
HAL Id: hal-00818268
https://minesparis-psl.hal.science/hal-00818268

Preprint submitted on 26 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Averaging Homotopy
François Chaplais

To cite this version:

François Chaplais. The Averaging Homotopy. 2013. �hal-00818268�

https://minesparis-psl.hal.science/hal-00818268
https://hal.archives-ouvertes.fr


THE AVERAGING HOMOTOPY

F.Chaplais
Centre Automatique et Systèmes

École Nationale Supérieure des Mines de Paris
35 rue Saint Honoré

77305 Fontainebleau Cedex FRANCE

Abstract

Classical averaging is an asymptotic theory in the sense that it con-
siders the problem of finding a limit for a sequence of differential systems.
We present here another formulation that is based on an homotopy be-
tween any two vectorfields. This formulation accounts both for classical
averaging and for regular perturbations. It can also be used to justify the
use of numerical windowed averaging schemes without any asymptotic
imbedding.

1 Introduction

Averaging is classically presented as a technique to asymptotically approximate
the solutions of an ε-dependent ordinary differential equation

dxε
dt

= f(xε, t, τ)τ= t
ε
, xε(0) = x0 (1)

by that of another, supposedly simpler system:

dy

dt
= f̄(y, t) , xε(0) = x0 (2)

as ε tends to zero 1 .
One important feature of equation (1) is that the limit of t

ε is singular in
ε as ε goes to zero. Generally (see Sanderst-Verhulst[5] for a comprehensive
monograph on the subject), the regularity of the solutions x with respect to
ε is recovered by assuming that f is a so-called Krilov-Bogolioubov-Mitropolski
(KBM) vectorfield with average f̄ , e.g., f satisfies the following ergodicity as-
sumption:

lim
T→∞

1

T

∫ T

0

(f(x, t, τ)− f̄(x, t, τ))dτ = 0 (3)

1This is a “normal+fast time” formulation of averaging. Notice that, in these settings, the
“slow” time equivalent of (1) is already in normal form, e.g. there is no singular perturbation
in (1).
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This includes the case when f is periodic in τ with a period independent of x;
f̄ is then the average of f as usually defined for periodic functions. Eckhaus[3]
refined the concept further by introducing local averages and discriminating the
order of the time scale from the order of the horizon T .

The ergodicity assumption (3) is quite natural when the perturbed system
(1) is the rewriting on a fast time scale of some regularly perturbed differential
system (in its normal form), such as the Van Der Pol equation or many other
examples[5]. However, in practice, there are many cases where the unstation-
narity of (1) does not originate in some time rescaling, but is simply given as
raw data2. Yet, there is a strong feeling that averaging techniques could be still
used in this case.

A typical case of this happens in the study of the input-output relationship
in control theory. The unstationnarity of the system is expressed there in terms
of some input signal u which corresponds either to the action of some user, or
to the influence of a (non-controlled) perturbation. The system is written as

dx

dt
= f(x(t), u(t)) (4)

where the function u denotes the input of the system. When u stands for a
perturbation, e.g. a signal that is neither controlled nor precisely known, it is
interesting to evaluate the influence of this perturbation on the trajectory, even
when a priori knowledge on it is restricted to some bounds on its amplitude
or its frequency distribution. We can see on this example that no ergodicity
assumption can be made on the perturbation, since the information on it is
reduced to the minimum.

However, the idea remains that inputs of small amplitude lead to small de-
viations of the trajectory (this may be considered as a case of regular perturba-
tions), and that inputs in high frequency domains produce also small deviations
(and this may be seen as a case of averaging; in signal processing terms, we
would say that strictly causal systems are low pass filters).

The purpose of the paper is twofold

• present averaging as a case of regular perturbations, or, specifically, an
homotopy between two dynamics

• show that using suitable signal processing tools to define the “average”
dynamics is an effective means of have close trajectories when comparing
the original system to the processed system.

The article is organized as follows. Section 2 presents the averaging ho-
motopy and how if is related to classical averaging. Section 3 investigate the
difference between the trajectory analysis by using first order estimates. Section
4 shows a constructive example that defines an averaging homotopy, by using
local averages of the system. Section 5 discusses higher order expansions with
respect to the hopotopy parameter ε; in particular, theorems 5.4, 5.6 and 5.7
investigate the converge of the series for ε = 1.

