
HAL Id: hal-00823324
https://minesparis-psl.hal.science/hal-00823324v1

Submitted on 16 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPIRE: A Methodology for Sequential to Parallel
Intermediate Representation Extension

Dounia Khaldi, Pierre Jouvelot, François Irigoin, Corinne Ancourt

To cite this version:
Dounia Khaldi, Pierre Jouvelot, François Irigoin, Corinne Ancourt. SPIRE: A Methodology for Se-
quential to Parallel Intermediate Representation Extension. 17th Workshop on Compilers for Parallel
Computing (CPC 2013), Jul 2013, Lyon, France. �hal-00823324�

https://minesparis-psl.hal.science/hal-00823324v1
https://hal.archives-ouvertes.fr

SPIRE: A Sequential to Parallel Intermediate Representation Extension

Dounia Khaldi, Pierre Jouvelot, François Irigoin and Corinne Ancourt

CRI, Mathématiques et systèmes, MINES ParisTech

35 rue Saint-Honoré, 77300, Fontainebleau, France

firstname.lastname@mines-paristech.fr

Abstract—SPIRE is a new methodology for the design of
parallel extensions of the intermediate representations used
in compilation frameworks of sequential languages. It can
be used to leverage existing infrastructures for sequential
languages to address both control and data parallel constructs
while preserving as much as possible existing analyses for
sequential code. We suggest to view this upgrade process as an
“intermediate representation transformer” at the syntactic and
semantic levels; we show this can be done via the introduction
of only ten new concepts, collected in three groups, namely
execution, synchronization and data distribution, and precisely
defined via a formal semantics and rewriting rules.

We use the sequential intermediate representation of PIPS,
a comprehensive source-to-source compilation platform, as a
use case for our approach. We introduce our SPIRE parallel
primitives, extend PIPS intermediate representation and show
how example code snippets from the OpenCL, Cilk, OpenMP,
X10, Habanero-Java, MPI and Chapel parallel programming
languages can be represented this way. A formal definition of
SPIRE operational semantics is provided, built on top of the
one used for the sequential intermediate representation. We
finally assess the generality of our proposal by showing how
key parallel features of these current parallel languages can be
dealt with using SPIRE.

Our primary goal with the development of SPIRE is to pro-
vide, at a low cost, powerful parallel program representations
that will ease the design of efficient automatic parallelization
algorithms. More generally, our work provides a possible
roadmap for the compiler designers who need to introduce
parallel features into their own infrastructures.

Keywords-parallel intermediate representation; operational
semantics; PIPS;

I. INTRODUCTION

The growing importance of parallel computers and the

search for an efficient programming model led, and is

still leading, to the proliferation of parallel programming

languages such as, currently, Cilk [1], Chapel [2], X10 [3],

Habanero-Java [4], OpenMP [5], OpenCL [6] or MPI [7]. To

adapt to such an evolution, compilers need to introduce inter-

nal intermediate representations (IR) for parallel programs.

The choice of a proper parallel IR is of key importance, since

the efficiency and power of the transformations and opti-

mizations these compilers can perform are closely related to

the selection of a proper program representation paradigm.

Yet, given the wide variety of the existing programming

models, it would be better, from a software engineering point

of view, to find a unique parallel IR, as general and simple

as possible.

Existing proposals for program representation techniques

already provide a basis for the exploitation of parallelism

via the encoding of control and/or data flow information.

HPIR [8], PLASMA [9] or InsPIRe [10] are instances that

operate at a high abstraction level, while the hierarchical

task, stream or program dependence graphs (we survey

these notions in Section II) are better suited to graph-based

approaches. Yet many more existing compiler frameworks

use traditional representations for sequential-only programs,

and changing their internal data structures to deal with

parallel constructs is a difficult and time-consuming task.

The main motivation behind the design of the methodol-

ogy introduced in our paper is to preserve the many years

of development efforts invested in huge compiler platforms

such as GCC (more than 1 million lines of code), PIPS (600

000 lines of code), LLVM (more than 1 million lines of

code),... when upgrading their intermediate representations

to handle parallel languages, as source languages or as

targets for source-to-source transformations. We provide an

evolutionary path for these large software developments via

the introduction of the Sequential to Parallel Intermediate

Representation Extension (SPIRE) methodology that we

show that can be plugged into existing compiler projects

in a rather simple manner. SPIRE is based on only three

key concepts: (1) the parallel vs. sequential execution of

groups of statements such as sequences, loops and gen-

eral control-flow graphs, (2) the global synchronization

characteristics of statements and the specification of finer

grain synchronization via the notion of events and (3) the

handling of data distribution for different memory models.

To illustrate how this approach can be used in practice, we

use SPIRE to extend the internal representation (IR) [11]

of PIPS [12], a comprehensive source-to-source compilation

and optimization platform.

The design of SPIRE is the result of many trade-offs

between generality and precision, abstraction and low-level

concerns. On the one hand, and in particular when looking

at source-to-source optimizing compiler platforms adapted

to multiple source languages, one needs to be able to

represent as many of the existing (and, hopefully, future)

parallel constructs while minimizing the number of new

concepts introduced in the parallel IR. Yet, keeping only

a limited number of hardware-level notions in the IR, while

good enough to deal with all parallel constructs, would

entail convoluted rewritings of high-level parallel flows. To

assess the validity of the generic parallel IR we designed

and present here, we benchmarked it against key parallel

languages and showed how to express their relevant parallel

constructs within SPIRE.

