade data are presented in (Dold and Brenner, 2006,

Stamos et al., 2006, Becker and Haala, 2007, Boulaassal et al.,

2007). Region growing algorithms are used to extract planar sur-

faces (Dold and Brenner, 2006, Stamos et al., 2006) and planar

approximation is carried out using RANSAC paradigm (Becker

and Haala, 2007, Boulaassal et al., 2007). Madhavan and Hong

(Madhavan and Hong, 2004) detect and recognize buildings from

LIDAR data. Also, (Goulette et al., 2007) presents a segmenta-

tion based on profiles of points, for the following elements in the

scene: ground (road and pavement), façades and trees. Neverthe-

less, those segmentation approaches are performed only on data

acquired by their own acquisition systems.

To construct the complete city model, we need a ground model

which could be combined with a model of buildings, improv-

ing the visual realism of synthetic scenes (Zhou and Neumann,

2008, Rottensteiner, 2003, Brostow et al., 2008). This work is

focused on filtering of artifacts at the ground level and pavement

segmentation, facilitating the urban modeling process, especially

for façades and ground. A diagram illustrating the main steps

of our methods is shown in Figure 1. Each step will be further

described through this paper.

Figure 1: Main steps of our methods

Our research is developed in the framework of Cap Digital Busi-

ness Cluster TerraNumerica project. This project aims to develop

a production and exploitation platform, by allowing the definition

and visualization of synthetic urban environments. The platform

aims to increase productivity and realism of urban modeling.

The paper is organized as follows. Firstly, a 3D point cloud pro-

jection to a range image is presented in Section 2.3. Then, we

detect and filter artifacts in order to clean up ground data (Sec-

tion 3). In Section 4, a pavement segmentation is carried out.

Finally, conclusions and our future work are drawn in Section 5.

2 3D DATA

2.1 Mobile Mapping Systems (MMS)

In this paper, 3D point clouds acquired by two different mobile

mapping systems are used in order to test the proposed methods.

These systems are LARA3D and Stereopolis. LARA3D MMS



was developed at CAOR/Mines ParisTech Lab-Research1. It con-

sists in two perception sensors, a laser range finder and a cam-

era equipped with a wide-angle fisheye lens, equipped with geo-

localization sensors (GPS, IMU, odometers) (Brun et al., 2007).

The range scanner covers an area of 270◦, by acquiring both sides

of streets, the ground (pavement and road) and building top data.

Stereopolis MMS, developed at MATIS laboratory of IGN2, con-

sists of a mobile platform with 16 full HD cameras, two laser

sensors and geo-referencing devices. The laser sensors have a

80◦ field of view. They are facing the same side of the street at

90◦ and 45◦ degrees to façades. Depending on the distance from

sensors to the façade, this system scans ground and building top

data.

The point clouds of both systems are profiles distributed along the

driving direction. Hence, the distance between two consecutive

profiles depends on the vehicle speed and the sensor frequency.

For Lara3D, the spacing is approximately 20 − 50[cm] and for

Sterepolis, approximately 5 − 20[cm].

2.2 Database

3D Data correspond to approximately 2 street kilometers (30 city

blocks) of the 5th Paris district. Figure 2(a) shows an example

of an urban scene. As we can see, several objects, as parked

cars, pedestrians and lamppost, produce occlusions in 3D data

acquisition and disturbing the ground segmentation.

(a) (b)

Figure 2: (a) Test zone image. (b) City blocks of Place du

Panthéon

Besides, a pavement generally surrounds a city block. Thus, each

city block is then processed separately. In order to segment point

clouds into city blocks, the method described in (Hernández and

Marcotegui, 2009) is used. An example of several city blocks is

shown in Figure 2(b).

2.3 Range Image

We propose to exploit 3D data using a range image. The image

is generated by projecting 3D points onto a plane using a “ vir-

tual ” camera. The camera is placed on the plane with normal

vector −→n = (0, 0, 1) through point (0, 0, zmin), i.e. parallel to

plane XY and positioned on the lowest value of z coordinate.

