
HAL Id: hal-00833344
https://minesparis-psl.hal.science/hal-00833344

Submitted on 12 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convex invariant refinement by control node splitting: a
heuristic approach

Vivien Maisonneuve

To cite this version:
Vivien Maisonneuve. Convex invariant refinement by control node splitting: a heuristic approach.
Third International Workshop on Numerical and Symbolic Abstract Domains, NSAD 2011, Sep 2011,
Venise, Italy. pp.49-59, �10.1016/j.entcs.2012.10.007�. �hal-00833344�

https://minesparis-psl.hal.science/hal-00833344
https://hal.archives-ouvertes.fr


NSAD 2011

Convex Invariant Refinement by Control
Node Splitting: a Heuristic Approach

Vivien Maisonneuve1

CRI, Mathématiques et systèmes
MINES ParisTech

Fontainebleau, France

Abstract

To improve the accuracy of invariants found when analyzing a transition system, we introduce an
original rewriting heuristic of control flow graphs, based on a control node splitting algorithm. The
transformation preserves the program behaviors, whilst allowing a finer analysis.
We have carried out experiments with PIPS, a source-to-source compiler, and Aspic, an abstract
interpretation tool, using 71 test cases published by Gonnord, Gulwani, Halbwachs, Jeannet & al.
The number of invariants found by these tools goes up from 28 to 69 for PIPS and from 44 to 62
for Aspic when our heuristics is used as a preprocessing step. The total execution time of PIPS
is only marginally increased, going up from 76 to 103 s, thus showing the practical interest of our
optimization technique.

Keywords: model checking, transformer, program analysis, CFG restructuring, automatic
invariant detection

1 Introduction

The standard state-based model checking problem is to characterize the set
of all the states of a transition system, modeling some program. Most of the
usual techniques consist in starting from a set of supposed predicates about a
particular position in the transition system, and then propagating it to other
positions by evaluating the effect of each transition on the predicates.

An alternative approach consists in computing state transformers [20], i.e.,
transfer functions, instead of state predicates. Each program command, el-
ementary or compound statement or procedure call, is approximated by an
affine transformer. Each function is analyzed once and its transformer is
1 Email: vivien.maisonneuve@cri.mines-paristech.fr.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:vivien.maisonneuve@cri.mines-paristech.fr


Maisonneuve

reused at each call site. Preconditions are then propagated using the trans-
formers. Such an approach is useful in order to obtain a modular analyzer and
to limit analysis times. Affine transformers are commonly used, as they offer
good compromise between accuracy and analysis complexity. A transformer-
based representation of programs is described in Section 2.

When analyzing a program using transformers, several factors can cause
loss in precision. An important one is the computation of loop effects. When
using affine transformers, another significant inaccuracy cause is the compu-
tation of effects of parallel paths between two points of a program, i.e., paths
that have the same origin and destination: indeed, computing the convex
union of each path transformer is required in order to obtain a convex result
(see Section 3). The issue is worsened on systems with multiple, parallel loops
on the same program point, since the approximation factors are combined.

We propose to address this issue with control graph restructuration. In
Section 4, a general control node splitting algorithm is introduced and we
discuss how to use it to refine invariants found by convex analysis. The results
of our experiments are shown in Section 5, while related work is discussed in
Section 6.

2 Transformer Automata

In this section, we introduce the data structure used to represent transition
systems with transformers, we call it transformer automaton.

Let Var be a finite set of n typed variables (e.g., integer variables). A
valuation is a function mapping each variable to a possible value of its type.
The set of valuations on Var is noted Val.

2.1 General Definition

Definition 2.1 A transformer T is a relation transition from Val to Val:
T ⊆ Val× Val.

Intuitively, a transformer represents the possible changes performed by a
piece of program on the program variables. Given two valuations v, v′ ∈ Val
and some piece of code represented by the transformer T , the boolean T (v, v′)
means that the code, called with variables initially equal to v, may result in
a memory state where variables are equal to v′.

