Philippe Martin 
email: philippe.martin@mines-paristech.fr
  
Lionel Rosier 
email: rosier@iecn.u-nancy
  
Pierre Rouchon 
email: pierre.rouchon@mines-paristech.fr
  
  
  
  
NULL CONTROLLABILITY OF THE STRUCTURALLY DAMPED WAVE EQUATION WITH MOVING POINT CONTROL

Keywords: Structural damping, wave equation, null controllability, Benjamin-Bona-Mahony equation, Korteweg-de Vries equation, biorthogonal sequence, multiplier, sine-type function

We investigate the internal controllability of the wave equation with structural damping on the one dimensional torus. We assume that the control is acting on a moving point or on a moving small interval with a constant velocity. We prove that the null controllability holds in some suitable Sobolev space and after a fixed positive time independent of the initial conditions.

Introduction

In this paper we consider the wave equation with structural damping 1 y tt -y xx -εy txx = 0 (1.1) where t is time, x ∈ T = R/(2πZ) is the space variable, and ε is a small positive parameter corresponding to the strength of the structural damping. That equation has been proposed in [START_REF] Pellicer | Analysis of a viscoelastic spring-mass model[END_REF] as an alternative model for the classical spring-mass-damper PDE. We are interested in the control properties of (1.1). The exact controllability of (1.1) with an internal control function supported in the whole domain was studied in [START_REF] Lasiecka | Exact null controllability of structurally damped and thermo-elastic parabolic models[END_REF][START_REF] Leugering | Optimal controllability in viscoelasticity of rate type[END_REF]. With a boundary control, it was proved in [START_REF] Rosier | On the controllability of a wave equation with structural damping[END_REF] that (1.1) is not spectrally controllable (hence not null controllable), but that some approximate controllability may be obtained in some appropriate functional space. The bad control properties from (1.1) come from the existence of a finite accumulation point in the spectrum. Such a phenomenon was noticed first by D. Russell in [START_REF] Russell | Mathematical models for the elastic beam and their control-theoretic implications[END_REF] for the beam equation with internal damping, by G. Leugering and E. J. P. G. Schmidt in [START_REF] Leugering | Boundary control of a vibrating plate with internal damping[END_REF] for the plate equation with internal damping, and by S. Micu in [START_REF] Micu | On the controllability of the linearized Benjamin-Bona-Mahony equation[END_REF] for the linearized Benjamin-Bona-Mahony (BBM) equation y t + y x -y txx = 0.

(1.2) Even if the BBM equation arises in a quite different physical context, its control properties share important common features with (1.1). Remind first that the full BBM equation y t + y x -y txx + yy x = 0 (1.3) is a popular alternative to the Korteweg-de Vries (KdV) equation

y t + y x + y xxx + yy x = 0 (1.4)
as a model for the propagation of unidirectional small amplitude long water waves in a uniform channel. (1.3) is often obtained from (1.4) in the derivation of the surface equation by noticing that, in the considered regime, y x ∼ -y t , so that y xxx ∼ -y txx . The dispersive term -y txx has a strong smoothing effect, thanks to which the wellposedness theory of (1.3) is dramatically easier than for (1.4). On the other hand, the control properties of (1.2) or (1.3) are very bad (compared to those of (1.4), see [START_REF] Rosier | Control and stabilization of the Korteweg-de Vries equation: recent progresses[END_REF]) precisely because of that term. It is by now classical that an "intermediate" equation between (1.3) and (1.4) can be derived from (1.3) by working in a moving frame x = ct, c ∈ R. Indeed, letting z(x, t) = y(x -ct, t) (1. [START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF] we readily see that (1.3) is transformed into the following KdV-BBM equation

z t + (c + 1)z x -cz xxx -z txx + zz x = 0. (1.6)
It is then reasonable to expect the control properties of (1.6) to be better than those of (1.3), thanks to the KdV term -cz xxx in (1.6). In [START_REF] Rosier | Unique continuation property and control for the Benjamin-Bona-Mahony equation[END_REF], it was proved that the equation (1.6) with a forcing term supported in (any given) subdomain is locally exactly controllable in H 1 (T) provided that T > (2π)/c. Going back to the original variables, it means that the equation

y t + y x -y txx + yy x = b(x + ct)h(x, t) (1.7) 
with a moving distributed control is exactly controllable in H 1 (T) in (sufficiently) large time.

Actually, this control time has to be chosen in such a way that the support of the control, which is moving at the constant velocity c, can visit all the domain T.

The concept of moving point control was introduced by J. L. Lions in [START_REF] Lions | Pointwise control for distributed systems[END_REF] for the wave equation. One important motivation for this kind of control is that the exact controllability of the wave equation with a pointwise control and Dirichlet boundary conditions fails if the point is a zero of some eigenfunction of the Dirichlet Laplacian, while it holds when the point is moving under some (much more stable) conditions easy to check (see e.g. [START_REF] Castro | Exact controllability of the 1-d wave equation from a moving interior point[END_REF]). The controllability of the wave equation (resp. of the heat equation) with a moving point control was investigated in [START_REF] Lions | Pointwise control for distributed systems[END_REF][START_REF] Khapalov | Controllability of the wave equation with moving point control[END_REF][START_REF] Castro | Exact controllability of the 1-d wave equation from a moving interior point[END_REF] (resp. in [START_REF] Khapalov | Mobile point controls versus locally distributed ones for the controllability of the semilinear parabolic equation[END_REF][START_REF] Castro | Unique continuation and control for the heat equation from an oscillating lower dimensional manifold[END_REF]). See also [START_REF] Zhang | Exact internal controllability of Maxwell's equations[END_REF] for Maxwell's equations.

As the bad control properties of (1.1) come from the BBM term -εy txx , it is natural to ask whether better control properties for (1.1) could be obtained by using a moving control, as for the BBM equation in [START_REF] Rosier | Unique continuation property and control for the Benjamin-Bona-Mahony equation[END_REF]. The aim of this paper is to investigate that issue.

Throughout the paper, we will take ε = 1 for the sake of simplicity. All the results can be extended without difficulty to any ε > 0. Let y solve

y tt -y xx -y txx = b(x + ct)h(x, t). (1.8) Then v(x, t) = y(x -ct, t) fulfills v tt + (c 2 -1)v xx + 2cv xt -v txx -cv xxx = b(x) h(x, t) (1.9) 
where h(x, t) = h(x -ct, t). Furthermore the new initial condition read

v(x, 0) = y(x, 0), v t (x, 0) = -c y x (x, 0) + y t (x, 0). (1.10)
As for the KdV-BBM equation, the appearance of a KdV term (namely -cv xxx in (1.9)) results in much better control properties. We shall see that (i) there is no accumulation point in the spectrum of the free evolution equation ( h = 0 in (1.9));

(ii) the spectrum splits into one part of "parabolic" type, and another part of "hyperbolic" type.

It follows that one can expect at most a null controllability result in large time. We will see that this is indeed the case. Throughout the paper, we assume that c = -1 for the sake of simplicity.

Let us now state the main results of the paper. We shall denote by (y 0 , ξ 0 ) an initial condition (taken in some appropriate space) decomposed in Fourier series as .11) We shall consider several control problems. The first one reads

y 0 (x) = k∈Z c k e ikx , ξ 0 (x) = k∈Z d k e ikx . ( 1 
y tt -y xx -y txx = b(x -t)h(t), x ∈ T, t > 0, (1.12) y(x, 0) = y 0 (x), y t (x, 0) = ξ 0 (x), x ∈ T (1.13)
where h is the scalar control.