The four contributions of this paper are:

• SPIRE, a new, simple, parallel intermediate representa-

tion extension methodology for designing the parallel

IRs used in compilation frameworks; it easily leverages

their existing infrastructure for sequential languages

to address both control and data parallelism and data

distribution;

• a parallel IR, to be used for both automatic task-

level parallelization and the optimization of explicitly

parallel programs, for the PIPS compilation framework;

• an evaluation of the generality of SPIRE, by mapping

key parallel programming languages, i.e., Cilk, Chapel,

X10, Habanero-Java, OpenMP, OpenCL and MPI, to it;

• the small-step, operational semantics of SPIRE, to

formally defines its key parallel concepts.

After this introduction, we survey existing parallel IRs in

Section II. We describe our use-case sequential IR, used by

the PIPS compilation framework, in Section III. Our parallel

extension proposal, SPIRE, is introduced in Section IV,

where we also show how simple illustrative examples written

in OpenCL, Cilk, OpenMP, X10, Habanero-Java, MPI and

Chapel can be easily represented within SPIRE. The formal

operational semantics of SPIRE is given in Section V.

Section VI shows the generality of SPIRE by showing how

different parallel language constructs can be mapped to it,

and discusses implementation issues. We discuss future work

and conclude in Section VII.

II. RELATED WORK

In this section, we review several different possible repre-

sentations of parallel programs, both at the high, syntactic,

and mid, graph-based, levels. We provide synthetic descrip-

tions of what we believe are the key existing IRs addressing

issues similar to our paper’s. Bird-view comparisons with

SPIRE are also given here, although a more detailed and

admittedly useful analysis would require more space than

permitted by the paper format.

A standard approach to parallelism expression is to

use built-in functions. For instance, the intermediate

representation of the implementation of OpenMP in

GCC (GOMP) [13] extends its three-address represen-

tation, GIMPLE. The OpenMP parallel directives are

replaced by specific nodes and built-ins, such as the

__sync_fetch_and_add built-in function for an atomic

memory access addition. SPIRE uses some of these ideas,

but frames them in more structured settings while trying to

be more language-neutral. Applying the SPIRE approach to

GCC would have provided a minimal set of extensions that

could have also be used for other parallel languages such

as Cilk that relies on GCC as a back end; we illustrate our

approach in the paper via PIPS in lieu of GCC.

Sarkar and Zhao [8] introduce the high-level parallel

intermediate representation HPIR that is decomposed into

a RST (region syntax tree), a region control-flow graph

(RCFG) and a region dictionary (RD). Each parallel program

construct is annotated accordingly: AsyncRegionEntry

and AsyncRegionExit delimit a task, while the instruc-

tions FinishRegionEntry and FinishRegionExit

can be used in parallel sections. The same comments as

those mentioned for GCC apply here too.

PLASMA is a programming framework for heterogeneous

SIMD systems, with an IR [9] that abstracts data parallelism

and vector instructions. It provides specific operators such as

add on vectors and special instructions such as reduce and

par. While PLASMA abstracts SIMD implementation and

compilation concepts for SIMD accelerators, SPIRE is more

architecture-independant and also covers control parallelism.

InsPIRe is the parallel intermediate representation at the

core of the source-to-source Insieme compiler [10] for C++

parallel programs. SPIRE intends to also cover source-to-

source optimization, but not for a single language only.

Turning now to mid-level intermediate representations,

many systems rely on graph structures for representing

sequential code, and extend them for parallelism. The hi-

erarchical task graph [14] represents the program control

flow. The hierarchy exposes the loop nesting structure; at

each loop nesting level, the loop body is hierarchically

represented as a single node that embeds a subgraph that

has control and data dependence information associated with

it. SPIRE is able to represent both structured and unstruc-

tured control-flow dependence in a hierarchical fashion, thus

enabling recursively-defined optimization techniques to be

applied easily.

A stream graph [15] is a dataflow representation intro-

duced specifically for streaming languages. Nodes repre-

sent data reorganization operations between streams, and

edges, communications between nodes. The number of data

samples defined and used by each node is supposed to be

known statically. Each time a node is fired, it consumes a

fixed number of elements of its inputs and produces a fixed

number of elements on its outputs. SPIRE provides support

for both data and control dependence information.

The parallel program graph [16] extends the program

dependance graph [17], a directed graph where vertices

represent blocks of statements and edges, essential control

or data dependences; mgoto control edges are added to

represent task creation occurrences, and synchronization

edges, to impose ordering on tasks. SPIRE adopts a similar

extension approach to an existing sequential intermediate

representation, but extends it to both structured and unstruc-

tured constructs in a hierarchical manner.

III. PIPS (SEQUENTIAL) IR

Since this paper introduces SPIRE as an extension formal-

ism for existing intermediate representations, a sequential,

base-case IR is needed to present our proposal. We chose

the IR of PIPS [12] to showcase our approach, since it is

readily available, well-documented and encodes both control

and data dependences. PIPS is a powerful source-to-source

compilation and optimization platform; its internal represen-

tation (IR) [11] of sequential programs is a hierarchical data

structure that embeds both control flow graphs and abstract

syntax trees. To describe SPIRE, we show how to extend this

IR to parallel programs in order to obtain an abstraction

for parallel languages for optimization and transformation

purposes.