Let T1, T2 be two transformers, we say that T2 overapproximates T1 (or
simply approximates T1) if T1 ⊂ T2, i.e. ∀v, v′ ∈ Val, T1(v, v′)⇒ T2(v, v′).

For instance, consider an integer variable x and the instruction

c = {if (x>0) x++;}.

2



Maisonneuve

Then the transformer of c is Tc = {(k, k + 1) | k ∈ N∗} while the transformer
T ′c = {(k, l) | k, l ∈ N∗, l > k} approximates Tc. We omit here the domain of
valuations, representing the function that maps x to k by k.

Definition 2.2 A transformer automaton is a triplet α = (K, kini,Trans)
where
• K is a finite set of control points;
• kini ∈ K is the initial control point;
• Trans is a finite set of transitions, i.e. of triplets (k, T, k′) with k, k′ ∈ K
and T is a transformer.

Remark 2.3 Val is isomorphic to Zn, which allows to represent a valuation
v ∈ Val of variables with a vector Xv ∈ Zn. The i-th component of Xv, noted
Xv[i], represents the value of the i-th variable in the valuation v. Similarly, a
transformer is isomorphic to a relation on Zn.

Example 2.4 Figure 1a shows an example of transformer automaton α =
(K, k1,Trans) where the set of controls is K = {k1, k2}, k1 is the initial state
and Trans = {(k1, Tini, k2), (k2, T1, k2), (k2, T2, k2)}. Code of the correspond-
ing program is given in Figure 1b, the notation (?) representing a boolean,
nondeterministic choice.

k1

k2

Tini : x, x
′ 7→ x′ ≥ 0

T1 : x, x′ 7→
x > 0∧

x′ = x− 1

T2 : x, x′ 7→
x ≤ 0∧

x′ = x+ 1

// k1
x = rand();

while (?) {
// k2
if (x > 0 && ?) x--;
else if (x <= 0 && ?) x++;

}

Figure 1. A transformer automaton (a) and the corresponding program code (b)

Semantics
Here is the semantic of transformer automata, in terms of transition sys-

tems.
Let α = (K, kini,Trans) be a transformer automaton. It is associated with

a transition system (Q,Qini,→) as follows:
• Q = K × Val: a state is a couple formed by a control point k ∈ K and a
valuation v ∈ Val.

• Qini = {kini} × Val: initial states have their first components equal to kini.
• The transition relation: (k, v)→ (k′, v′) if and only if there exists a transi-
tion (k, T, k′) ∈ Trans, verifying T (v, v′).

3



Maisonneuve

Q, Qini and → respectively defines the states, the initial states and the state
transition relation of α.

In a transformer automaton α, a trace t is a list of states t = q0, . . . , qm such
that q0 ∈ Qini and ∀i ∈ [1,m], qi−1 → qi. A state q is reachable if there exists
a trace t so that q is the last state of t. For instance, in Figure 1a, the state
(k2, 2) is reachable through the trace (k1, 0) → (k2, 4) → (k2, 3) → (k2, 2),
while the state (k2,−1) is not reachable.

2.2 Affine Case

In this section, we define affine transformer automata, a particular class of
transformer automata whose transformers are convex polyhedrons.
Definition 2.5 An affine transformer T is a finite set of affine inequalities
on 2n variables, say x1, . . . , xn, x

′
1, . . . , x

′
n. The associated affine relation T̃ is

the relation verifying

∀Xv, Xv′ ∈ Zn, T̃ (Xv, Xv′) iff the valuation

∀i, xi 7→ Xv[i]

x′i 7→ Xv′ [i]

 satisfies T.

By abuse of language, we call affine transformer and note T the affine relation
T̃ .

Using this latter definition, affine transformers are a particular class of
transformers. Note that since the universal transformer TΩ = Val × Val is
affine, any transformer can be approximated by an affine transformer.

An affine transformer automaton is a transformer automaton whose all
transformers are affine. For instance, the transformer automaton represented
in Figure 1a is affine. Any transformer automaton can be approximated by
an affine transformer automaton.

3 Affine Transformer Automaton Analysis

When analyzing a structured program, each program structure is represented
by a transformer. Preconditions are then propagated to each control point
using the transformers. Unstructured programs can be turned into equivalent,
structured programs: see for example [1].