Theorem 1.1. Let b ∈ L 2 (T) be such that

β k = T b(x)e -ikx dx = 0 for k = 0, β 0 = T b(x) dx = 0.
For any time T > 2π and any (y

0 , ξ 0 ) ∈ L 2 (T) 2 decomposed as in (1.11), if k =0 |β k | -1 (|k| 6 |c k | + |k| 4 |d k |) < ∞ and c 0 = d 0 = 0, (1.14) 
then there exists a control h ∈ L 2 (0, T ) such that the solution of (1.12)-(1.13) satisfies y(., T ) = y t (., T ) = 0.

By Lemma 2.3 (see below) there exist simple functions b such that |β k | decreases like 1/|k| 3 , so that (1.14) holds for (y 0 , ξ 0 ) ∈ H s+2 (T) × H s (T) with s > 15/2.

The second problem we consider is

y tt -y xx -y txx = b(x -t)h(x, t), x ∈ T, t > 0, (1.15) y(x, 0) = y 0 (x), y t (x, 0) = ξ 0 (x), x ∈ T, (1.16) 
where the control function h is here allowed to depend also on x. For that internal controllability problem, the following result will be established. We now turn our attention to some internal controls acting on a single moving point. The first problem we consider reads

y tt -y xx -y txx = h(t)δ t , x ∈ T, t > 0, (1.17) y(x, 0) = y 0 (x), y t (x, 0) = ξ 0 (x), x ∈ T, (1.18) 
where δ x 0 represents the Dirac measure at x = x 0 . We can as well replace δ t by dδt dx in (1.17), which yields another control problem:

y tt -y xx -y txx = h(t) dδ t dx , x ∈ T, t > 0, (1.19) y(x, 0) = y 0 (x), y t (x, 0) = ξ 0 (x), x ∈ T. (1.20)
Then we will obtain the following results.

Theorem 1.3. For any time T > 2π and any (y 0 , ξ 0 ) ∈ H s+2 (T) × H s (T) with s > 9/2, there exists a control h ∈ L 2 (0, T ) such that the solution of (1.17)-(1.18) satisfies y(T, .) -[y(T, .)] = y t (T, .) = 0, where [f ] = (2π) -1 2π 0 f (x)dx is the mean value of f . Theorem 1.4. For any time T > 2π and any (y 0 , ξ 0 ) ∈ H s+2 (T) × H s (T) with s > 7/2 and such that T y 0 (x)dx = T ξ 0 (x)dx = 0, there exists a control h ∈ L 2 (0, T ) such that the solution of (1. [START_REF] Micu | On the controllability of the linearized Benjamin-Bona-Mahony equation[END_REF])-(1.20) satisfies y(T, .) = y t (T, .) = 0.

The paper is organized as follows. Section 2 is devoted to the proofs of the above theorems: in subsection 2.1 we investigate the wellposedness and the spectrum of (1.9) for c = -1; in subsection 2.2 the null controllability of (1.12)-(1.13), (1.17)-(1.18) and (1. [START_REF] Micu | On the controllability of the linearized Benjamin-Bona-Mahony equation[END_REF])-(1.20) are formulated as moment problems; Theorem 1.1 is proved in subsection 2.4 thanks to a suitable biorthogonal family which is shown to exist in Proposition 2.2; Theorem 1.2 is deduced from Theorem 1.1 in subsection 2.5; finally, the proofs of Theorems 1.3 and 1.4, that are almost identical to the proof of Theorem 1.1, are sketched in subsection 2.6. The rather long proof of Proposition 2.2 is postponed to Section 3. It combines different results of complex analysis about entire functions of exponential type, sine-type functions, atomization of measures, and Paley-Wiener theorem.

Proof of the main results

2.1. Spectral decomposition. The free evolution equation associated with (1.9) reads

v tt -2v xt -v txx + v xxx = 0.
(2.1)

Let v be as in (2.1), and let w = v t . Then (2.1) may be written as

v w t = A v w := w 2w x + w xx -v xxx . (2.2) 
The eigenvalues of A are obtained by solving the system

w = λv, 2λv x + λv xx -v xxx = λ 2 v. (2.3) Expanding v as a Fourier series v = k∈Z v k e ikx , we see that (2.3) is satisfied provided that for each k ∈ Z (λ 2 + (k 2 -2ik)λ -ik 3 )v k = 0. (2.4)
For v k = 0, the only solution of (2.4) reads Note that

λ = λ ± k = -(k 2 -2ik) ± √ k 4 -4k 2 2 • (2.
λ ± 0 = 0, λ ± 2 = -2 + 2i, λ ± -2 = -2 -2i while λ + k = λ - l for k, l ∈ Z \ {0, ±2} with k = l. For |k| ≥ 3, λ ± k = -k 2 ±k 2 (1-2k -2 +O(k -4 )) 2 + ik. Hence λ + k = -1 + ik + O(k -2 ) as |k| → ∞, (2.6) 
λ - k = -k 2 + 1 + ik + O(k -2 ) as |k| → ∞.
(2.7)

The spectrum Λ = {λ ± k ; k ∈ Z} may be split into Λ = Λ + ∪ Λ -∪ Λ 2 where

Λ + = λ + k ; k ∈ Z \ {0, ±2} , Λ -= λ - k ; k ∈ Z \ {0, ±2} , Λ 2 = {0, -2 ± 2i}
denote the hyperbolic part, the parabolic part, and the set of double eigenvalues, respectively. It is displayed on Figure 1. (See also [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF] for a system whose spectrum may also be decomposed into a hyperbolic part and a parabolic part.) An eigenvector associated with the eigenvalue

λ ± k , k ∈ Z, is e ikx λ ±
k e ikx , and the corresponding exponential solution of (2.1) reads

v ± k (x, t) = e λ ± k t e ikx .
For k ∈ {0, ±2}, we denote

λ k = λ + k = λ - k , v k (x, t) = e λ k t
e ikx , and introduce ṽk (x, t) := te λ k t e ikx .

Then we easily check that ṽk solves (2.1) and ṽk ṽkt (x, 0) = 0 e ikx . Any solution of (2.1) may be expressed in terms of the v ± k 's, the v k 's, and the ṽk 's. Introduce first the Hilbert space H = H 1 (T) × L 2 (T) endowed with the scalar product

(v 1 , w 1 ), (v 2 , w 2 ) H = T [(v 1 v 2 + v ′ 1 v ′ 2 ) + w 1 w 2 ]dx.
Pick any

v 0 w 0 = k∈Z c k e ikx k∈Z d k e ikx ∈ H. (2.8)
For k ∈ Z \ {0, ±2}, we write

c k e ikx d k e ikx = a + k e ikx λ + k e ikx + a - k e ikx λ - k e ikx (2.9) with a + k = d k -λ - k c k λ + k -λ - k , (2.10) 
a - k = d k -λ + k c k λ - k -λ + k • (2.11) 
For k ∈ {0, ±2}, we write

c k e ikx d k e ikx = a k e ikx λ k e ikx + ãk 0 e ikx (2.12) with a k = c k , ãk = d k -λ k c k . (2.13)
It follows that the solution (v, w) of

v w t = A v w , v w (0) = v 0 w 0 (2.14)
may be decomposed as

v(x, t) w(x, t) = k∈Z\{0,±2} {a + k e λ + k t e ikx λ + k e ikx + a - k e λ - k t e ikx λ - k e ikx } + k∈{0,±2} {a k e λ k t e ikx λ k e ikx + ãk e λ k t te ikx (1 + λ k t)e ikx }.
(2.15)

Proposition 2.1. Assume that (v 0 , w 0 ) ∈ H s+1 (T) × H s (T) for some s ≥ 0. Then the solution (v, w) of (2.14) satisfies (v, w) ∈ C([0, +∞); H s+1 (T) × H s (T)). Proof. Assume first that (v 0 , w 0 ) ∈ C ∞ (T) × C ∞ (T)
. Decompose (v 0 , w 0 ) as in (2.8), and let a ± k for k ∈ Z \ {0, ±2}, and a k , ãk for k ∈ {0, ±2}, be as in (2.10)-(2.11) and (2.13), respectively. Then, from the classical Fourier definition of Sobolev spaces, we have that

||(v 0 , w 0 )|| H s+1 (T)×H s (T) ∼ k∈Z (|k| 2 + 1) s (|k| 2 + 1)|c k | 2 + |d k | 2 1 2 ∼   k∈Z\{0,±2} |k| 2s (k 2 |a + k | 2 + k 4 |a - k | 2 ) + k∈{0,±2} (|a k | 2 + |ã k | 2 )   1 2
.