We provide in this section a high-level description of

the internal representation of PIPS; it is specified using

Newgen [18], a Domain Specific Language for the definition

of set equations from which a dedicated API is automatically

generated to manipulate (creation, access, IO operations...)

data structures implementing these set elements. Since our

purpose is to highlight the design of parallel extensions,

many of these sets remain unchanged; this section contains

only a slightly simplified subset of the internal representation

of PIPS, the part that is directly related to the parallel

paradigms in SPIRE. The Newgen definition of this part

is given in the Figure 1:

• Control flow in PIPS IR is represented via instructions,

members of the disjoint union (using the “+” symbol)

set instruction. An instruction can be either a

simple call or a compound instruction, i.e., a for loop,

a sequence or a control flow graph. A call instruction

represents built-in or user-defined function calls; for

instance, assign statements are represented as calls to

the “:=” function. The call set is not defined here.

• Instructions are included within statements, which are

members of a cartesian product set that also incorpo-

rates the declarations of local variables; thus a whole

function is represented in PIPS IR as a statement. In

Newgen, a given set component can be distinguished

using a prefix such as declarations here; all named

objects such as user variables or built-in functions in

PIPS are members of the entity set (the value

set denotes constants while the “*” symbol introduces

Newgen list sets).

• Compound instructions can be either (1) a loop instruc-

tion, which includes an iteration index variable with its

lower, upper and increment expressions and a loop body

(the expression set definition is not provided here),

(2) a sequence, i.e., a succession of statements, encoded

as a list, or (3) an unstructured control flow graph.

• Programs that contain structured (continue, break

and return) and unstructured (goto) transfers of

control are handled in the PIPS internal representation

via the unstructured set. An unstructured instruc-

tion has one entry and one exit control node; a

control is a node in a graph labeled with a statement

and its lists of predecessor and successor control nodes.

Executing an unstructured instruction amounts to fol-

lowing the control flow induced by the graph successor

relationship, starting at the entry node, while executing

the node statements, until the exit node is reached.

instruction = call + forloop + sequence +

unstructured;

statement =

instruction x declarations:entity*;

entity = name:string x type x initial:value;

forloop = index:entity x

lower:expression x upper:expression x

step:expression x body:statement;

sequence = statements:statement*;

unstructured = entry:control x exit:control;

control = statement x predecessors:control* x

successors:control*;

Figure 1: Simplified Newgen definitions of the PIPS IR

IV. SPIRE, A SEQUENTIAL TO PARALLEL IR

EXTENSION

We describe in this section how parallel concepts can be

readily introduced into a sequential IR using our SPIRE

approach. The core idea is that, to be able to deal with

parallel programming, one needs to add to a given se-

quential IR the ability to specify (1) the parallel execution

mechanism of groups of statements, (2) the synchronization

behavior of single statements and (3) the layout of data.

The design of SPIRE does not intend to be minimalist

but, using as input an extensive survey of existing parallel

language constructs [19], to provide a trade-off between

expressibility and conciseness of representation. In our PIPS

IR case, SPIRE amounts to adding three new concepts:

the execution set, the synchronization set and

event API for synchronization purposes and the ability to

handle data distribution through different memory models.

We illustrate the application of SPIRE on the PIPS IR below.

A. Execution

The issue of parallel vs. sequential execution appears

when dealing with groups of statements, which in our case

study correspond to members of the forloop, sequence

and unstructured sets. To apply SPIRE to this IR,

one simply needs to add an execution attribute to these

sequential set definitions:

forloop’ = forloop x execution;

sequence’ = sequence x execution;

unstructured’ = unstructured x execution;

The primed sets forloop’ (expressing data parallelism)

and sequence’ and unstructured’ (implementing

control parallelism) represent SPIREd-up sets for the PIPS

parallel IR. Of course, the ‘prime’ notation is used here for

pedagogical purpose only; in practice, one only needs to

add an execution field in the existing IR representation. The

definition of execution is straightforward:

execution =

sequential:unit + parallel:unit;

where unit denotes a set with one single element; this

encodes a simple enumeration of cases for execution. A

parallel execution attribute asks to for all loop itera-

tions, sequence statements and control nodes of unstructured

instructions to be run concurrently.

For instance, a parallel execution construct can be used

to represent the OpenCL clEnqueueNDRangeKernel

function which implements data parallelism on GPUs (see

Figure 2); here the kernel is executed in a parallel loop,

each task receiving the proper index value as an argument.

//Execute ’n’ kernels in parallel

global_work_size[0] = n;

err = clEnqueueNDRangeKernel(cmd_queue,

kernel, 1, NULL, global_work_size,

NULL, 0, NULL, NULL);

Figure 2: OpenCL example illustrating a parallel loop

An another example, in the left side of Figure 3, from

Chapel, illustrates its forall data parallelism construct,

which will be encoded with a SPIRE parallel loop.

forall I in 1..n do

t[i] = 0;

forloop(I,1,n,1,

t[i] = 0,

parallel)

Figure 3: forall in Chapel, and its SPIRE core language

representation

B. Synchronization

The issue of synchronization is a characteristic feature of

the run-time behavior of one statement with respect to other

statements. SPIRE extends sequential intermediate represen-

tations in a straightforward way by adding a synchronization

attribute to the specification of statements:

statement’ = statement x synchronization;

Coordination by synchronization in parallel programs is

often dealt via coding patterns such as barriers, used for

instance when a code fragment contains many phases of par-

allel execution where each phase should wait for the prece-

dent ones to proceed. We define the synchronization

set via high-level coordination characteristics useful for

optimization purposes:

synchronization =

none:unit + spawn:entity +

barrier:unit + single:bool +

atomic:reference;

where S is the statement with the synchronization attribute:

• none specifies the default behavior, i.e., independent

with respect to other statements, for S;

• spawn induces the creation of an asynchronous task

S, while the value of the corresponding entity is the

user-chosen number of the thread that executes S;