We present here an iterative approach relying on affine transformers, used
for example by the program analyzer PIPS [26]. We suppose elementary in-
structions have been turned into transformers, and just show how control
structures are handled.

Sequence
A sequence of affine transformers “T1 followed by T2” is overapproximated

4



Maisonneuve

by the union of constraints in T1 (on variables x1, . . . , xn, x
′′
1, . . . , x

′′
n) with con-

straints in T2 (on variables x′′1, . . . , x′′n, x′1, . . . , x′n), then projected on x1, . . . , xn,
x′1, . . . , x

′
n to eliminate the “intermediate” variables x′′1, . . . , x′′n. We note this

operation T2 ◦ T1.

Choice
The effect of a choice “T1 or T2” is the transformer T1 ∪ T2, which is not

affine in the general case (the union of two convex polyhedrons is not a convex
polyhedron). The best convex approximation is the convex union T1tT2. This
is a lossy operation.

Loop
Given an affine transformer T , an affine transformer T ∗ representing the

effect of any number of iterations of T can be computed, for example with
the Affine Derivative Closure algorithm [2] used in PIPS, but other algorithms
exist [3,29].

This operation is also cause of inaccuracy. First, because the possible
effects of an arbitrary number of iterations of an affine transformer T cannot
be encoded as an affine transformer in the general case. For example, a loop
whose body is T : (x, x′) 7→ x′ = x+ 2, cannot be associated to a more precise
affine transformer than T ∗ : (x, x′) 7→ x′ ≥ x. Second, because a heuristic to
compute the effects of an unbounded number of iterations should perform a
transitive closure approximation at a given point.

Example 3.1 With this iterative approach, the structure represented in Fig-
ure 2a can be approximated by the single affine transformer (T3 ◦ T ∗2 ◦ T1) t
(T5 ◦ T4).

T1

T2

T3

T4 T5

T ′
1

T ′
2

Figure 2. Transformer automaton structures

4 Improving Parallel Loop Handling

The two main sources of imprecision that appeared in Section 3 were the
computation of loops (∗) and parallel paths (t). These imprecisions are ac-
cumulated if there are structures in the automaton with two or more loops
involved in the same control (Figure 2b, approximated by (T ′1 t T ′2)∗).

5



Maisonneuve

4.1 Control Node Splitting Algorithm

If such a structure is met during analysis, there are two ideas to improve
accuracy. The first one is to refine transformers involved in loops, so that
both the transitive closure approximation and the convex union might be
more precise. The second is to reduce the number of parallel loops. Both
require a restructuration of the transformer automaton.

The Control Node Splitting Algorithm allow us to play on loop transformers
and layout.

Control Node Splitting Algorithm
Let α = (K, kini,Trans) be a transformer automaton, k ∈ K r {kini} a

control of α and Part = P1 ] · · · ] Pm a partition of the domain of valuations
Val. The transformer automaton αPart/k is obtained from α by performing the
following steps:
(i) Delete control k.

Add fresh controls kP1 , . . . , kPm .
(ii) Delete each transition (k, c, k′) leaving k (k′ 6= k).

For all i ∈ [1,m], add the transition (kPi
, co, k

′) with co(v, v′) = c(v, v′) ∧
v ∈ Pi.

(iii) Delete each transition (k′, c, k) entering in k (k′ 6= k).
For all j ∈ [1,m], add the transition (k′, ci, kPj

) with ci(v, v′) = c(v, v′) ∧
v′ ∈ Pj.

(iv) Delete each transition (k, c, k) looping in k.
For all i, j ∈ [1,m], add the transition (kPi

, cl, kPj
) with cl(v, v′) =

c(v, v′) ∧ v ∈ Pi ∧ v′ ∈ Pj.
Controls that are not accessible or not coaccessible are not created, neither
are the related transitions. Transitions whose transformer is unsatisfiable are
not created either.

This algorithm can be applied to any transformer automaton. If run on
an affine automaton, and if every partition element Pi of Part is convex, then
the resulting automaton αPart/k is affine.