2in particular, there is actually no small parameter ε in the equation from the start.
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2 The averaging homotopy

Let us rewrite (1) under its integral form

xε(t) = x0 +

∫ t

0

f(xε(s), s,
s

ε
)ds (5)

After some integration by part, it becomes

xε(t)− ε∆(xε(t), t,
t

ε
)

= x0 +

∫ t

0

f̄(xε(s), s)ds− ε
∫ t

0

[
∂∆

∂x
f +

∂∆

∂t

]
(xε(s), s,

s

ε
)ds (6)

where we define ∆ to be

∆(x, t, τ) =

∫ τ

0

[
f − f̄

]
(x, t, θ)dθ (7)

If ∆(x, t, τ) remains bounded for all τ , as in the periodic case, we can see that,
at least locally, xε converges to y when ε goes to 0. This result, as well as the
transformation (6), is quite classical, and can be found in [5].

Lets us now assume that f is not given as a two time scale system or, in
other words, that we have ε = 1. Then we see that it is enough to have ∆ and
its derivative to be small for y to approximate xε. This is true for any f̄ . By
analogy to the case of regular perturbations, where one transforms a vector field
into a vectorfield g by linear interpolation, we use the previous remark to define
the averaging homotopy for any two vectorfields f and f̄ :

Definition 2.1 (Averaging homotopy) Let f and f̄ :

f : Rn × R −→ Rn
(x, t) 7−→ f(x, t)

(8)

f̄ : Rn × R −→ Rn
(x, t) 7−→ f̄(x, t)

(9)

that we shall assume to be as smooth as necessary. Define ∆(x, t) by

∆(x, t) =

∫ t

0

[
f − f̄

]
(x, s)ds (10)

We shall assume that ∂∆
∂x is smaller than the identity in a neighborhood V of

(x0, 0). In this neighborhood, we define the averaging deformation of f̄ into f
by

AD : [0, 1] −→ (Rn)
V

ε 7−→ fε(x, t) =
(
Id− ε∂∆

∂x

)−1 [
f̄ + ε(f − f̄)− ε∂∆

∂x f
]

(x, t)
(11)

and we define x(ε, t) as the maximum solution of

dx

dt
= fε(x, t) , x(0) = x0 (12)
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Comments

• the inverse in equation (11) is a matrix inverse

• we check that, for ε = 0, f0 = f̄ , and that, for ε = 1, f1 = f

• The state xε satisfies

xε(t)− ε∆(xε(t), t) =

x0 +

∫ t

0

f̄(xε(s), s)ds− ε
∫ t

0

[
∂∆

∂x
f

]
(xε(s), s)ds (13)

(actually, the definition of xε was obtained by differentiating the previous
equation, which is formally similar to (6)). This shows that having a
small ∆ is enough to have x close to y, something that is not obvious in
the differential form (11) (12). If we had substituted ∆ to its gradient
in the homotopy (11), we might have not been able to recover this result
(unless ∆ itself was a gradient).

• assume now that f is under the form f(x, tµ ), with f periodic with respect

to the last variable; then, if we take f̄ to be the average of with respect
to this last variable, it is clear that ∆ goes to 0 with µ and (13) becomes

xε(t)− µε∆(xε(t),
t

µ
) = x0 +

∫ t

0

f̄(xε(s))ds− µε
∫ t

0

[
∂∆

∂x
f

]
(xε(s),

s

µ
)ds

(14)
We see that any expansion with respect to ε will also be an asymptotic
expansion with respect to µ, even though it may be different from the ex-
pansions that are considered in classical averaging. This can be extended,
of course, to KBM vectorfields. It will be developed in section 5.

• ∆ can be made small (at least on a finite horizon) by simply taking f̄
uniformly close to f . This means that we can also handle the case of
regular perturbations in this framework, even though it will be with a
different homotopy, and thus, different expansions.

Case of a perturbation input Assume now that f(x, t) is of the form
g(x, u(t)), where u is a perturbation data which cannot be modelled. As a
consequence, there is not reason to adopt an asymptotic point of view on the
matter. However, if we use the averaging homotopy, we have freedom in choos-
ing the “average” f̄ . To do so, we can use a low pass filter LP and define f̄
as

f̄(x, t) = LP (f)

where the low pass filter is only applied to time variation of f , x being a static
variable. Then ∆ is the indefinite integral of f(x, t) through a high pass filter,
and as such ∆ can be small.
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3 First order averaging

In this section we are going estimate the distance between xε and y in terms of
estimates on f and, essentially, ∆. For ε = 1, this gives an estimation on the
difference between the solutions of dx/dt = f and of dx/dt = f̄ .