• barrier specifies that all the child threads spawned

by the execution of S are suspended before exit-

ing until they are all finished – an OpenCL exam-

ple illustrating spawn (clEnqueueTask) and barrier

(clEnqueueBarrier) is provided in Figure 4;

mode = OUT_OF_ORDER_EXEC_MODE_ENABLE;

commands = clCreateCommandQueue(context,

device_id,mode,&err);

clEnqueueTask(commands, kernel_A, 0,

NULL, NULL);

clEnqueueTask(commands, kernel_B, 0,

NULL, NULL);

// synchronize so that Kernel C starts only

// after Kernels A and B have finished

clEnqueueBarrier(commands);

clEnqueueTask(commands, kernel_C, 0,

NULL, NULL);

Figure 4: OpenCL example illustrating spawn and barrier

statements

• single ensures that S is executed by only one

thread in its thread team (a thread team is the set of

all the threads spawned within the innermost parallel

forloop statement) and a barrier exists at the end of a

single operation if its synchronization_single

value is true;

• atomic predicates the execution of S to the acqui-

sition of a lock to ensure exclusive access; at any

given time, S can be executed by only one thread.

Locks are logical memory addresses, represented here

by a member of the PIPS IR reference set (not

specified in this paper). An example illustrating how an

atomic synchronization on the reference l in a SPIRE

statement accessing Array x can be translated in Cilk

(via Cilk_lock and Cilk_unlock) and OpenMP

(atomic) is provided in Figure 5.

C. Event API

In parallel code, one usually distinguishes between two

types of synchronization: (1) coarse grain (collective) syn-

Cilk_lockvar l;

Cilk_lock_init(l);

...

Cilk_lock(l);

x[index[i]] += f(i);

Cilk_unlock(l);

#pragma omp atomic

x[index[i]] += f(i);

Figure 5: Cilk and OpenMP examples illustrating an

atomically-synchronized statement

chronization between threads using barriers, which are han-

dled by SPIRE using the synchronization patterns

above, and (2) fine grain (point-to-point) synchronization

between participating threads. Handling point-to-point syn-

chronization using decorations on abstract syntax trees is

too constraining when one has to deal with a varying

set of threads that may belong to different parallel parent

nodes. Thus, SPIRE suggests to deal with this last class of

coordination using a new class of values, of the event type.

SPIRE extends the type set of entities with a new basic

type, namely event:

type’ = type + event:unit ;

Values of type event are counters, in a manner reminis-

cent of semaphores. The programming interface for events

is defined by the following atomic functions:

• event newEvent(int i) is the creation function

of events, initialized with the integer i that specifies

how many threads can execute wait on this event

without being blocked;

• void signal(event e) increments by one the

event value1 of e;

• void wait(event e) blocks the thread that calls

it until the value of e is strictly greater than 0. When

the thread is released, this value is decremented by one.

In a first example of possible use of this event API, the

construct future used in X10 (see Figure 6) can be seen

as the spawning of the computation of foo(). The end

result is obtained via the call to the force method; such

a mechanism can be easily implemented in SPIRE using an

event attached to the running task; it is signaled when the

tasks is completed and waited by the force method.

future<int> Fi = future{foo()};

int i = Fi.force();

Figure 6: X10 example illustrating a future task and its

synchronization

A second example, taken from Habanero-Java, illus-

trates how point-to-point synchronization primitives such as

1The void return type will be replaced by int in practice, to enable
the handling of error values.

phasers and the next statement can be dealt with using

the Event API (see Figure 7, left). The async phased

keyword can be replaced by spawn. The next statement

is equivalent to:

signal(ph);

wait(ph);

signal(ph);

where the event ph is supposed initialized to newEvent

(-(n-1)); the second signal is used to resume the

suspended tasks in a chain-like fashion.

finish{

phaser ph=new phaser();

for(j = 1;j <= n;j++){

async phased(

ph<SIG_WAIT>){

S;

next;

S′;

}

}

}

barrier(

ph=newEvent(-(n-1));

j = 1;

loop(j <= n,

spawn(j,

S;

signal(ph);

wait(ph);

signal(ph);

S’;

j = j+1)))

Figure 7: A phaser in Habanero-Java, and its SPIRE core

language representation

D. Data Distribution

The choice of a proper memory model to express parallel

programs is an important issue when designing a generic

intermediate representation. There are usually two main ap-

proaches to memory modeling: shared and message passing

models. Since SPIRE is designed to extend existing IR

for sequential languages, it can be straightforwardly seen

as using a shared memory model when parallel constructs

are added. By convention, we say that spawn creates new

processes, in the case of message passing memory models,

and threads, in the other case.

In order to take into account the explicit distribution

required by the message passing memory model, SPIRE

introduces the send and recv blocking functions for

implementing communication between processes:

• void send(int dest, entity buf) transfers

the value in Entity buf to the process numbered dest;

• void recv(int source, entity buf)

receives in buf the value sent by Process source.

The MPI example in Figure 8 can be represented in SPIRE

as a sequential loop with index my_rank of size iterations

whose body spawns the MPI code from MPI_Comm_size

to MPI_Finalize, using my_rank as process number.

The communication of Variable sum from Process 1 to Pro-

cess 0 can be handled with SPIRE send/recv functions.