4.2 Correctness Theorems

We consider a general transformer automaton α and its image αPart/k obtained
through the control node splitting algorithm.

Theorem 4.1 For all i ∈ [1,m], for all v ∈ Val, if q = (kPi
, v) is a reachable

state of αPart/k then v ∈ Pi.

In other words, we have a guarantee that in every control kPi
of αPart/k,

the invariant given by Pi holds.
6



Maisonneuve

Given two controls k1 in α, k2 in αPart/k, we introduce a “state equivalence”
relation ∼St. between states of α and αPart/k, defined by: (k1, v) ∼St. (k2, v) iff
• Either k1 = k and k2 = kPi

where i ∈ [1,m] satisfies: v ∈ Pi.
• Either k1 = k2 6= k.
We also define a relation ∼Tr. between traces of α and αPart/k: t1 ∼Tr. t2
iff states in t1 and t2 pairwise satisfy ∼St.. Both relations ∼St. and ∼Tr. are
bijective, so notions of image and inverse image by ∼St. and ∼Tr. are defined.

Then the following two theorems hold:

Theorem 4.2 For all trace t1 of α, there exists a trace t2 of αPart/k such that
t1 ∼Tr. t2.

Theorem 4.3 For all trace t2 of αPart/k, there exists a trace t1 of α such that
t1 ∼Tr. t2.

These two theorems show that control node splitting preserves reachable
states:

Corollary 4.4 Let q1 a state of α and q2 a state in αPart/k such that q1 ∼St. q2.
q1 is reachable in α if and only if q2 is reachable in αPart/k.

Equivalence results 4.2, 4.3 and 4.4 give correspondences between au-
tomata α and αPart/k in terms of traces and reachable states. Thus, safety
and liveness properties on α can be translated into equivalent properties on
αPart/k, and conversely. This allows us to use the automaton αPart/k instead
of α to prove properties on programs, if it turns out to be easier.

4.3 Partition Choice

It is well known that the choice of a control structure affects result accuracy.
Thereby, when dealing with a given transformer automaton α, an important
question is to determine the control points that should be split as well as
the partitions they should be split along, in order to make the analysis more
accurate.

We have seen previously that most of the accuracy losses arise from the
analysis of control points with parallel loops. These control points are can-
didates to be split. Concerning the partition choices, a trade-off should be
found between different criteria.

First, the automaton structure should be kept as simple as possible, in
terms of control and, even more, of transition number. In the general case,
partitioning a control k within m components not only adds m control states
to the automaton, but also up to m2 transitions between the newly created
controls — from any control to any control; the larger size and more com-
plex structure will increase the analysis complexity. To avoid these issues,

7



Maisonneuve

the number m of partition components must be bounded and the partition,
carefully chosen so that some of the created states are not reachable or not
co-reachable, or that some of the created transitions are not satisfiable, as
they will not be present in αPart/k. If possible, the priority is to eliminate
transitions involved in loops or in cycles, for the same reasons as above.

Also, the resulting transition transformers should be as precise as possible,
especially the ones involved in loops or parallel paths, still with the aim to
limit accuracy losses due to approximations.

Choosing the partition can be done manually, considering the system be-
havior. We propose below an automatic heuristic technique too, which allows
to find the expected invariant on 69 small scale test cases published in the
related papers (see Section 5).

Guard-Based State Partitioning
Let α be an affine transformer automaton. On every control k with parallel

cycles, let T1, . . . , Tp be the affine transformers of transitions looping on k. We
recall that every affine transformer Ti, i ∈ [1, p] is a set of affine inequalities
on variables x1, . . . , xn, x

′
1, . . . , x

′
n. For all i, let Gi be the projection of Ti on

variables x1, . . . , xn, i.e. the “guard” of Ti.
Let Gi = Val r Gi. As Gi is the complementary of a convex polyhedron,

it is a polyhedron itself so it can be partitioned into a finite set of convex
polyhedrons Gi,1, . . . , Gi,ji

[7]. So Pi = {Gi, Gi,1, . . . , Gi,ji
} is a partition of

Val. The partition taken on control point k is:

Partk = P1 ⊗ · · · ⊗ Pp

where ⊗ is the “product partition” operation defined by: ∀E1, . . . , En,
∀F1, . . . , Fm, {E1, . . . , En} ⊗ {F1, . . . , Fm} = {Ei ∩ Fj | i ∈ [1, n], j ∈ [1,m]}.