3.1 Estimates based on Lipschitz constants

Assumption 1 We assume that f is continuous, f̄ locally Lispschitz, and ∆
is of class C1, all of this with respect to x. We consider a neighborhood V of
(x0, 0) in the (x, t) domain on which the following hold:

‖f̄(x, t)− f̄(y, t)‖ ≤ F̄1‖x− y‖ (15)

‖∆(x, t)‖ ≤ D0 (16)

‖f(x, t)‖ ≤ F0 (17)

We also assume that “∂∆
∂x is not too big”, that is, ∆ satisfies

‖∂∆

∂x
(x, t)‖ ≤ D1 < 1 (18)

on V .

We shall take advantage of the averaging formulation to draw estimates finer
than those simply derived from the amplitude of f̄ .

Theorem 3.1 As long as (x(ε, t), t) and (x(0, t), t) = (y(t), t) stay in V , the
following holds:

‖x(ε, t)− x(0, t)‖ ≤ ε

[
eF̄1t − 1

F̄1
(D0 +D1F0)− t

F̄1
D1F0

]
(19)

Proof: since we have D1 < 1, Id − ε∆ is invertible in x for ε ≤ 1. Hence, z
and x are defined, at least locally. From (13) taken at ε and at 0, we get

‖x(ε, t)− x(0, t)‖ ≤
∫ t

0

F̄1‖x(ε, s)− x(0, s)‖ ds+ εD0 + ε

∫ t

0

D1F0 ds (20)

which leads to the result.

Comments

• for ε = 1, we get an estimation of the difference x − y, where x is the
solution of dx/dt = f , and y is the solution of dy/dt = f̄ .

• remark that x(ε, t) − x(0, t), and hence, x − y, is small when D0 and
D1 are small. This can be achieved by having a f̄ that is close to f in
amplitude (regular perturbations), or by stripping f of its high frequency
components (averaging) to get f̄ .
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• if f is µ-periodic in time, and f̄ is the usual average, then D0 and D1 are
of order 1 with respect to µ3, while F0 and F̄1 are of order 0. This proves
that there exist a constant K such that ‖x(1, t)−x(0, t)‖ ≤ Kµ, and that
we can recover the classical results on periodic averaging.

• this estimate, of course, can be used tell how long x stays in V .

In the next section we assume a little more regularity to make use of the
tangent system at ε = 0.

3.2 Estimates based on the first derivative

3.2.1 Equation on the transition matrix

To simplify the computations, we shall define g by

g =
∂∆

∂x
f.

We assume now that f and f̄ are C1 . Instead of computing a Lipschitz
constant on x with respect to ε, we are going to use the Taylor formula to
estimate x(ε)− x(o). Let us first compute ∂x/∂ε. To do that, we differentiate
(13) with respect to ε. This gives:(

Id− ε∂∆

∂x

)
∂x

∂ε
−∆ =

∫ t

0

[(
∂f̄

∂x
− ε∂g

∂x

)
∂x

∂ε
− g
]
ds (21)

where all the functionals are computed at (x(ε, t), t). If we let x̃ = (Id −
ε∂∆/∂x)∂x/∂ε−∆, we may rewrite this as

x̃ =

∫ t

0

[(
∂f̄

∂x
− ε∂g

∂x

)(
Id− ε∂∆

∂x

)−1

(x̃+ ∆)− g

]
ds (22)

Let us call Φε the transition matrix associated to the above affine equation.
After some reordering with respect to ε, we can see that Φε satisfies

∂Φε
∂t

=

[
∂f̄

∂x
+ ε

(
∂f̄

∂x

∂∆

∂x
− ∂g

∂x

)(
Id− ε∂∆

∂x

)−1
]

Φε (23)

Since x̃, and hence, ∂x∂ε
4 is determined by a convolution with Φε, it is interesting

to have an idea of the norm of this convolution operator, and of its proximity
to the corresponding operator at ε = 0.