MPI_Init(int argc, char *argv[]);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (my_rank == 0)

MPI_Recv(sum,sizeof(sum),MPI_FLOAT,1,1,

MPI_COMM_WORLD,&stat);

else if(my_rank == 1){

sum = 42;

MPI_Send(sum,sizeof(sum),MPI_FLOAT,0,1,

MPI_COMM_WORLD);

}

MPI_Finalize();

Figure 8: MPI example illustrating a communication

An other interesting memory model for parallel program-

ming has been introduced somewhat recently: the Partitioned

Global Address Space [20]. The uses of the PGAS memory

model in languages such as Habanero-Java, X10 and Chapel

introduce various notions such as Place or Locale to

label portions of a logically-shared memory that threads may

access, in addition to complex APIs for distributing data over

these portions. Given the wide variety of current proposals,

we leave the issue of integrating the PGAS model within

the general methodology of SPIRE as future work.

V. SPIRE OPERATIONAL SEMANTICS

The purpose of the formal definition described in this

section is to provide a solid basis for program analyses and

transformations. It is a systematic way to specify our IR

extension, something seldom present in IR definitions. It also

illustrates how SPIRE leverages the syntactic and semantic

level of sequential constructs to parallel ones, preserving the

sequential traits and, thus, analyses.

Fundamentally, at the syntactic and semantic levels,

SPIRE is a methodology for expressing representation trans-

formers, mapping the definition of a sequential language IR

to a parallel version. We define the operational semantics of

SPIRE in a two-step fashion: (1) we introduce a minimal

core parallel language that we use to model fundamental

SPIRE concepts and for which we provide a small-step

operational semantics and (2) rewriting rules that translate

the more complex constructs of SPIRE in this core language.

A. Sequential Core Language

Illustrating the transformation induced by SPIRE requires

the definition of a sequential IR basis. We use here, as

sequential core language, Stmt, which includes the essen-

tials from the PIPS sequential IR provided in Section III,

where the information present in the instruction and

statement sets are merged. The syntax of Stmt is given2

as Line (*) in Figure 9, where we assume that the sets Ide

of identifiers I and Exp of expressions E are given.

2For lack of space, we leave out the simple, but convoluted, manage-
ment of sequential unstructured instructions.

S ∈ SPIRE(Stmt)::=

nop | I=E | S1;S2 | loop(E,S) | (∗)
spawn(I,S) |

barrier(S) | barrier_wait(n) |

wait(I) | signal(I) |

send(I,I′) | recv(I,I′)

Figure 9: Stmt and SPIRE(Stmt) syntaxes

Sequential statements are: (1) nop for no operation, (2)

I=E for an assignment of E to I, (3) S1;S2 for a sequence

and (4) loop(E,S) for a while loop3.

At the semantic level, a statement in Stmt is a very

simple memory transformer. A memory m ∈ Memory
is a mapping in Ide → V alue, where values v ∈
V alue = N + Bool can either be integers n ∈ N or

booleans b ∈ Bool. The sequential operational semantics

for Stmt, expressed as transition rules over configurations

κ ∈ Configuration = Memory × Stmt, is given in

Figure 10; we assume that the program is syntax- and

type-correct. A transition (m,S) → (m′,S’) means that

executing the statement S in a memory m yields a new

memory m′ and a new statement S’. Rules 1 to 5 encode

typical sequential small-step operational semantic rules for

the sequential part of the core language. We assume that

ζ ∈ Exp → Memory → V alue is the usual function for

expression evaluation.

v = ζ(E)m

(m,I = E) → (m[I → v],nop)
(1)

(m,nop;S) → (m,S) (2)

(m,S1) → (m′,S′

1
)

(m,S1;S2) → (m′,S′

1
;S2)

(3)

ζ(E)m

(m,loop(E,S)) → (m,S;loop(E,S))
(4)

¬ζ(E)m

(m,loop(E,S)) → (m,nop)
(5)

Figure 10: Stmt sequential transition rules

B. SPIRE as a Language Transformer

Syntax At the syntactic level, SPIRE specifies how a

grammar for a sequential language such as Stmt is trans-

formed, i.e., extended, with synchronized parallel state-

ments. The grammar of SPIRE(Stmt) in Figure 9 adds to

3A PIPS forloop can be rewritten using a loop statement.

the sequential statements of Stmt (from now on, synchro-

nized using the default none) new parallel statements: a task

creation spawn, a termination barrier and two wait

and signal operations on events or send and recv op-

erations for communication. Synchronizations single and

atomic are defined via rewriting (see Subsection V-C). The

statement barrier_wait(n), added here for specifying

the multiple-step behavior of the barrier statement in the

semantics, is not accessible to the programmer. Figure 7

provides the SPIRE representation of a program example.

Semantic domains As SPIRE extends grammars, it

also extends semantics. The set of values manipulated by

SPIRE(Stmt) statements extends the sequential V alue
domain with events e ∈ Event = N , that encode events cur-

rent values; we posit that ζ(newEvent(E))m = ζ(E)m.

Parallelism is managed in SPIRE via processes (or

threads). We introduce control state functions π ∈ State =
Proc → Configuration×Procs to keep track of the whole

computation, mapping each process i ∈ Proc = N to its

current configuration (i.e., the statement it executes and its

own view of memory) and the set c ∈ Procs = ℘(Proc) of

the process children it has spawned during its execution.

In the following, we note dom(π) = {i ∈ Proc/π(i)
is defined} the set of currently running processes, and

π[i → (κ, c)] the state π extended at i with (κ, c). A

process is said to be finished if and only if all its children

processes, in c, are also finished, i.e., when only nop is left

to execute: finished(π, c) = (∀i ∈ c, ∃ci ∈ Procs, ∃mi ∈
Memory/π(i) = ((mi,nop), ci) ∧ finished(π, ci)).

Memory Models A sequential language uses a unique

memory. In our parallel extension, a configuration for a

given process or thread includes its view of memory. We

suggest to use the same semantic rules, detailed below, to

deal with both shared and message passing memory rules.