In a nutshell, controls are created to explicitly allow or disallow each tran-
sition. The key idea behind this heuristic is that most of parallel loops have
at least partly disjuncts guards. In this case, there are seldom controls with
many parallel loops, if at all, and the memory state on these controls is well
known (Theorem 4.1). This assumption proved reasonable in most of our test
cases. Despite this, the main drawback of this technique is the important
number of created controls and transitions, which limits its application field
to transition systems whose average number of transitions per control node is
limited.

Example 4.5 Let us consider the system in Figure 1a. This system contains
two parallel loops on the control k1, whose transformers are

T1 = (x, x′ 7→ x > 0 ∧ x′ = x− 1) and T2 = (x, x′ 7→ x ≤ 0 ∧ x′ = x+ 1).
8



Maisonneuve

Their convex hull is

T1 t T2 = (x, x′ 7→ x− 1 ≤ x′ ≤ x+ 1)

so the invariant on control k2 is given by (T1 t T2)∗ = TΩ, which prevents us
to have any information about the value of the variable x in k2.

If we project the constraints in T1 and T2 on x, removing the variable
x′, we obtain respectively the guards {x > 0} and {x ≤ 0} which define a
partition Part of Val. Using this partition, we split the control k2 into k′2, k′′2 .
Transitions are rewritten accordingly to the algorithm described in Section 4.1.
The result is shown on Figure 3. Using this restructured automaton, we are
able to check the invariant (x ≥ 0) in k2 (actually, in k′2 and k′′2).

k1

k′2
x > 0

k′′2
x ≤ 0

T ′
ini : x, x

′ 7→ x′ > 0 T ′′
ini : x, x

′ 7→ x′ = 0

T ′
1 : x, x′ 7→

x > 1∧
x′ = x− 1

T ′′
1 : x, x′ 7→

x = 1∧
x′ = x− 1

T ′
2 : x, x

′ 7→
x = 0∧

x′ = x+ 1

T ′′
2 : x, x′ 7→

x < 0∧
x′ = x+ 1

Figure 3. Example of Figure 1a, restructured

5 Experimental Results

The algorithms described in this paper have been tested with the program
analyzers PIPS 2 [20,26] and Aspic 3 [9], on a set of 71 previously published
test cases 4 , most of them taken from references given below in Section 6, a
few other from Henzinger & al. [19,4], N. Halbwachs [16,18,17], and some
protocol descriptions [25,23,6]. As results depend for a part from the control
structure, we decided to reduce bias factors related to this encoding choice
by coding every case as a two-control automaton, formed by an initial state
leading to a looping state. Still, the algorithm could apply on any type of
transition system.

Among these 71 cases, PIPS was able to provide the expected cycle invari-
ants directly for 28. Using our restructuration techniques, we were able to run

2 Revision 19448.
3 Version 3.1.
4 All our test cases are available at https://svn.cri.ensmp.fr/svn/validation/trunk/
Semantics-New/NSAD_2011.sub/.

9

https://svn.cri.ensmp.fr/svn/validation/trunk/Semantics-New/NSAD_2011.sub/
https://svn.cri.ensmp.fr/svn/validation/trunk/Semantics-New/NSAD_2011.sub/


Maisonneuve

41 additional cases without suffering accuracy loss on the first group of cases.
Finally, it failed on two cases, both with and without restructuration.

Aspic was able to compute the expected cycle invariants for 44 out of our
71 test cases using direct encoding. Unsurprisingly, these results are better
than those obtained with PIPS since Aspic is a program devoted to polyhe-
dral invariant computation. 21 more test cases are properly analyzed using
partitioning techniques, while Aspic still failed on 6 cases.