3this can be seen as a consequence of theorem 4.1
4and, in fact, all the further derivatives of x with respect to ε, as we shall see later.
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3.2.2 Estimates on the transition matrix

Lemma 3.1 Let F̄1 and G1 some estimates on the first derivatives of f̄ and g
on a neighborhood V of the initial conditions. Given a kernel K(t, s), we denote
by ‖K‖∗ the norm of the convolution operator from L∞ to L∞ that is associated

to it5, e.g. maxa,b ∈[0,T ]

∫ b
a
‖K(t, s)‖ds and we denote by ϕε the norm ‖Φε‖∗6.

Then, as long as (x(ε, t), t) stays in V for 0 ≤ ε ≤ 1, one has∥∥∥∥∥
(
Id− ε∂∆

∂x

)−1
∥∥∥∥∥ ≤ 1

1− εD1
(24)

and, for ε such that ε[ϕ0(F̄1D1 +G1) +D1] ≤ 1, we have

‖Φε − Φ0‖∗ ≤
εc(ε)ϕ2

0

1− εc(ε)ϕ0
(25)

where c(ε) stands for F̄1D1+G1

1−εD1
.

Proof: The estimate on A−1 comes from its expression as a (positive) power
series in ∆.

Let us now denote by C(ε) the matrix
(
∂f̄
∂x

∂∆
∂x −

∂g
∂x

) (
Id− ε∂∆

∂x

)−1
. We

have ‖C(ε)‖ ≤ c(ε). After solving (23), we get on Φε − Φ0:∫ b

a

‖Φε(b, s)− Φ0(b, s)‖ds ≤ ε

∫ b

a

∫ b

s

‖Φ0(t, θ)‖ ‖C(ε)‖ ‖Φ0(t, θ)‖ dθ

+ ε

∫ b

a

∫ b

s

‖Φ0(t, θ)‖ ‖C(ε)‖ ‖Φε(θ, s)− Φ0(t, θ)‖ dθ

≤ εc(ε)ϕ2
0 + εc(ε)ϕ0‖Φε − Φ0‖∗

which leads to the result.

Comment The estimate on Φε holds for ε ∈ [0, 1] if ϕ0(F̄1D1 +G1) ≤ 1−D1,
that is, essentially, if ∆ is small and ϕ0 is not too large. Notice that c(ε) is
small if ∆ is small. Finally, the estimation on Φε − Φ0 can be used to obtain a
bound on ϕε; we get ϕε ≤ ϕ0

1−εc(ε)ϕ0
.

Since ϕ0 in may depend on the averaging scheme used to compute f̄ , it is
also interesting to have an estimation on ϕ0 with respect to ϕ1, which may be
part of the actual data of the averaging problem. We have for ϕ0 an estimation
that is exactly symmetrical of that obtained for ϕ1 in the previous lemma:

Lemma 3.2 The assumptions are that same as in lemma 3.1; moreover, we
assume c(1)ϕ1 < 1. Then

ϕ0 ≤
ϕ1

1− c(1)ϕ1
(26)

5in control theory, this is the Bounded Input Bounded Output norm. This bound always
exists on a finite horizon; if K satisfies ‖K(t, s)‖ ≤ Ae−α(t−s), we have ‖K‖∗ ≤ A

α
, and the

norm is defined for T = +∞.
6Φ0(t, s) is the transition matrix of ∂f̄

∂x
(x(0, t), t).
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Proof: We have

Φ0(t, s) = Φ1(t, s)−
∫ t

s

Φ1(t, θ)C(1)Φ0(θ, s)ds (27)

and the rest of the prof follows the line of that of the previous lemma.
From now on, we shall assume that ϕ0(F̄1D1 + G1) ≤ 1 − D1; along with

D1 < 1, these are the only restrictions on the choice of f and f̄ . As we saw,
the can be checked by assuming that ∆ is small enough; this, in turn, can be
achieved, for instance, by taking a sufficiently small averaging horizon in the
scheme described later in section 4. We shall also replace, for all purposes, ϕε
by its estimate ϕ0/(1− εc(ε)ϕ0), which is an increasing function of ε.

3.2.3 Estimates on the trajectories

Theorem 3.2 Under the previous assumptions, we have, as long as (x(ε1, t), t)
stays in V for all ε1 ∈ [0, ε]:

‖x(ε, t)− x(0, t)‖ ≤ εϕε(c(ε)D0 +D1F0) +D0

1− εD1
(28)

where D0 is the sup norm of ∆ on V , D1 is the sup norm of ∂∆
∂x on V , and F0

is the sup norm of f on V .