For the last equivalence of norms, we used (2.6)-(2.7) and (2.9)-(2.11). Since

|e λ + k t | + |e λ - k t | ≤ C for |k| > 2, t ≥ 0, we infer that k∈Z\{0,±2} |k| 2s k 2 |a + k e λ + k t | 2 + k 4 |a - k e λ - k t | 2 ≤ C k∈Z\{0,±2} |k| 2s k 2 |a + k | 2 + k 4 |a - k | 2 < ∞, hence ||(v, w)|| L ∞ (R + , H s+1 (T)×H s (T)) ≤ C||(v 0 , w 0 )|| H s+1 (T)×H s (T) • (2.16)
The result follows from (2.15) and (2.16) by a density argument.

2.2.

Reduction to moment problems.

Internal control.

We investigate the following control problem

v tt -2v xt -v txx + v xxx = b(x)h(t), (2.17) 
where b ∈ L 2 (T), supp b ⊂ ω ⊂ T and h ∈ L 2 (0, T ). The adjoint equation to (2.17) reads

ϕ tt -2ϕ xt + ϕ txx -ϕ xxx = 0. (2.18) Note that ϕ(x, t) = v(2π -x, T -t
) is a solution of (2.18) if v is a solution of (2.17) for h ≡ 0. Pick any (smooth enough) solutions v of (2.17) and ϕ of (2.18), respectively. Multiplying each term in (2.17) by ϕ and integrating by parts, we obtain

T [v t ϕ + v(-ϕ t + 2ϕ x -ϕ xx )] T 0 dx = T 0 T hbϕ dxdt. (2.19) Pick first ϕ(x, t) = e λ ± -k (T -t) e ikx = e λ ± k (T -t) e ikx for k ∈ Z. Then (2.19) may be written v t (T ), e ikx + (λ ± k -2ik + k 2 ) v(T ), e ikx -e λ ± k T γ ± k = T 0 h(t)e λ ± k (T -t) dt T b(x)e -ikx dx, (2.20) 
where ., . stands for the duality pairing ., . D ′ (T),D(T) , and

γ ± k = v t (0), e ikx + (λ ± k -2ik + k 2 ) v(0), e ikx . If we now pick ϕ(x, t) = (T -t)e λ k (T -t) e ikx for k ∈ {0, ±2}, then (2.19) yields v(T ), e ikx -T e λ k T v t (0), e ikx + [1 + T (λ k -2ik + k 2 )]e λ k T v(0), e ikx = T 0 (T -t)h(t)e λ k (T -t) dt T b(x)e -ikx dx k ∈ {0, ±2}. (2.21) Set β k = T b(x)e -ikx dx for k ∈ Z.
The control problem can be reduced to a moment problem.

Assume that there exists some function h ∈ L 2 (0, T ) such that

β k T 0 e λ ± k (T -t) h(t)dt = -e λ ± k T γ ± k ∀k ∈ Z, (2.22 
)

β k T 0 (T -t)e λ k (T -t) h(t)dt = -T e λ k T v t (0), e ikx -[1 + T (λ k -2ik + k 2 )]e λ k T v(0), e ikx ∀k ∈ {0, ±2}. (2.23) Then it follows from (2.20)-(2.23) that v t (T ), e ikx + (λ ± k -2ik + k 2 ) v(T ), e ikx = 0 ∀k ∈ Z, (2.24) 
v(T ), e ikx = 0 ∀k ∈ {0, ±2}.

(2.25) 

Since λ + k = λ - k for k ∈ Z \ {0, ±2}, this yields v(T ) = v t (T ) = 0. ( 2 
v tt -2v xt -v txx + v xxx = h(t) dδ 0 dx • (2.27)
Then the right hand side of (2. [START_REF] Micu | On the controllability of the linearized Benjamin-Bona-Mahony equation[END_REF]) is changed into

T 0 h(t) dδ 0 dx , ϕ dt. For ϕ(x, t) = e λ ± k (T -t) e ikx , we have dδ 0 dx , ϕ = -δ 0 , ∂ϕ ∂x = ik e λ ± k (T -t)
hence the right hand sides of (2.20) and (2.21) are changed into

T 0 (ik)e λ ± k (T -t) h(t)dt and T 0 (ik)(T -t)e λ k (T -t) h(t)dt, respectively. Let β k = ik for k ∈ Z. Note that β 0 = 0 and that (2.20)-(2.21) for k = 0 read v t (T ), 1 -v t (0), 1 = 0, (2.28) v(T ), 1 -T v t (0), 1 -v(0), 1 = 0.
(2.29) Thus, the mean values of v and v t cannot be controlled. Let us formulate the moment problem to be solved. Assume that

v(0), 1 = v t (0), 1 = 0, (2.30)
and that there exists some h ∈ L 2 (0, T ) such that 

ik T 0 e λ ± k (T -t) h(t)dt = -e λ ± k T γ ± k ∀k ∈ Z \ {0}, (2.31) ik T 0 (T -t)e λ k (T -t) h(t)dt = -T e λ k T v t (0), e ikx -[1 + T (λ k -2ik + k 2 )]e λ k T v(0),
v(T ) = v t (T ) = 0.
Finally, let us consider the control problem

v tt -2v xt -v txx + v xxx = h(t)δ 0 • (2.33)
Then the computations above are valid with the new values of β k given by

β k = δ 0 , e ikx = 1, k ∈ Z.
It will be clear from the proof of Theorem 1.1 that v t (T ), 1 can be controlled, while v(T ), 1 cannot. To establish Theorem 1.3, we shall have to find a control function h ∈ L 2 (0, T ) such that 

T 0 e λ ± k (T -t) h(t)dt = -e λ ± k T γ ± k ∀k ∈ Z, (2.34) T 0 (T -t)e λ k (T -t) h(t)dt = -T e λ k T v t (0), e ikx -[1 + T (λ k -2ik + k 2 )]e λ k T v(0),
± k } k∈Z\{0,±2} ∪{ψ k } k∈{0,±2} ∪{ ψk } k∈{±2} of functions in L 2 (-T /2, T /2) such that T /2 -T /2 ψ ± k (t)e λ ± l t dt = δ l k δ - + k, l ∈ Z \ {0, ±2}, (2.36) 
T /2 -T /2 ψ ± k (t)e λ l t dt = T /2 -T /2 ψ ± k (t)te λpt dt = 0 k ∈ Z \ {0, ±2}, l ∈ {0, ±2}, p ∈ {±2}, (2.37) 
T /2 -T /2 ψ l (t)e λ ± k t dt = T /2 -T /2 ψp (t)e λ ± k t dt = 0 l ∈ {0, ±2}, k ∈ Z \ {0, ±2}, p ∈ {±2}, (2.38) 
T /2 -T /2 ψ l (t)e λ k t dt = δ k l , T /2 -T /2 ψ l (t)te λpt dt = 0 l, k ∈ {0, ±2}, p ∈ {±2}, (2.39) 
T /2 -T /2 ψp (t)e λ k t dt = 0, T /2 -T /2 ψp (t)te λqt dt = δ q p p, q ∈ {±2}, k ∈ {0, ±2}, (2.40 
)

||ψ + k || L 2 (-T /2,T /2) ≤ C|k| 4 k ∈ Z \ {0, ±2}, (2.41) ||ψ - k || L 2 (-T /2,T /2) ≤ C|k| 2 e -T 2 k 2 +2 √ 2π|k| k ∈ Z \ {0, ±2}, (2.42) 
where C denotes some positive constant.