After restructuration, the resulting systems have typically between 2 and
10 control states, which is in the scope of our analyzers. The subway example
[18], more complex, grew much bigger (up to 23 controls) and its analysis,
while correct, is very slow compared to what could be achieved with manual
control restructuration (10 seconds vs. 0.5 seconds using 5 control states).

As for PIPS execution time, the analysis of the 28 directly working cases
took 16.13 seconds on our machine 5 with direct encoding, against 20.47 sec-
onds using control node splitting techniques (27% slower). Analyzing the
whole set of examples took 76.49 seconds when encoded as single state transi-
tion systems, against 102.77 seconds with restructuration (34% slower). Thus,
it appears that the increase in time due to restructurations does not necessar-
ily lead to an exponential blowup as feared by Laure Gonnord [10], at least
for loops with no more than five cycles.

6 Related Work

Partitioning techniques are a well established bunch of methods to improve
the precision of analyses. Gulwani & al. [13,12,14,15] introduce several tech-
niques to compute complexity bounds on procedures, including a semantics
transformation on loops called control-flow refinement.This technique is not
used in the same context as ours: it is specially devoted to bound analy-
sis, is applied to structured programs and not to control graphs, and uses
a fundamentally different transformation. Bertrand Jeannet [22,21] proposes
a dynamic partitioning approach which tackles the problem of the control
structure complexification due to partitioning. The main idea is that the fi-
nal control structure is chosen dynamically, depending on the property to be
proved. This does not exactly match our goal, which is to refine control invari-
ants on a system independently of any property proof. Partitioning techniques
are also used in abstract interpretation: dynamic partitioning à la Bourdoncle
[5], trace partitioning à la Rival-Mauborgne [27], etc.

On the other hand, several techniques improve the computation of loop
invariants without any control flow restructuration. The work of Kelly & al.

5 All experiments were performed on an Intel Core i7 machine at 2.8 GHz running Debian
Linux 2.6.32-5 with 8 GB of memory, using PIPS revision 19448.

10



Maisonneuve

[24] introduced many concepts and algorithms in the computation of transi-
tive closures. However, they consider a different set of applications and focus
mostly on the underapproximation of transitive closures instead of overappro-
mations. Laure Gonnord improves results given by Linear Relation Analysis
[8] [16] by identifying categories of loops whose effects can be computed ex-
actly, via abstract accelerations [11,10]. Also, Sven Verdoolaege & al. [29]
have developed techniques to compute more accurately the transitive closures
of a class of parametrized relations that captures Presburger arithmetic and
affine transformers on integer variables, with a special focus on the case of
parallel paths.

7 Conclusion

We present a simple algorithm to split control nodes to refine a program con-
trol flow graph, over a partition of the set of variable valuations (Section 4.1).
Theorems are given about the invariants of created control nodes, and to
ensure the restructuration does not change the behavior of the program (Sec-
tion 4.2).

We also give heuristics concerning the choice of partitions in the case of
convex transition systems, based on the transition guards (Section 4.3). This
approach is tested on a set of previously published examples, yielding encour-
aging results (69 examples worked out of 71, Section 5).

Future work will address performance issues. The restructuration given
by our heuristics tends to create a large number of controls and transitions,
which limits its scope to systems whose number of parallel loops is limited.
This complexity is useless in several cases because the same invariant accuracy
is obtained with much simpler, manually restructured systems. We were also
able to design transition systems on which the proposed partition is not suited,
leading to the analyzer failure, while a better, simpler partition choice would
have worked. As part of future work, we therefore want to design better
partition strategies to handle a wider range of transition systems.

References
[1] Zahira Ammarguellat. A control-flow normalization algorithm and its complexity. IEEE Trans.

Software Eng., 18(3):237–251, 1992.

[2] Corinne Ancourt, Fabien Coelho, and François Irigoin. A modular static analysis approach to
affine loop invariants detection. Electr. Notes Theor. Comput. Sci., 267(1):3–16, 2010.