Proof: We have
∂x

∂ε
=

(
Id− ε∂∆

∂x

)−1

(x̃+ ∆) (29)

and

x̃ =

∫ t

0

Φε(t, s)

[(
∂f̄

∂x
− ε∂g

∂x

)(
Id− ε∂∆

∂x

)−1

∆− g

]
ds (30)

so that ‖x̃‖ ≤ ϕε(c(ε)D0 +D1F0), and ‖∂x/∂ε‖ ≤ (‖x̃‖+D0)/(1− εD1).

Comments

• for ε = 1, we get an estimation of the difference x − y, where x is the
solution of dx/dt = f , and y is the solution of dy/dt = f̄ .

• if f is µ-periodic in time and f̄ is the usual average, then D1 and G1 are
of order 1 with respect to µ, while F̄1 is of order 0. This shows that c(ε)
is of order in µ, and hence ‖Φε−Φ0‖∗; ϕε is thus of order 0. Since D0, as
we said before, is of order 1, we see that the right handside of (28) is of
order 1 with respect to µ.

• if we have ϕ0(F̄1D1+G1) ≤ 1−D1, then we can replace ϕε by ϕ0

1−εc(ε)ϕ0
. In

this case, we have estimates that are increasing functions of ε for ε ∈ [0, 1].
Let us call B the value of this bound for ε = 1. If V is then defined by
‖x − x0‖ ≤ R and 0 ≤ t ≤ T , then (x(ε, t), t) stays in V as long as
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‖x(0, t) − x0‖ + B ≤ R and 0 ≤ t ≤ T . This implies, of course, that we
have B ≤ R, something which can be achieved by having a small ∆ (or a
small µ in the periodic case). We shall refer to this (sufficient) condition
as condition VR.

4 An example of averaging synthesis

We have seen that the quality of the approximations, whether in (19) or in
(28), is essentially determined by the amplitude of ∆ and its derivatives. In the
periodic case, we have seen that the choice of the usual average for f̄ in the
case of small periods is a good choice in the sense that ∆ is then small. In the
general case, the question remains of the determination of the “average” f̄ in
order to have a “small” ∆. A trivial choice consists in taking f̄ = f . Another
choice consists in taking for f̄ a regular perturbation of f . For instance, a Taylor
expansion of f around a reference trajectory would be a (locally) suitable choice;
this case will be considered in the next section. However, this choice does not
correspond to the usual averaging setup, even though it may (and should) be
considered.

In this section, we show that a simple windowed average scheme is enough
to provide a suitable f̄ in all cases.

We consider here a function f(x, t) on Rn × R, essentially locally bounded
in t and d > 0. We define the windowed average f̄ by

f̄(x, t) =
1

d

∫ (k+1)d

kδ

f(x, s)ds for t ∈ [kδ, (k + 1)d[ (31)

The following theorem proves that, for a given f , an arbitrarily small ∆ can be
obtained by choosing a sufficiently small step d.

Theorem 4.1 (Bound on ∆ from the standard deviation) Let ∆(x, t) =∫ t
0
(f(x, s)− f̄(x, s))ds. Define

σk(f) =

√
1

d

∫ (k+1)d

kδ

‖f(x, s)− f̄(x, s)‖2ds (32)

and σ(f) = maxσk. Then

‖∆(x, •)‖L∞([0,T ]) ≤ dσ(f) ≤ d‖f(x, •)‖L∞([0,T ]) (33)

Proof: we shall omit to mention x in the proof, since it is only a fixed
parameter. Since the integral of f coincides with that of its average f̄ on all the
[kδ, (k + 1)d]’s, we have, for t ∈ [Nδ, (N + 1)d[:

‖∆(t)‖ = ‖
∫ t

Nδ

(f(s)− f̄(s))ds‖

≤
√
d‖f − f̄‖L2([Nδ,(N+1)d])

= dσN (f)

≤ d‖f‖L∞([Nδ,(N+1)d])

9



since, for convexity reasons, we always have σ(f) ≤ ‖f‖∞.

Comments

• this result can be extended to the derivatives of ∆ by replacing f by its
corresponding derivatives.

• if f is d-periodic, then f̄ is constant and equal to the usual average, and
we recover the classical results of periodic averaging.