The distinction between these models, beside the additional

use of send/receive constructs in the message passing model

versus events in the shared one, is included in SPIRE

via constraints we impose on the control states π used in

computations. Namely, we posit that, in the shared memory

model, for all threads t and t′ with π(t) = ((m,S), c)
and π(t′) = ((m′,S’), c′), one has4 m = m′. No such

constraint is needed for the message passing model. As

mentioned above, PGAS is left for future work, where some

sort of constraints based on the semantic definitions of

places/locales would have to be introduced.

Semantic Rules At the semantic level, SPIRE is thus

a transition system transformer, mapping rules such as the

ones in Figure 10 to parallel, synchronized transition rules

in Figure 11. A transition (π[i → ((m,S), c)]) →֒ (π′[i →
((m′,S’), c′)]) means that the i-th process, when executing

S in a memory m, yields a new memory m′ and a new

4The issue of private variables in threads would have to be introduced
in full-fledged languages.

control state π′[i → ((m′,S’), c′)] in which this process

now will execute S′; additional children processes may have

been created in c′ compared to c.
Rule 6 bridges the sequential and the SPIRE-extended

parallel semantics; note that the interleaving between parallel

processes in SPIRE(Stmt) is a consequence of the non-

deterministic choice of the value of i within dom(π) when

selecting the transition to perform and of the number of steps

executed by the sequential semantics. In Rule 7, spawn

adds a new process n that executes S to the state; the set of

processes spawned by n is initially equal to φ, and n is added

to the set of processes c spawned by i. Rule 8 implements a

rendezvous: a new process n executes S, while process i is

suspended as long as finished is not true; indeed, the rule 9

resumes execution of process i when all the child processes

spawned by n have finished. In Rules 10 and 11, I is an

event, that is a counting variable used to control access to

a resource or to perform a point-to-point synchronization,

initialized via newEvent to a value equal to the number of

processes that will be granted access to it. Its current value n
is decremented every time a wait(I) statement is executed

and, when π(I) = n with n > 0, the resource can be used

or the barrier can be crossed. In Rule 11, the current value

n′ of I is incremented; this is a non-blocking operation. In

Rule 12, p and p′ are two processes that communicate: p
sends the datum I to p′, while this later consumes it in I’.

C. Rewriting Rules

The SPIRE concepts not dealt with in the previous section

are defined via their rewriting into the core language. This is

the case for both the treatment of the execution attribute

and the remaining coarse-grain synchronization constructs.

Execution. A parallel sequence of statements S1 and

S2 is a pair of independent substatements executed simulta-

neously by spawned processes I1 and I2 respectively, i.e., is

equivalent to:

barrier(spawn(I1,S1);spawn(I2,S2))

A parallel forloop, an example of which appears in Fig-

ure 3, with index I, lower expression low, upper expression

up, step expression step and body S is equivalent to:

I=low;loop(I<=up,spawn(I,S);I=I+step)

A parallel unstructured is rewritten as follows.

All control nodes present in the transitive closure of

the successor relation are rewritten in the same manner.

Each control node C is characterized by a statement S,

predecessor list ps and successor list ss. For each edge

(c,C), where c is a predecessor of C in ps, an event Ic,C
initialized at newEvent(0) is created, and similarly for

ss. The whole unstructured construct is replaced by a

sequential sequence of spawn(I,Sc), one for each C of

the transitive closure of the successor relation starting at

the entry control node, where Sc is defined as follows:

κ → κ′

π[i → (κ, c)] →֒ π[i → (κ′, c)]
(6)

n = ζ(I)m

π[i → ((m,spawn(I,S)), c)] →֒ π[i → ((m,nop), c ∪ {n})][n → ((m,S), ∅)]
(7)

n 6∈ dom(π) ∪ {i}

π[i → ((m,barrier(S)), c)] →֒ π[i → (m,barrier_wait(n)), c)][n → ((m,S), ∅)]
(8)

finished(π, {n}) ∧ π(n) = ((m′,nop), c′)

π[i → ((m,barrier_wait(n)), c)] →֒ π[i → ((m′,nop), c)]
(9)

(n = ζ(I)m) ∧ (n > 0)

π[i → ((m,wait(I)), c)] →֒ π[i → ((m[I → n− 1],nop), c)]
(10)

n = ζ(I)m

π[i → ((m,signal(I)), c)]) →֒ π[i → ((m[I → n+ 1],nop), c)]
(11)

p′ = ζ(P’)m ∧ p = ζ(P)m′

π[p → ((m,send(P’,I)), c)][p′ → ((m′,recv(P,I’)), c′)] →֒
(12)

π[p → ((m,nop), c)][p′ → ((m′[I’ → m(I)],nop), c′)]

Figure 11: SPIRE(Stmt) synchronized transition rules

barrier(spawn(1,wait(Ips[1],C));...;

spawn(m,wait(Ips[m],C)));

S;

signal(IC,ss[1]);...;signal(IC,ss[m’])

where m and m’ are the length of the ps and ss lists; L[I]

is the I-th element of L.

Synchronization. A statement S with synchronization

atomic(I) rewrites as:

wait(I);S;signal(I)

assuming that the assignment I = newEvent(1) is per-

formed on the event identifier I at the very beginning of

the whole program. A wait on an event variable sets it to

zero if it is currently equal to one to prohibit other threads to

enter the atomic section; the signal resets the event variable

to one to permit further access.