In Proposition 2.2, δ l k and δ - + denote Kronecker symbols (δ l k = 1 if k = l, 0 otherwise, while δ - + = 1 if we have the same signs in the l.h.s of (2.36), 0 otherwise). The proof of Proposition 2.2 is postponed to Section 3. We assume Proposition 2.2 true for the time being and proceed to the proofs of the main results of the paper.

2.4. Proof of Theorem 1.1. Pick any pair (y 0 , ξ 0 ) ∈ L 2 (T) 2 fulfilling (1.14). From (1.10) with c = -1, we have that v(0) = y 0 , v t (0) = dy 0 dx + ξ 0 , so that

γ ± k = dy 0 dx + ξ 0 , e ikx + (λ ± k -2ik + k 2 ) y 0 , e ikx , = ξ 0 , e ikx + (λ ± k -ik + k 2 ) y 0 , e ikx , k ∈ Z. Let γ k = γ ± k for k ∈ {0, ±2}.
The result will be proved if we can construct a control function h ∈ L 2 (0, T ) fulfilling (2.22)-(2.23). Let us introduce the numbers

α ± k = -β -1 k e λ ± k T 2 γ ± k , k ∈ Z \ {0, ±2}, α k = -β -1 k e λ k T 2 γ k , k ∈ {±2}, αk = -β -1 k T 2 e λ k T 2 γ k + e λ k T 2 y 0 , e ikx , k ∈ {±2}, and 
ψ(t) = k∈Z\{0,±2} α + k ψ + k (t) + k∈Z\{0,±2} α - k ψ - k (t) + k∈{±2} [α k ψ k (t) + αk ψk (t)]. Finally let h(t) = ψ( T 2 -t). Note that h ∈ L 2 (0, T ) with ||h|| L 2 (0,T ) = ||ψ|| L 2 (-T 2 , T 2 ) ≤ C   k∈{±2} (|d k | + |c k |) + k∈Z\{0,±2} |β k | -1 (|d k | + |k| 2 |c k |)|k| 4 + k∈Z\{0,±2} |β k | -1 (|d k | + |c k |)|k| 2 e -T |k| 2 +2 √ 2π|k|   < ∞,
by (1.14). Then it follows from (1.14) and (2.36)-(2.40) that for k ∈ Z \ {0, ±2}

β k T 0 e λ ± k (T -t) h(t)dt = β k e λ ± k T 2 T /2 -T /2 e λ ± k τ ψ(τ ) dτ = β k e λ ± k T 2 α ± k = -e λ ± k T γ ± k .
and also that

β k T 0 e λ k (T -t) h(t)dt = -e λ k T γ k for k ∈ {0, ±2}, β k T 0 (T -t)e λ k (T -t) h(t)dt = -T e λ k T γ k -e λ k T y 0 , e ikx for k ∈ {0, ±2},
as desired. Since ω is open and nonempty, it contains a small interval [a, a + 2σπ] where σ > 0 is a quadratic irrational; i.e., an irrational number which is a root of a quadratic equation with integral coefficients. Set for t ∈

[ǫ, T ] h(x, t) = 1 [a,a+σπ] (x -t) -1 [a+σπ,a+2σπ] (x -t) h(t)
where h denotes a control input independent of x.

Then b(x -t)h(x, t) = b(x -t) h(t) where b(x) = 1 [a,a+σπ] (x) -1 [a+σπ,a+2σπ] (x)
satisfies T b(x) dx = 0. Moreover there exists by Lemma 2.3 (see below) a number C > 0 such that for all k ∈ Z *

β k = T b(x)e -ikx dx ≥ C |k| 3 .
According to Theorem 1.1 we can find h ∈ L 2 (ǫ, T ) steering y(., ǫ) and ξ(., ǫ) to y(., T ) = ξ(., T ) = 0 as soon as

k =0 k 6 | c k | + k 4 | d k | | β k | < ∞, with y(x, ǫ) = k∈Z c k e ikx , ξ(x, ǫ) = k∈Z d k e ikx .
Let W denote the space of the couples (ŷ, ξ)

∈ L 2 (T) 2 such that ||(ŷ, ξ)|| W := |ĉ 0 | + | d0 | + k =0 (|k| 9 |ĉ k | + |k| 7 | dk |) < ∞,
where ŷ(x) = k∈Z ĉk e ikx and ξ(x) = k∈Z dk e ikx . Clearly, W endowed with the norm || • || W , is a Banach space. Standard estimations based on the spectral decomposition used to prove Proposition 2.1 show that if the initial value (y 0 , ξ 0 ) lies in W , then the solution of (1.12)-(1.13) (with h ≡ 0) remains in W . Therefore, since k =0 (|k| [START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Since (y 0 , ξ 0 ) ∈ H s+2 (T) × H s (T) with s > 15/2, we have by Cauchy-Schwarz inequality for ς = 2s -15 > 0 that

9 |c k | + |k| 7 |d k |) < ∞ and since the control is C ∞ with respect to x ∈ T and t ∈ [0, ǫ], we also have k =0 |k| 9 (| c k | + |k| 7 | d k |) < ∞ (see e.g.
k =0 (|k| 9 |c k | + |k| 7 |d k |) ≤ 2( k =0 |k| -1-ς ) 1 2 ( k =0 |k| 19+ς |c k | 2 + |k| 15+ς |d k | 2 ) 1 2 < ∞.
Lemma 2.3. Let σ ∈ (0, 1) be a quadratic irrational, and let b, βk be defined as above. Then β0 = 0 and there exists C > 0 such that for all k ∈ Z * , | βk | ≥ C |k| 3 . Proof. Being a quadratic irrational, σ is approximable by rational numbers to order 2 and to no higher order [8, Theorem 188]); i.e., there exists C 0 > 0 such that for any integers p and q, q = 0, σ -p q ≥ C 0 q 2 . On the other hand, | βk | = 4 |k| sin 2 ( π 2 kσ) for k = 0. Pick any k = 0, take p ∈ Z such that 0 ≤ π 2 kσ -pπ < π and use the elementary inequality sin

2 θ ≥ 4θ 2 π 2 valid for θ ∈ [-π 2 , π 2 ]. Then two cases occur. (i) If 0 ≤ π 2 kσ -pπ ≤ π 2 , then sin 2 ( π 2 kσ) = sin 2 ( π 2 kσ -pπ) ≥ 4 π 2 ( π 2 kσ -pπ) 2 = k 2 σ -2p k 2 ≥ C 2 0 k 2 ; (ii) If -π 2 ≤ π 2 kσ -(p + 1)π ≤ 0, then sin 2 ( π 2 kσ -(p + 1)π) ≥ 4 π 2 ( π 2 kσ -(p + 1)π) 2 = k 2 σ -2(p+1) k 2 ≥ C 2 0 k 2 .
The lemma follows with C = 4C 2 0 .