• for obvious reasons, we did not want to use bounds on ∂f/∂t in this
estimation. However, if f in q-Hölder of order q in t with constant λ, then
σ(f) ≤ λdq. For continuous functions, σ(f) goes to zero with d (uniformly
on compact subsets).

Even though this fixed-width windowed average scheme may be not the smartest
one in all cases, it is interesting for several reasons: it is very simple, it does kill
the higher frequencies of f , and, in particular, it includes the classical averaging
process for periodic functions, and it works in all cases. However, it is quite
possible that, in cases where the nature of dynamics vary from time to time,
from slowly varying to stiff or to fast oscillating, for instance, that a variable
step size scheme would prove to be more efficient.

5 Higher order approximations

The purpose of this section is to use the averaging homotopy to derive an ex-
pansion of x(ε, t) with respect to ε, and to prove that this expansion is also an
expansion with respect to ∆, to the period µ in the periodic case, and the step d
in the case of the windowed averaging scheme of section 4. To achieve that, we
compute the derivatives of x with respect to ε; then we compute some estimates
on this derivatives to obtain a bound on the error on xε when we replace it by
its Taylor expansion at ε = 0. Finally, we bound the estimates themselves in
the case of periodic vectorfields of in the case of windowed averaging to prove
our claim that this Taylor expansion in also a valid expansion with respect to
the period µ or the window length d.

In order to have reasonably writable derivatives, we shall use the intermedi-
ate variable z defined by

z(ε, t) = x(ε, t)− ε∆(x(ε, t), t) (34)

We have:
∂z(ε, t)

∂t
= f̄(x(ε, t), t)− ε

[
∂∆

∂x
f

]
(x(ε,t),t)

(35)
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5.1 Differentiation of x and z with respect to ε

We shall assume during the rest of this paper that ∂∆
∂x (x0, 0) < 1 and that f

and f̄ are regular enough, so that x(ε, t) exists and is regular for 0 ≤ ε ≤ 1 and
t small enough.

Let us first recall some results on composite differentiation.

5.1.1 Derivatives of the composition of two functions

If f is a function of x, we shall denote by Djf(x) the jth differential of f at
point x, and by f [j](x, t) the quantity 1

j!D
jf(x, t); if f is analytic, the f [j]’s are

the coefficients of the power series.
We shall also need the following convention: if j and m are two strictly

positive integers with j ≤ m, we shall denote by Σmj the set of ordered sets

(l1 . . . lj) of j positive integers li, satisfying
∑i=j
i=1 li = m; given two sequences

xi and yi, we shall denote, for any integer m and any k ≤ m

Σmk (x•, y•) =

j=m∑
j=k

∑
(l1...lj)∈Σm

j

xjyl1 . . . ylj (36)

We recall the following result:

Proposition 1 (Derivatives of g ◦ f) Let g and f two functions of class Cr,
with f from R into Rn, g from Rn into Rp. Then h = g ◦ f is of class Cr, with

h[m](ε) = Σm1

(
g[•](f(ε)), f [•](ε)

)
(37)

= g[1](f(ε))f [m](ε) + Σm2

(
g[•](f(ε)), f [•](ε)

)
(38)

Comments and notations Remark that, in the previous sum, f [m] appears
only once under the form g[1](f(ε))f [m](ε), that is, the coefficient of f [m] in h[m]

is the first derivative of g taken at point f(ε). Also, f [0] is present only as an
argument of g[j], e.g. g[j](f(ε)). We shall extend the previous formula to the
case m = 0 by setting

Σ0
1

(
g[•](f(ε)), f [•](ε)

)
= g(f(ε)) (39)

5.1.2 Differentiation of z and x

When considering the mth derivative of x and z with respect to ε, we shall
assume that f and f̄ are of class Cr with respect to x, r ≥ m, and that ∆ is
of class Cr+1. Standards results show that x and z are then of class Cr with
respect to ε, as long as the solutions don’t explode. We have

∂

∂t
(

1

m!

∂m

∂εm
)z(ε, t) =

1

m!

∂m

∂εm
(
∂

∂t
)z(ε, t) (40)
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Notice that the computation of z[m] does not require the knowledge of the
dependence w/r to t of the vector field that defines dz

dt . This is why we shall
omit to mention t in the expression of f̄ , f , and so on. . . Remember nonetheless
than the symbol f [j] will denote differentiation with respect to variables other
than time t.