The image coordinates (u, v) are defined by a parametric func-

tion related to the camera. The range image is a representation

of 3D information where the pixel intensity is a function of the

measured distance between 3D points and the camera plane. If

several points are projected on the same image coordinates, Z-

buffer algorithm (Foley et al., 1995) is used to determine which

distance is stored.

1caor.ensmp.fr/french/recherche/rvra/3Dscanner.php
2recherche.ign.fr/labos/matis/accueilMATIS.php

Range images are a R
3 → N

2 projection. In order to avoid sam-

pling problems, their dimensions should be chosen carefully. If

they are too small, there will be an important information loss.

Otherwise if they are too large, pixel connectivity (required by

our method) is not ensured. Hence, the ideal choice of dimen-

sions is 1 : 1 i.e. a pixel by each 3D point in the camera plane. In

our case, point clouds have a resolution of approximately 20[cm],
and for this reason the selected resolution should be close to

5[pix/m].

3 FILTERING OF ARTIFACTS

Firstly, we filter artifacts using the method described in (Hernández

and Marcotegui, 2009). Artifacts are all elements, static or mo-

biles, different from buildings and ground (pavement and road)

data.

The method for artifact detection is based on hole filling algo-

rithm (Soille and Gratin, 1994). The holes of an image corre-

spond to sets of pixels whose minima are not connected to the

image border (Soille, 2003). The algorithm consists in remov-

ing all minima which are not connected to the border by using

the morphological reconstruction by erosion (Eq. 1). The image

marker (mk) is set to the image maximum value everywhere, ex-

cept along its border (Eq. 2).

Fill (f) = Rε
f (mk) (1)

where,

mk =

{

fp if p lies on the border

max (f) otherwise
(2)

The method consists of several steps : firstly, a raw ground mask

estimation is performed, using a quasi-flat zone algorithm. Sec-

ondly, a hole filling algorithm reduces several shadows (missing

data produced by occlusions) and filters noise (concavities) on

top of artifacts. Finally, assuming that artifacts are placed on the

ground, they can be seen as humps. Hence, inverting the range

image, those humps become new holes (concavities) to be filled.

Then, the artifacts are detected by a hole filling top-hat, i.e. the

difference between the inverted range image and the filled image.

A threshold of 10[cm] is applied to the Top-Hat result in order to

eliminate structures produced by ground roughness and noisy sur-

faces. The method allows to handle sloping streets because they

are linked to the border. These steps are summarized in Figure 3.

Figure 4(a) shows a segmentation result, where 3D points are la-

belled as façade, artifact or ground. From the ground mask, we

select all points that belong to the ground (excluding the arti-

facts). These points constitute a ground marker (Figure 4(b)).

4 PAVEMENT SEGMENTATION

In order to model realistic street level scenes, a pavement seg-

mentation is required. We propose an automatic pavement seg-

mentation, once the artifacts are eliminated from ground data.

The range image used in the previous section has several defects,

due to the ground points occluded by artifacts (for example points

under a tree). Figure 5(a) shows an example, where all points un-

der the tree are missing. To recover these points we reproject the

ground marker onto the point cloud. We estimate a plane from

the selected points. All points whose distance to the estimated

plane is smaller than the mean estimation error are added to the



Figure 3: Diagram of artifact detection method.

(a) 3D Data Segmentation (b) Ground Marker

Figure 4: (a) 3D data segmentation: façade in violet, ground

in blue and artifacts in green (b) Elimination of artifacts from

ground data

(a) Missing ground data (b) Plane approximation

Figure 5: (a) Recovering missing ground points in green and(b)

points that belong to the estimated plane in cyan.

plane. Figure 5(b) shows the points that belong to the estimated

plane.

Using the selected points we regenerate a new range image for

pavement segmentation. Figure 6 shows a comparison between

both range images. We can observe that points under the trees are

recovered.