2.6. Proofs of Theorem 1.3 and Theorem 1.4. The proofs are the same as for Theorem 1.1, with the obvious estimate

|k|>2 |k| p (|k| 2 |c k | + |d k |) ≤ C ε   |k|>2 {|k| 2p+5+ε |c k | 2 + |k| 2p+1+ε |d k | 2   1 2
for p ∈ {3, 4}, ε > 0.

Proof of Proposition 2.2

This section is devoted to the proof of Proposition 2.2. The method of proof is inspired from the one in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF][START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF][START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF]. We first introduce an entire function vanishing precisely at the iλ ± k 's, namely the canonical product

P (z) = z(1 - z iλ 2 )(1 - z iλ -2 ) k∈Z\{0,±2} (1 - z iλ + k ) k∈Z\{0,±2} (1 - z iλ - k )• (3.1)
Next, following [START_REF] Beurling | On Fourier transforms of measures with compact support[END_REF][START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF], we construct a multiplier m which is an entire function that does not vanish at the λ ± k 's, such that P (z)m(z) is bounded for z real while P (z)m(z) has (at most) a polynomial growth in z as |z| → ∞ on each line Im z = const. Next, for k ∈ Z \ {0, ±2} we construct a function I ± k from P (z) and m(z) and we define ψ ± k as the inverse Fourier transform of I ± k . The other ψ k 's are constructed in a quite similar way. The fact that ψ ± k is compactly supported in time is a consequence of Paley-Wiener theorem. (1) For any ε > 0, there exist some constants

C ε , C ′ ε > 0 such that C ε e π|Im z| ≤ |f (z)| ≤ C ′ ε e π|Im z| if dist{z, {µ k }} > ε. (2) There exist some constants C 1 , C 2 such that 0 < C 1 < |f ′ (µ k )| < C 2 < ∞ ∀k ∈ J.
Finally, we shall need the following result. 

f (z) = z k∈Z\{0} (1 - z µ k ) = lim K→∞ z k∈{-K,...,K}\{0} (1 - z µ k )•
Then f is a function of type sine if, and only if, the following three properties are satisfied:

(1) inf k =l |µ k -µ l | > 0;
(2) There exists some constant M > 0 such that k∈Z Proof. We check that the conditions (1), ( 2) and ( 3) in Theorem 3.3 are fulfilled.

(d k+τ -d k ) k k 2 + 1 ≤ M ∀τ ∈ Z; (3 
(1) From µ k -µ l = k -l + O(k -1 , l -1 ) and the fact that µ k -µ l = 0 for k = l, we infer that (1) holds.

(2) Let us write

d k = d + e k with e k = O(k -1 ). Then for all τ ∈ Z k∈Z (d k+τ -d k ) 2 1 2 ≤ 2 k∈Z |e k | 2 1 2 < ∞.
Therefore, for any τ ∈ Z, by Cauchy-Schwarz inequality

k∈Z (d k+τ -d k ) k k 2 + 1 ≤ k∈Z (d k+τ -d k ) 2 1 2 k∈Z ( k k 2 + 1
)

2 1 2 ≤ 2 k∈Z |e k | 2 1 2 k∈Z ( k k 2 + 1
)

2 1 2 =: M < ∞.
(3) We first notice that

f (z) = z ∞ k=1 (1 - z µ k )(1 - z µ -k )• Let z = iy, with y ∈ R. Then (1 - z µ k )(1 - z µ -k ) = 1 - y 2 + i(µ k + µ -k )y µ k µ -k with µ k µ -k = -k 2 + O(k), µ k + µ -k = 2d + O(k -1 ).
It follows that for any given ε ∈ (0, 1), there exist k 0 ∈ N * and some numbers

C 1 , C 2 > 0 such that 1 + (1 -ε)y 2 -C 1 |y| |µ k µ -k | ≤ (1 - z µ k )(1 - z µ -k ) ≤ 1 + y 2 + C 2 |y| |µ k µ -k | (3.3) for y ∈ R and k ≥ k 0 > 0. Let n(r) := #{k ∈ N * ; |µ k µ -k | ≤ r}. Since |µ k µ -k | ∼ k 2 as k → ∞ and µ k = 0 for k = 0, we obtain that √ r -C 3 ≤ n(r) ≤ √ r + C 3 for r > 0, (3.4) n(r) = 0 for 0 < r < r 0 , (3.5) 
for some constants

C 3 > 0, r 0 > 0. It follows that lim sup |y|→∞ log |f (iy)| |y| ≤ lim sup |y|→+∞ |y| -1 ∞ k=1 log (1 - iy µ k )(1 - iy µ -k ) ≤ lim sup |y|→∞ |y| -1 ∞ k=1 log(1 + y 2 + C 2 |y| |µ k µ -k | ),
where we used the fact that

lim |y|→∞ |y| -1 log 1 - iy µ ±k = 0 for 1 ≤ k ≤ k 0 .
On the other hand, setting ρ = y 2 + C 2 |y| ≥ 0, we have that In what follows, arg z denotes the principal argument of any complex number z ∈ C \ R -; i.e., arg z ∈ (-π, π), and

∞ k=1 log(1 + ρ |µ k µ -k | ) = ∞ 0 log(1 + ρ t ) dn(t) = ρ ∞ 0 n(t) t(t + ρ) dt = ∞ 0 n(ρs) s(s + 1) ds ≤ √ ρ ∞ 0 ds √ s(s + 1) + C 3 ∞ r 0 /ρ ds s(s + 1) ≤ |y| 1 + C 2 |y| -1 π + C 3 log 1 + r -1 0 (y 2 + C 2 |y|) . Thus lim sup |y|→∞ log |f (iy)| |y| ≤ π.
log z = log |z| + i arg z, √ z = |z| e i arg z 2 .
We introduce, for k ∈ Z \ {0},

µ k = sgn(k) -λ - k = k 1 + √ 1 -4k -2 2 -ik -1 =: k + d k , k ∈ Z with d k = - i 2 + O(k -1 ).
and µ 0 = 0. Let

P 1 (z) = z k∈Z\{0} (1 + z iλ + k ), (3.6) 
P 2 (z) = z k∈Z\{0} (1 + z iλ - k ), (3.7) 
P 3 (z) = z 2 k∈Z\{0} (1 + z 2 λ - k ), (3.8) and P 4 (z) = z k∈Z\{0} (1 - z µ k ). (3.9) 
It follows from (2.7) that the convergence in (3.7) is uniform in z on each compact set of C, so that P 2 is an entire function. Note also that

P 2 (z) = iP 3 (e -i π 4 √ z), (3.10 
) P 3 (z) = -P 4 (z)P 4 (-z), (3.11) 
P (z) = P 1 (-z)P 2 (-z) z(1 -z iλ 2 )(1 -z iλ -2 ) • (3.12) 
Applying Corollary 3.4 to P 1 , noticing that

-iλ + k = k + i + O(k -2 ) with λ + k = λ - l for k = l,
and λ + 0 = 0, we infer that P 1 (z) is an entire function of sine type. Thus, for given ε > 0 there are some positive constants C 4 , C 5 , C 6 such that

C 4 e π|y| ≤ |P 1 (x + iy)| ≤ C 5 e π|y| , dist (x + iy, {-iλ + k }) > ε (3.13) |P ′ 1 (-iλ + k )| ≥ C 6 , k ∈ Z. (3.14) 
Next, applying Corollary 3.4 to P 4 , noticing that

µ k = k - i 2 + O(k -1 )
with µ k = µ l if k = l and µ 0 = 0, we infer that P 4 (z) is also an entire function of sine type. In particular, it is of exponential type π

|P 4 (z)| ≤ Ce π|z| , z ∈ C. (3.15) 
Therefore, we have for any ε > 0 and for some positive constants C 7 , C 8 , C 9