Straightforward computation gives now the following result:

Lemma 5.1 (Derivatives of z with respect to ε) We shall denote by g the
function ∂∆

∂x f . We have:

dz[0]

dt
= f̄(x[0])− εg(x[0])

dz[1]

dt
= f̄ [1](x[0])x[1] − g(z[0])− εg[1](x[0])x[1]

dz[m]

dt
= Σm1 (f [•](x), x[•])− εΣm1 (g[•](x), x[•])− Σm−1

1 (g[•](x), x[•])

with z[0](t = 0) = x0 and z[m](t = 0) = 0 for m ≥ 1.

Proof: We have z[m](0) = 0 for m ≥ 1 since the initial condition of z does not
depend on ε; the rest follows from the differentiation formula above.

Let us compute now the derivatives of x:

Lemma 5.2 (Derivatives of x with respect to ε) As before, we shall omit
to mention t in the following expression. We have:

x[0] = z[0] + ε∆(x[0]) (41)

x[1] = z[1] + ε∆[1](x[0])x[1] + ∆(x[0]) (42)

x[m] = z[m] + εΣm1 (∆[•](x), x[•]) + Σm−1
1 (∆[•](x), x[•]) (43)

Proof: We have
z(ε) = x(ε)− ε∆(x(ε)) (44)

The rest follows from composite differentiation.
Since we mean to estimate the z[m]’s and x[m]’s, we shall need an explicit

(strictly causal) recursion on the z[m] and x[m].

Theorem 5.1 (Explicit recursion on the xm) Let A(ε) = Id−ε∆[1](x[0])7.
Then

x[1] = A−1(ε)
[
z[1] + ∆(x[0])

]
x[m] = A−1(ε)

[
z[m] + εΣm2 (∆[•](x), x[•]) + Σm−1

1 (∆[•](x), x[•])
]

where the right handside of the second line depends only on z[m] and x[0] . . . x[m−1]

7A is invertible for ε ∈ [0, 1] and x close to x0
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Proof: We have Σm1 (∆[•](x), x[•]) = ∆[1](x[0])x[m] + Σm2 (∆[•](x), x[•]) where
the last term depends only on x[0] . . . x[m−1]; this gives

(Id− ε∆[1](x[0]))x[m] = z[m] + εΣm2 (∆[•](x), x[•]) + Σm−1
1 (∆[•](x), x[•]) (45)

Theorem 5.2 (Explicit recursion on the zm) Let B(ε) = f̄ [1](x[0])−εg[1](x[0]),
C(ε) = B(ε)A−1(ε) (when defined), and Φε the transition matrix of C(ε). Then

z[1](t) =

∫ t

0

Φε(t, s)
[
C(ε)∆[0](x[0])− g[0](x[0])

]
ds

z[m](t) =

∫ t

0

Φε(t, s)
{
C(ε)

[
εΣm2 (∆[•](x), x[•]) + Σm−1

1 (∆[•](x), x[•])
]

+Σm2 (f̄ [•](x), x[•])− εΣm2 (g[•](x), x[•])− Σm−1
1 (g[•](x), x[•])

}
ds

which, together with theorem 5.1, gives an explicit recursion on the z[m]’s and
x[m]’s.

Proof: We have

dz[m]

dt
= f̄ [1](x[0])x[m] + Σm2 (f [•](x), x[•])

−εg[1](x[0])x[m] − εΣm2 (g[•](x), x[•])

−Σm−1
1 (g[•](x), x[•])

The rest comes from the substitution of x[m] in the previous formula by the
expression found in theorem 5.1.

Comment Since ε is an homotopy parameter between (almost) any two vec-
torfields, the previous expansions can be expected to be different from those
found in the classical averaging literature ([6] [1]). Indeed, they are, since clas-
sical expansions rely on repeated averaging to be computed; this is not the case
here, as we perform multiple integration instead. However, we shall see in the
next section that the homotopy expansions still provide expansions with respect
to the period in the periodic case (and similarly, for KBM vectorfields), and also
with respect to the window length d in the case of windowed averaging.