A block diagram of ground segmentation method and an example

are given in Figure 7. First, in order to segment the pavement

from ground data, a fine segmentation of range image is achieved.

The segmentation method is based on the λ− flat zones labeling

algorithm introduced by Meyer in (Meyer, 1998).

Definition 1 Two neighboring pixels p, q belong to the same quasi-

flat zone of a function f , if their difference |fp − fq| is smaller

than or equal to a given λ value.

∀ (p, q) neighbors : |fp − fq| ≤ λ (3)

(a) Range image for artifact detection.

(b) Range image for pavement segmentation.

Figure 6: Range Images.

We want to obtain as few regions as possible, without merg-

ing the road and the pavement. Unfortunately in city planning,

strict standards for pavement height do not exist. However, in the

metropolitan areas the suggested heights are: 2[cm]-pedestrian

passage (handicap accessibility), 4[cm]-vehicle access and 14[cm]-
pavement. As the height variations on the street level are small

(2[cm]), a range image segmentation with a height λ = 5[mm]
will separately cluster pavement and road pixels into small re-

gions, avoiding the leakage problem throughout a pedestrian ac-

cess.

With this λ value the method produces a lot of small regions, be-

cause of the ground roughness. Hence, an area selection is carried

out, by choosing regions larger than 50 pixels. Simultaneously,

the range image gradient is calculated. The selected regions are

used as markers and a constrained watershed by markers is car-

ried out (Beucher and Meyer, 1993).

Once the segmentation is computed, a region adjacency graph

RAG is obtained to represent this result. RAG representation



Figure 7: Diagram of pavement segmentation.

helps to select the border regions between the pavement and the

road.

Figure 8: Local bound-

aries of thickness d = 1

We denote RAG as G = (R, E, W )
where, R = {ri} is a partition

into disjoint regions, E = {eij =
ri, rj} is the set of edges represent-

ing neighborhood relations. Each

edge eij can be given a weight wij ,

providing a measure of dissimilar-

ity between the two regions. In

our case, wij is simply obtained by

calculating the average contrast be-

tween local boundaries of thickness

d (See Figure 8). The use of a lo-

cal boundary increases the robust-

ness against the pedestrian access

and noisy points. After several tests, we chose d = 5. Edges with

a valuation between 5[cm] and 18[cm] are selected as a boundary

between the pavement and the road.

Figure 9 shows RAG creation, local boundary to compute wij and

contour extraction. An adequate delimitation of pavements and

parking access is observed. The contour has been truncated due

to an occlusion produced by a parked car. Our approach presents

satisfactory results to detect city block pavements.

Figure 9: Diagram of region adjacency graph and contour selec-

tion.

5 CONCLUSIONS AND FUTURE WORK

A method of 3D point cloud analysis on street level urban envi-

ronments has been presented. The analysis consists of two main

parts: 1-filtering data in order to facilitate urban scene modeling

(buildings, façades, roads and pavements) and 2-pavement seg-

mentation to find the delimitation between pavements and roads.

As a filtering of artifacts is applied on a top-view image, 3D pro-

jection may hide other artifacts under them (see Figure 4(a)). A

3D analysis of each artifact can be carried out, in order to separate

them.

Pavement segmentation produces a contour image as a ground

footprint. As a future work, we will work on image vectoriza-

tion to allow ground modeling. The proposed method is robust

to small noise points, because they are eliminated after select-

ing the largest regions of fine segmentation. As well, we handle

with pedestrian access (2[cm]) thanks to the local boundary of

the graph. However, if the pedestrian access height is lower than

2[cm], a pavement part can be merged with the road, missing this

part in the segmentation and producing a wrong contour estima-

tion.

The results obtained are satisfactory on the whole dataset. Ex-

tended tests on a larger database are foreseen in the framework of

TerraNumerica project. Ongoing work includes analyzing color

information, in order to improve artifact detection and pavement

segmentation.
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