C 7 e π|y| ≤ |P 4 (x + iy)| ≤ C 8 e π|y| , dist (x + iy, {µ k }) > ε (3.16) |P ′ 4 (µ k )| ≥ C 9 , k ∈ Z. (3.17) 
In particular, P 3 is an entire function of exponential type 2π with

C 2 7 e 2π|y| ≤ |P 3 (x + iy)| ≤ C 2 8 e 2π|y| dist (±(x + iy), {µ k }) > ε. (3.18) 
Combined to (3.10), this yields

|P 2 (z)| ≤ Ce 2π √ |z| z ∈ C. (3.19) Substituting e -i π 4 √ z to x + iy in (3.18) yields C 2 7 exp(2π|Im(e -i π 4 √ z)|) ≤ |P 2 (z)| ≤ C 2 8 exp(2π|Im(e -i π 4 √ z)|) dist(±e -i π 4 √ z, {µ k }) > ε.
(3.20) From (3.20) (applied for x large enough) and the continuity of P 2 on C, we obtain that

|P 2 (x)| ≤ Ce √ 2π √ |x| . (3.21) 
We are now in a position to give bounds for the canonical product P in (3.1).

Proposition 3.5. The canonical product P in (3.1) is an entire function of exponential type at most π. Moreover, we have for some constant C > 0

|P (x)| ≤ C(1 + |x|) -3 e √ 2π √ |x| , x ∈ R, (3.22) 
|P ′ (iλ + k )| ≥ C -1 |k| -3 e √ 2π √ |k| k ∈ Z \ {0, ±2}, (3.23) 
|P ′ (iλ - k )| ≥ C -1 |k| -7 e πk 2 k ∈ Z \ {0, ±2}. (3.24) 
Proof. Note first that dist(R, {-iλ + k ; k = 0}) > 0 from (2.5). Since (1 + is z )P 1 (z) is also an entire function of sine type for s ≫ 1, with dist(R, {-iλ + k ; k = 0} ∪ {is}) > 0, we infer from Proposition 3.2 that for some constant C > 0

|P 1 (x)| ≤ C ∀x ∈ R.
Combined to (3.12) and (3.21), this yields (3.22). Let us turn to (3.23). Note first that for k ∈ Z \ {0, ±2}

P ′ (iλ + k ) = P ′ 1 (-iλ + k ) P 2 (-iλ + k ) (-iλ + k )(1 - λ + k λ 2 )(1 - λ + k λ -2 ) • (3.25) 
Clearly, for some δ > 0,

|λ + k -λ - l | > δ for all k ∈ Z \ {0, ±2}, l ∈ Z, and 
|Im (e -i π 4 -iλ + k )| = |Im 1 -i √ 2 k + i + O(k -2 ) | = |k| 2 + O(|k| -1 2 ).
With (3.20), this gives

|P 2 (-iλ + k )| ≥ Ce √ 2π √ |k| . (3.26) 
It follows then from (3.14), (3.25), and (3.26) that

|P ′ (iλ + k )| ≥ C e √ 2π √ |k| |k| 3
for some constant C > 0 independent of k ∈ Z \ {0, ±2}. On the other hand

P ′ (iλ - k ) = P ′ 2 (-iλ - k ) P 1 (-iλ - k ) (-iλ - k )(1 - λ - k λ 2 )(1 - λ - k λ -2 ) • (3.27)
By (2.7) and (3.13), we have that

|P 1 (-iλ - k )| ≥ Ce πk 2 , k ∈ Z \ {0, ±2}•
From (3.10)-(3.11), we have that

P ′ 2 (z) = e i π 4 2 √ z P ′ 4 (e -i π 4 √ z)P 4 (-e -i π 4 √ z) -P 4 (e -i π 4 √ z)P ′ 4 (-e -i π 4 √ z) . For z = -iλ - k , e -i π 4 √ z = -λ - k = sgn (k)µ k , hence P ′ 2 (-iλ - k ) = 1 2µ k P ′ 4 (µ k )P 4 (-µ k ). Since |µ k + µ l | > δ > 0 for k ∈ Z \ {0} and l ∈ Z, we have from (3.16) that |P 4 (-µ k )| ≥ c while, by (3.17), |P ′ 4 (µ k )| > c > 0. It follows that for some constant C > 0 |P ′ 2 (-iλ - k )| ≥ C |k| ∀k ∈ Z \ {0}.
Therefore,

|P ′ (iλ - k )| ≥ C e πk 2 |k| 7 , k ∈ Z \ {0}.
We seek for an entire function m (the so-called multiplier) such that

|m(x)| ≤ C(1 + |x|)e - √ 2π √ |x| , x ∈ R, |m(iλ + k )| ≥ C -1 |k| -3 e - √ 2π √ |k| , k ∈ Z \ {0}, |m(iλ - k )| ≥ C -1 e aπk 2 -2 √ 2π √ |k| , k ∈ Z \ {0}.
We shall use the same multiplier as in [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF], providing additional estimates required to evaluate it at the points iλ -

k for k ∈ Z. Let s(t) = at -b √ t, t > 0 (3.28)
where the constants a > 0 and b > 0 will be chosen later. Note that s is increasing for t > b 

ν(t) = 0 t ≤ B, s(t) t ≥ B. (3.29) Introduce first g(z) = ∞ 0 log(1 - z 2 t 2 )dν(t) = ∞ B log(1 - z 2 t 2 )ds(t) z ∈ C \ R, (3.30) 
U (z) = ∞ 0 log |1 - z 2 t 2 |dν(t) = ∞ B log |1 - z 2 t 2 |ds(t) z ∈ C. (3.31)
Note that g is holomorphic on C \ R and U is continuous on C, with U (z) = Re g(z). Next we atomize the measure µ in the above integrals, setting

g(z) = ∞ 0 log(1 - z 2 t 2 )d[ν(t)] z ∈ C \ R, (3.32) 
Ũ (z) = ∞ 0 log |1 - z 2 t 2 |d[ν(t)] z ∈ C, (3.33) 
where [x] denotes the integral part of x. Again, g is holomorphic on C \ R and Ũ is continuous on C with Ũ (z) = Re g(z). Actually, exp g is an entire function. Indeed, if {τ k } k≥0 denotes the sequence of discontinuity points for t → [ν(t)], then τ k ∼ k/a as k → ∞ and

g(z) = k≥0 log(1 - z 2 τ 2 k ), z ∈ C \ R• (3.34)
Therefore,

e g(z) = k≥0 (1 - z 2 τ 2 k
), (3.35) the product being uniformly convergent on any compact set in C. We shall pick later m(z) = exp(g(z -i)) with a = T 2π -1 and b = √ 2. The strategy, which goes back to [START_REF] Beurling | On Fourier transforms of measures with compact support[END_REF], consists in estimating carefully U , and next U -Ũ. Let for x > 0 Proof. We follow the same approach as in [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF]. We first use the following identity from [7, (36)] (note that U is even)

w(x) = -π √ x + x log x + 1 x -1 - √ x log √ x + 1 √ x -1 + 2 √ x arctan( √ x). ( 3 
U (z) = |Im z|(πa + 1 π ∞ -∞ U (t) |z -t| 2 dt).
(3.39)

To derive (3.38), it remains to estimate the integral term in (3.39) for z = x + iy ∈ C. We may assume without loss of generality that y > 0. From Lemma 3.6, we can write

U (t) = -bπ |t| -aBw(|t|) where w ∈ L ∞ (R + ). Then, with t = ys, y π ∞ -∞ aBw(|t|) (x -t) 2 + y 2 dt ≤ ||w|| L ∞ (R + ) aBy π ∞ -∞ ds y(( x y -s) 2 + 1) = aB||w|| L ∞ (R + ) =: C. (3.40)
On the other hand, still with t = ys, and using explicit computations in [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF] of some integral terms,

y π ∞ -∞ (-bπ) |t| (x -t) 2 + y 2 dt = -b √ y ∞ -∞ |s| ( x y -s) 2 + 1 ds = -b √ y     π 2 1 + x 2 y 2 -2x y + π 2 1 + x 2 y 2 + 2x y     = -b π √ 2 ( x 2 + y 2 -x + x 2 + y 2 + x). Routine computations give 2|x| ≤ x 2 + y 2 -x + x 2 + y 2 + x ≤ 2|x| + ( √ 2 + 1) √ y ∀x ∈ R, ∀y > 0. Therefore -bπ |x| -bπ(1 + 1 √ 2 ) √ y ≤ y π ∞ -∞ (-bπ) |t| (x -t) 2 + y 2 dt ≤ -bπ |x|.
Combined to (3.39) and (3.40), this yields (3.38).