A statement S with a blocking synchronization single,

i.e., equal to true, is equivalent, when it occurs within an

enclosed innermost parallel forloop, to:

barrier(wait(I_S);

if(first_S,

S; first_S = false,

nop);

signal(I_S))

where first_S is a boolean variable that ensures that

only one process among those spawned by the parallel

loop will execute S; access to this variable is protected by

the event I_S. Both first_S and I_S are respectively

initialized before loop entry to true and newEvent(1).

The conditional if(E,S,S’) can easily be rewritten using

the core loop construct. The same rewriting can be used

when the single synchronization is equal to false,

corresponding to a non-blocking synchronization construct,

except that no barrier is needed.

VI. VALIDATION

This section provides information on the practical use

and benefits of SPIRE: (1) we illustrate how high-level

parallel constructs used in the current parallel programming

languages addressed in this paper can be translated using

SPIRE concepts and (2) address implementation issues.

A. Mapping SPIRE to Parallel Programming Languages

Table I, extended from [19], summarizes the main char-

acteristics of the parallel languages of interest in this pa-

per: Cilk, Chapel, X10, Habanero-Java, OpenMP, OpenCL

and MPI. The main constructs used in each language to

launch task and data parallel computations, perform syn-

chronization, introduce atomic sections and transfer data

in the various memory models are listed. We extend this

table to include a line for MPI and another one which

corresponds to the approach we suggest to use to map

these concepts to our parallel intermediate representation

SPIRE, introducing only ten key notions, collected in three

groups (execution, synchronization and data distribution):

sequential, parallel, spawn, barrier, atomic,

single, signal, wait, send and recv. We sketch

below how the mapping of parallel languages to SPIRE can

be implemented, in practice.

Task creation (e.g., clEnqueueTask in OpenCL, see

Figure 4) defines a task code fragment to be executed in

parallel with the outside task that creates it; the corre-

sponding processes or threads join, later on, using task join

synchronization primitives such as finish in X10 (see

Figure 7). These operations can be mapped in SPIRE using

the synchronization attribute spawn for the task creation

statement while selecting the barrier synchronization for

the outside task.

An other form of synchronization, finer than task join, is

point-to-point synchronization, where the affected tasks use

event variables for such a purpose (see phasers in Habanero-

Java Figure 7); SPIRE uses the two built-ins signal and

wait to translate these events.

An atomic section implements mutual exclusion (e.g.,

Cilk_lock and Cilk_unlock in Cilk and atomic

in OpenMP, see Figure 5) is mapped in SPIRE using the

synchronization attribute atomic.

Data parallelism (e.g., clEnqueueNDRangeKernel in

OpenCL, see Figure 2), where the same operation is applied

repeatedly to different items, is represented in SPIRE using

the execution attribute parallel to a forloop statement.

In addition to the previous control constructs, the table

specifies each language data-distribution memory model.

SPIRE includes two models: shared (the default model)

and message passing. In the shared model, private vari-

ables are represented as local variables, initialized via copy

operations. For message passing (e.g., send and recv

in MPI, see Figure 8), SPIRE offers the two built-ins

necessary for explicit communication: send and recv. For

the time being, we consider PGAS code as shared, a PGAS

implementation in SPIRE being left as future work.

B. Implementation

We have implemented the SPIRE-derived parallel IR

presented above5 in the PIPS middle-end, and used it for the

implementation of a new BDSC-based task parallelization

algorithm [21]. We generate both OpenMP and MPI code

from the same parallel IR. This first implementation suggests

that our main goal with the design of SPIRE, namely the

reuse of existing software developments, is reachable; in-

deed, we were able to easily leverage some of the sequential

optimizations present in the original PIPS platform, a key

economic advantage.

Even though we used traditional parallel paradigms for

code generation purposes, we believe that SPIRE-derived

5Events have been omitted since our automatic parallelization algo-
rithms do not address point-to-point synchronization issues.

IRs are able to deal with more specific parallel constructs

such as DOACROSS or HELIX-like approaches. Basically,

a compiler would parse a given sequential program into

sequential IR elements. Optimization compilation phases

specific to particular parallel code generation paradigms such

as those above will translate, whenever possible (specific

data and control-flow analyses will be needed here), these

sequential IR constructs into parallel loops, with the cor-

responding synchronization primitives, as need be. Code

generation will then recognize such IR patterns and generate

specific parallel instructions such as DOACROSS.

VII. CONCLUSION

SPIRE is a new and general extension methodology for

mapping any intermediate representation (IR) used in com-

pilation platforms for representing sequential programming

constructs to a parallel IR; one can leverage it for the source-

to-source and high- to mid-level optimization of control-

parallel languages and constructs.

The extension of an existing IR introduces (1) a parallel

execution attribute for each group of statements, (2) a

high-level synchronization attribute on each statement node

and an API for low-level synchronization events and (3)

two built-ins for implementing communications in message

passing memory systems. The formal semantics of SPIRE

transformational definitions is specified using a two-tiered

approach: a small-step operational semantics for its base

parallel concepts and a rewriting mechanism for high-level

constructs. As a use case for the introduction of SPIRE, we

describe the extension of the intermediate representation of

PIPS, a powerful source-to-source compilation infrastructure

for Fortran and C. We illustrate the generality of our

approach by showing how SPIRE can be used to represent

the constructs of the current parallel languages Cilk, Chapel,

X10, Habanero-Java, OpenMP, OpenCL and MPI.

Future work will address the representation of the PGAS

memory model in SPIRE and the implementation of trans-

formations for parallel languages encoded in SPIRE.

REFERENCES

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded
Runtime System,” in Journal of Parallel and Distributed
Computing, 1995, pp. 207–216.