[3] Anna Beletska, Denis Barthou, Wlodzimierz Bielecki, and Albert Cohen. Computing the
transitive closure of a union of affine integer tuple relations. In COCOA, pages 98–109, 2009.

[4] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko. Path
invariants. In PLDI, pages 300–309, 2007.

11



Maisonneuve

[5] François Bourdoncle. Abstract interpretation by dynamic partitioning. J. Funct. Program.,
2(4):407–423, 1992.

[6] Tevfik Bultan, Richard Gerber, and William Pugh. Symbolic model checking of infinite state
systems using presburger arithmetic. In CAV, pages 400–411, 1997.

[7] Bernard Chazelle. Convex partitions of polyhedra: A lower bound and worst-case optimal
algorithm. SIAM J. Comput., 13(3):488–507, 1984.

[8] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, pages 84–96, 1978.

[9] Laure Gonnord. Aspic, 2005–2010.

[10] Laure Gonnord. Accélération abstraite pour l’amélioration de la précision en Analyse des
Relations Linéaires. PhD thesis, Université Joseph-Fourier - Grenoble I, 10 2007.

[11] Laure Gonnord and Nicolas Halbwachs. Combining widening and acceleration in linear relation
analysis. In SAS, pages 144–160, 2006.

[12] Sumit Gulwani. Speed: Symbolic complexity bound analysis. In CAV, pages 51–62, 2009.

[13] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and progress invariants
for bound analysis. In PLDI, pages 375–385, 2009.

[14] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. Speed: precise and efficient static
estimation of program computational complexity. In POPL, pages 127–139, 2009.

[15] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In PLDI, pages 292–
304, 2010.

[16] Nicolas Halbwachs. Détermination automatique de relations linéaires vérifiées par les variables
d’un programme. PhD thesis, Institut National Polytechnique de Grenoble - INPG; Université
Joseph-Fourier - Grenoble I, 03 1978. Universités : Université scientifique et médicale de
Grenoble et Institut national polytechnique de Grenoble SUDOC-004907809 ; MI2S-tu985.

[17] Nicolas Halbwachs. Linear relation analysis: Principles and recent progress, 12 2010.
Presentation at Second French Compiler Research Meeting.

[18] Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–185, 1997.

[19] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy abstraction.
In POPL, pages 58–70, 2002.

[20] François Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interprocedural parallelization:
an overview of the PIPS project. In ICS, pages 244–251, 1991.

[21] Bertrand Jeannet. Partitionnement dynamique dans l’analyse de relations linéaires et
application à la vérification de programmes synchrones. PhD thesis, Institut National
Polytechnique Grenoble, sep 2000.

[22] Bertrand Jeannet, Nicolas Halbwachs, and Pascal Raymond. Dynamic partitioning in analyses
of numerical properties. In SAS, pages 39–50, 1999.

[23] Randy H. Katz, Susan J. Eggers, David A. Wood, C. L. Perkins, and R. G. Sheldon.
Implementing a cache consistency protocol. In ISCA, pages 276–283, 1985.

[24] Wayne Kelly, William Pugh, Evan Rosser, and Tatiana Shpeisman. Transitive closure of infinite
graphs and its applications. In LCPC, pages 126–140, 1995.

[25] Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM, 17(8):453–455, 1974.

[26] MINES ParisTech. PIPS, 1989–2011. Open source, under GPLv3.

[27] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst., 29(5), 2007.

[28] Peter Schrammel and Bertrand Jeannet. Extending abstract acceleration methods to data-flow
programs with numerical inputs. Electr. Notes Theor. Comput. Sci., 267(1):101–114, 2010.

[29] Sven Verdoolaege, Albert Cohen, and Anna Beletska. Transitive Closures of Affine Integer
Tuple Relations and their Overapproximations. Research Report RR-7560, INRIA, 03 2011.

12


	Introduction
	Transformer Automata
	General Definition
	Affine Case

	Affine Transformer Automaton Analysis
	Improving Parallel Loop Handling
	Control Node Splitting Algorithm
	Correctness Theorems
	Partition Choice

	Experimental Results
	Related Work
	Conclusion
	References