In order to obtain estimates for Ũ (z), we need to give bounds from above and below for

Ũ (z) -U (z) = ∞ 0 log |1 - z 2 t 2 | d([ν](t) -ν(t)).
We need the following lemma, which is inspired from [11, Vol. 2, Lemma p. 162] Lemma 3.8. Let ν : R + → R + be nondecreasing and null on (0, B). Then for z = x + iy with y = 0, we have

-log + |x| |y| -log + x 2 + y 2 B 2 -log 2 ≤ I = ∞ 0 log |1 - z 2 t 2 |d([ν](t) -ν(t)) ≤ log + |x| |y| • (3.41)
Proof. The proof of the upper bound is the same as in [START_REF] Koosis | The Logarithmic Integral[END_REF]. It is sketched here just for the sake of completeness. Pick any z = x + iy with y = 0. Integrate by part in I to get 

I = ∞ 0 (ν(t) -[ν(t)]) ∂ ∂t log |1 - z 2 t 2 |dt. Let ζ = z 2 t 2 . If
I ≤ ∞ t * ∂ ∂t log |1 - z 2 t 2 |dt = log |z 2 | |Im z 2 | = log( |x| 2|y| + |y| 2|x| ) ≤ log |x| |y| •
Let us pass to the lower bound. If Re z 2 ≤ 0,

I ≥ ∞ B ∂ ∂t log |1 - z 2 t 2 |dt = -log |1 - z 2 B 2 |• Assume now that Re z 2 > 0. If t * = |z 2 | |x| ≤ B, I ≥ 0. If t * > B, then I ≥ t * B ∂ ∂t log |1 - z 2 t 2 |dt = -log |z 2 | |Im z 2 | -log |1 - z 2 B 2 |• Note that log |1 - z 2 B 2 | ≤ log(1 + | z B | 2 ) ≤ log + x 2 + y 2 B 2 + log 2. Therefore I ≥ -log + |x| |y| -log + x 2 + y 2 B 2 -log 2.
Gathering together Lemma 3.7 and Lemma 3.8, we obtain the Proposition 3.9. There exists some positive constant C = C(a, b) such that for any complex number z = x + iy with y = 0,

-C -bπ(1+ 1 √ 2 ) |y|-log + |x| |y| -log + ( x 2 + y 2 B 2 )-log 2 ≤ Ũ (z)+bπ |x|-aπ|y| ≤ C +log + |x| |y| . (3.42) Pick now a = T 2π -1 > 0, b = √ 2, and m(z) = exp g(z -i) (3.43) Note that |m(z)| = exp Ũ (z -i).
The needed estimates for the multiplier m are collected in the following Proposition 3.10. m is an entire function on C of exponential type at most aπ. Furthermore, the following estimates hold for some constant C > 0: We are in a position to define the functions in the biorthogonal family. Pick first any k ∈ Z \ {0, ±2}, and set

|m(x)| ≤ C(1 + |x|)e - √ 2π √ |x| , x ∈ R (3.44) |m(iλ + k )| ≥ C -1 |k| -3 e - √ 2π √ |k| , k ∈ Z \ {0} (3.45) |m(iλ - k )| ≥ C -1 e aπk 2 -2 √ 2π|k| , k ∈ Z \ {0}. ( 3 
)| = exp Ũ (-k -2i(1 + O(k -2 ))) ≥ C|k| -3 e - √ 2π √ |k| (k = 0).
I ± k (z) = P (z) P ′ (iλ ± k )(z -iλ ± k ) • m(z) m(iλ ± k ) • (1 -z iλ 2 )(1 -z iλ -2 ) (1 - λ ± k λ 2 )(1 - λ ± k λ -2 ) •
Clearly, I ± k is an entire function of exponential type at most π(1 + a) = T /2. Furthermore, we have that It remains to introduce the functions I 0 (z), I 2 (z), I -2 (z), Ĩ2 (z), and Ĩ-2 (z). We set

I ± k (iλ ± l ) = δ l k δ - + ∀l ∈ Z, ( 3 
I 0 (z) = P (z) P ′ (0)z • m(z) m(0) • (1 - z iλ 2 )(1 - z iλ -2
), Ĩ2 (z) = -i P (z)

P ′ (iλ 2 ) • m(z) m(iλ 2 ) • 1 -z iλ -2 1 -λ 2 λ -2 , Ĩ-2 (z) = -i P (z) P ′ (iλ -2 ) • m(z) m(iλ -2 ) • 1 -z iλ 2 1 -λ -2 λ 2 , K 2 (z) = i Ĩ2 (z) z -iλ 2 , I 2 (z) = K 2 (z) -iK ′ 2 (iλ 2 ) Ĩ2 (z), K -2 (z) = i Ĩ-2 (z) z -iλ -2 , I -2 (z) = K -2 (z) -iK ′ 2 (iλ -2 ) Ĩ-2 (z).
Then we have that 

I 0 (0) = 1, I 0 (iλ ± k ) = 0 k ∈ Z \ {0}, I ′ 0 (iλ ±2 ) = 0, (3.52) Ĩ2 (iλ ± k ) = 0 k ∈ Z, Ĩ′ 2 (iλ 2 ) = -i, Ĩ′ 2 (iλ -2 ) = 0, (3.53) Ĩ-2 (iλ ± k ) = 0 k ∈ Z, Ĩ′ -2 (iλ -2 ) = -i, Ĩ′ -2 (iλ 2 ) = 0, (3.54) 
I 2 (iλ ± k ) = 0 k ∈ Z \ {2}, I 2 (iλ 2 ) = 1, I ′ 2 (iλ ±2 ) = 0, (3.55) 
I -2 (iλ ± k ) = 0 k ∈ Z \ {-2}, I -2 (iλ -2 ) = 1, I ′ -2 (iλ ±2 ) = 0. ( 3 

Concluding remark

In this paper, the equation y tt -y xx -y txx = b(x -u(t))h(t) is proved to be null controllable on the torus (i.e. with periodic boundary conditions) when the support of the scalar control h(t) moves at a constant velocity c (u(t) = ct). What happens for a domain with boundary? More precisely, we may wonder under which assumptions on the initial conditions, the control time T , the support of the controller b and its pulsations ω the null controllability of the system y tt -y xx -y txx = b(x -cos(ωt))h(t),

x ∈ (-1, 1), t ∈ (0, T ), y(-1, t) = y(1, t) = 0, t ∈ (0, T ) holds.

Theorem 1 . 2 .