[2] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Pro-
grammability and the Chapel Language,” Int. J. High Perform.
Comput. Appl, vol. 21, pp. 291–312, August 2007.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An Object-
Oriented Approach to Non-Uniform Cluster Computing,”
SIGPLAN Not., vol. 40, pp. 519–538, October 2005.

[4] V. Cavé, J. Zhao, and V. Sarkar, “Habanero-Java: the New
Adventures of Old X10,” in 9th International Conference on
the Principles and Practice of Programming in Java (PPPJ),
August 2011.

Task Synchronization Data Memory Data
Language creation Task join Point-to- Atomic parallelism model distribution

point section

Cilk spawn sync — cilk lock — Shared —
(MIT)

Chapel begin — sync sync forall PGAS (on)
(Cray) cobegin atomic coforall (Locales)

X10 async finish next atomic foreach PGAS (at)
(IBM) future force (Places)

Habanero- async finish next atomic foreach PGAS (at)
Java (Rice) future get isolated (Places)

OpenMP omp task omp taskwait — omp critical omp for Shared private,
omp section omp barrier omp atomic shared...

OpenCL EnqueueTask Finish events atom add, EnqueueND- Message ReadBuffer
EnqueueBarrier ... RangeKernel passing WriteBuffer

MPI MPI spawn MPI Finalize — — MPI Init Message MPI Send
MPI Wait passing MPI Recv...

Shared,

SPIRE spawn barrier signal, wait atomic parallel Message send, recv
passing

Table I
MAPPING OF SPIRE TO PARALLEL LANGUAGES CONSTRUCTS (TERMS IN PARENTHESES ARE NOT CURRENTLY HANDLED BY SPIRE)

[5] OpenMP, http://openmp.org/wp/openmp-specifications/.

[6] OpenCL, “The Open Standard for Parallel Programming of
Heterogeneous Systems,” http://www.khronos.org/opencl.

[7] MPI, http://www-unix.mcs.anl.gov/mpi.

[8] J. Zhao and V. Sarkar, “Intermediate Language Extensions for
Parallelism,” in The 5th Workshop on Virtual Machines and
Intermediate Languages. New York, NY, USA: ACM, 2011.

[9] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil,
“PLASMA: Portable Programming for SIMD Heterogeneous
Accelerators,” in Workshop on Language, Compiler, and
Architecture Support for GPGPU, held in conjunction with
HPCA/PPoPP 2010, Bangalore, India, January 9, 2010.

[10] Insieme, “Insieme - an Optimization System for OpenMP,
MPI and OpenCL Programs,” http://www.dps.uibk.ac.at/
insieme/mission.html.

[11] F. Coelho, P. Jouvelot, C. Ancourt, and F. Irigoin, “Data and
Process Abstraction in PIPS Internal Representation,” in Pro-
ceedings of the Workshop on Intermediate Representations,
F. Bouchez, S. Hack, and E. Visser, Eds., 2011, pp. 77–84.

[12] F. Irigoin, P. Jouvelot, and R. Triolet, “Semantical Interpro-
cedural Parallelization: An Overview of the PIPS Project,” in
ICS, 1991, pp. 244–251.

[13] D. Novillo, “OpenMP and Automatic parallelization in GCC,”
in the Proceedings of the GCC Developers Summit, June
2006.

[14] M. Girkar and C. D. Polychronopoulos, “Automatic Ex-
traction of Functional Parallelism from Ordinary Programs,”
IEEE Trans. Parallel Distrib. Syst., vol. 3, pp. 166–178,
March 1992.

[15] Y. Choi, Y. Lin, N. Chong, S. Mahlke, and T. Mudge, “Stream
Compilation for Real-Time Embedded Multicore Systems,”
in Proceedings of the 7th annual IEEE/ACM International
Symposium on Code Generation and Optimization, ser. CGO
’09, Washington, DC, USA, 2009, pp. 210–220.

[16] V. Sarkar and B. Simons, “Parallel Program Graphs and their
Classification,” in LCPC, ser. Lecture Notes in Computer
Science, U. Banerjee, D. Gelernter, A. Nicolau, and D. A.
Padua, Eds., vol. 768. Springer, 1993, pp. 633–655.

[17] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program
Dependence Graph And Its Use In Optimization,” ACM
Trans. Program. Lang. Syst., vol. 9, no. 3, pp. 319–349, Jul.
1987.

[18] P. Jouvelot and R. Triolet, “Newgen: A Language Independent
Program Generator,” CRI/A-191, MINES ParisTech, Tech.
Rep., July 1989.

[19] D. Khaldi, P. Jouvelot, C. Ancourt, and F. Irigoin, “Task
Parallelism and Data Distribution: An Overview of Explicit
Parallel Programming Languages,” in Proceedings of the 2012
International Workshop on Languages and Compilers for
Parallel Computing, ser. LCPC’12, 2012.

[20] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta,
J. Duell, S. L. Graham, P. Hargrove, P. Hilfinger, P. Husbands,
C. Iancu, A. Kamil, R. Nishtala, J. Su, W. Michael, and
T. Wen, “Productivity and Performance Using Partitioned
Global Address Space Languages,” in Proceedings of the
2007 International Workshop on Parallel Symbolic Compu-
tation, ser. PASCO ’07. New York, NY, USA: ACM, 2007,
pp. 24–32.

[21] D. Khaldi, P. Jouvelot, and C. Ancourt, “Parallelizing with
BDSC, a Resource-Constrained Scheduling Algorithm for
Shared and Distributed Memory Systems,” MINES ParisTech,
Tech. Rep. CRI/A-499 (Submitted to Parallel Computing),
2012.