 12 Let b = 1 ω with ω a nonempty open subset of T. Then for any time T > 2π and any (y 0 , ξ 0 ) ∈ H s+2 (T) × H s (T) with s > 15/2 there exists a control h ∈ L 2 (T × (0, T )) such that the solution of (1.15)-(1.16) satisfies y(., T ) = y t (., T ) = 0.

2 Figure 1 .

 21 Figure 1. Spectrum of (2.1) splits into a hyperbolic part (Λ + k in blue), a parabolic part (Λ - k in green) and a finite dimensional part (Λ 2 in red).

2. 5 .

 5 Proof of Theorem 1.2. Set ǫ = (T -2π)/2, v(x, t) = y(x + t, t) and ξ(x, t) = y t (x, t). We first steer to 0 the components of v and v t along the mode associated to the double eigenvalue λ 0 = 0. Denote γ(t) = T v(x, t) dx and η(t) = T v t (x, t) dx. According to(1.11), γ(0) = 2πc 0 , η(0) = 2πd 0 anddγ dt = η, dη dt = ω h(x, t)dx.Take a C ∞ scalar function ̟(t) on [0, ǫ] with ̟(0) = 1 and ̟(ǫ) = 0 and such that the support of d̟/dt lies inside [0, ǫ]. Consider another C ∞ function of x, b(x) with support inside ω and such that ω b(x) dx = 1. Then theC ∞ control h(x, t) = b(x) h(t) with h(t) = d 2 dt 2 ((c 0 + d 0 t)̟(t))steers (γ, η) from (c 0 , d 0 ) at time t = 0 to (0, 0) at time t = ǫ. Its support lies inside [0, ǫ]. Since γ(ǫ) = T y(x, ǫ) dx and η(ǫ) = T ξ(x, ǫ) dx, we can assume that c 0 = d 0 = 0 up to a time shift of ǫ.

3. 1 .Definition 3 . 1 .

 131 Functions of type sine. To estimate carefully P (z), we use the theory of functions of type sine (see e.g.[16, pp. 163-168] and[26, pp. 171-179]). An entire function f (z) of exponential type π is said to be of type sine if (i) The zeros µ k of f (z) are separated; i.e., there exists η > 0 such that |µ k -µ l | ≥ η k = l; (ii) There exist positive constants A, B and H such that Ae π|y| ≤ |f (x + iy)| ≤ Be π|y| ∀x ∈ R, ∀y ∈ R with |y| ≥ H. (3.2) Some of the most important properties of an entire function of type sine are gathered in the following Proposition 3.2. (see [16, Remark and Lemma 2 p. 164], [26, Lemma 2 p. 172]) Let f (z) be an entire function of type sine, and let {µ k } k∈J be the sequence of its zeros, where J ⊂ Z. Then

Theorem 3 . 3 .

 33 (see[START_REF] Ya | Lectures on Entire Functions[END_REF] Corollary p. 168 and Theorem 2 p. 157] Let µ k = k + d k for k ∈ Z, with µ 0 = 0, µ k = 0 for k = 0, and (d k ) k∈Z bounded, and let

  ) lim sup y→+∞ log |f (iy)| y = π, lim sup y→-∞ log |f (-iy)| |y| = π. Corollary 3.4. Assume that µ k = k + d k , where d 0 = 0 and d k = d + O(k -1 ) as |k| → ∞ for some constant d ∈ C, and that µ k = µ l for k = l. Then f (z) = z k∈Z\{0} (1 -z µ k ) is an entire function of type sine.

Using again ( 3 . 3 )

 33 , we obtain by the same computations that lim sup y→+∞ log |f (iy)| y ≥ π, and lim sup y→-∞ log |f (iy)| |y| ≥ π.The proof of (3) is completed.

2a 2 and

 2 that s(B) = 0 where B = (b/a) 2 . Let

Lemma 3 . 7 . 2 )

 372 .36) Note that w ∈ L ∞ (R + ), for lim x→∞ w(x) = -2 and w(0 + ) = 0. Lemma 3.6.[START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF] It holdsU (x) + bπ |x| = -aBw(|x|) ∀x ∈ R (3.37)Our first aim is to extend that estimate to the whole domain C. There exists some positive constantC = C(a, b) such that -C -bπ(1 + 1 √ |y| ≤ U (z) + bπ |x| -aπ|y| ≤ C, z = x + iy ∈ C. (3.38) 

Finally, from ( 2 . 7 )

 27 and (3.42), we infer that|m(iλ - k )| = exp Ũ (-k -i(k 2 + O(k -2 ))) ≥ C exp(-√ 2π |k| + aπk 2 -( √ 2 + 1)π|k| -4 log |k|) ≥ C exp(aπk 2 -2 √ 2π|k|).

2 -T 2 ψ 2 -T 2 tψ

 2222 .56) Moreover, I 0 , Ĩ2 , Ĩ-2 , I 2 , and I -2 are entire functions of exponential type at most π(1 + a) and they belong all to L 2 (R). Let ψ ± k , ψ k , and ψk denote the inverse Fourier transform of I ± k , I k , and Ĩk for k ∈ Z \ {0, ±2}, k ∈ {0, ±2} and k ∈ {±2}, respectively. Then, by Paley-Wiener theorem, the functions ψ ± k , ψ k and ψk belong to L 2 (R), and are supported in [-T /2, T /2]. On the other hand, if I(z) = ψ(z) = ∞ -∞ ψ(t)e -itz dt with ψ ∈ L 2 (R), supp ψ ⊂ [-T /2, T /2], then T (t)e λt dt = I(iλ) and -i T (t)e λt dt = I ′ (iλ). Thus (2.36)-(2.40) follow from (3.48)-(3.49) and (3.52)-(3.56), while (2.41)-(2.42) follow from (3.50)-(3.51). The proof of Proposition 2.2 is complete.

  e ikx ∀k ∈ {±2}.(2.32) 

	Then we infer from (2.20)-(2.21) (with the new r.h.s.) and (2.28)-(2.32) that

  To solve the moments problems in the previous section, we need to construct a biorthogonal family to the functions e λ ± k t , k ∈ Z, and t e λ k t , k ∈ {±2}. More precisely, we shall prove the following Proposition 2.2. There exists a family {ψ

e ikx ∀k ∈ {±2}. (2.35) 2.3. A Biorthogonal family.

  Re z 2 ≤ 0 (i.e. if |x| ≤ |y|), then the distance |1 -ζ| is decreasing w.r.t. t (t ∈ (0, +∞)), so that I ≤ 0. If Re z 2 > 0, then |1 -ζ| decreases to the minimal value |Im z 2 | |z 2 | taken at t = t * := |z| 2 |x| , and then it increases. Since 0 ≤ ν(t) -[ν(t)] ≤ 1, we have that

  .48) where δ - + is 1 if the two signs in the l.h.s. are the same, and 0 otherwise. Moreover, (I ± k ) ′ (iλ ±2 ) = 0. (3.49) On the other hand, by (2.6), (3.22), (3.23), (3.44) and (3.45), we have that || L 2 (R) ≤ C|k| 2 e -T

	Thus	||I -k 2 k 2 +2 √	2π|k| .	(3.51)
	|I + k (x)| ≤ C ||I + |x -iλ + |k| 4 k | k || L 2 (R) ≤ C|k| 4 . ≤ C 1 + |k + x| |k| 4 Finally, by (2.7), (3.22), (3.24), (3.44) , and (3.46), we have that Thus I + k ∈ L 2 (R) with	•	(3.50)
	|I -k (x)| ≤ C	|k| 3 |x -iλ -k |	e -(a+1)πk 2 +2 √	2π|k| ≤ C	|k| 3 |x + k| + k 2 e -T 2 k 2 +2 √	2π|k| .
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