5.2 Estimates

We assume that f and f̄ are of class Cr, and that ∆ is of class Cr+1. Let F̄j ,
Gj , Dj such that, for j ≥ 0, and (x, t) in some domain V , we have

‖f̄ [j](x, t)α1 . . . αj‖ ≤ F̄j‖α1‖ . . . ‖αj‖ (46)

‖g[j](x, t)α1 . . . αj‖ ≤ Gj‖α1‖ . . . ‖αj‖ (47)

‖∆[j](x, t)α1 . . . αj‖ ≤ Dj‖α1‖ . . . ‖αj‖ (48)
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for all α1 . . . αj , and j such that the above derivatives exist. We define c(ε) and
ϕε as in section 3.2 (except we use G1 directly for the time being).

Lemma 5.3 Let ε be the point at which we differentiate x and z. Define the
(positive) sequences Zm(ε) and Xm(ε) by

Z1(ε) = ϕε(c(ε)D0 +G0)

X1(ε) =
Z1(ε) +D0

1− εD1
and, for m > 1 :

Zm(ε) = ϕε
{
c(ε)

[
εΣm2 (D•, X•(ε)) + Σm−1

1 (D•, X•(ε))
]

+Σm2 (F̄•, X•(ε)) + εΣm2 (G•, X•(ε)) + Σm−1
1 (G•, X•(ε))

}
Xm(ε) =

1

1− εD1

[
Zm(ε) + εΣm2 (D•, X•(ε)) + Σm−1

1 (D•, X•(ε))
]

Then, as long as (x(ε1, t), t) stays in V for all ε1 ∈ [0, ε] (by satisfying condition
VR, for instance), we have ‖x[m](ε, t)‖ ≤ Xm(ε) and ‖z[m](ε, t)‖ ≤ Zm(ε) for
1 ≤ m ≤ r, and Zm and Xm are non decreasing functions of ε.

Proof: we use the estimates of lemma 3.1. The rest follows from recursion and
the formulas of theorems 5.1 and 5.2; notice that the expressions in the right
hand-sides of this theorem are all non decreasing with respect to all of their
arguments.

The trouble is that we do not know yet what the sequences Xm and Zm
look like. We are going to see that, under certain assumptions, they can be
interpreted as the derivatives of some functions X and Z. To achieve this, we
restrict our attention to the sequences Xm(1) and Zm(1), since they provide
estimates of x[m](ε) and z[m](ε) for all ε in [0,1].

Lemma 5.4 Let X0 some positive scalar, F̄ (resp. D, G) a regular scalar
function such that F̄ [m](X0) = F̄m (resp. D[m](X0) = Dm, G[m](X0) = Gm).
Let X(ε) and Z(ε) satisfy

Z + ϕ1

(
c(1)D1 + F̄1 +G1

)
X = ϕ1

(
c(1)εD(X) + F̄ (X) + εG(X)

)
(49)

X = Z + εD(X) (50)

for ε in a neighborhood in 1. Then, if X(1) = X0, we have Xm(1) = X [m](1)
and Zm(1) = Z [m](1) for m ≥ 1, that is, the estimates of the derivatives are the
derivatives of some functions at ε = 1.

Proof: This is obtained by differentiating relations (49) and (50) at ε = 1,
and checking the expressions against those of the previous lemma at ε = 1.

Comment Having X [m](ε) = Xm(ε) and z[m](ε) = Zm(ε) for all ε is not
compatible with equations (49) and (50); this is why we have to limit ourselves
to the case ε = 1.
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Theorem 5.3 (Estimates in the Cr case) Let F̄ , G, D and ρ four positive
numbers, with ρ < 1, such that F̄j ≤ F̄ /ρj, Gj ≤ G/ρj and Dj ≤ D/ρj. We
assume that D ≤ ρ, which is equivalent to having D1 ≤ 1. Let α = ϕ1(c(1)D +
G), β = F̄1ϕ1. Let σk the sequence such that 1−

√
1− x =

∑∞
k=1 σkx

k. Then,
as long as (x(ε, t), t) stays in V for all ε ∈ [0, 1] (by satisfying condition VR, for
instance), one has

‖x(1, t)−
m=r−1∑
m=0

x[m](0, t)‖ ≤ σr
(D + α)r

(ρ−D2 )2r−1
(51)

Proof: Considering the assumptions, we can take

D(X) =
D

1− X−X0

ρ

, F̄ (X) =
F̄

1− X−X0

ρ

, G(X) =
G

1− X−X0

ρ

, (52)

with X(ε) and X0 that remain to be determined in order to satisfy the assump-
tions of the previous lemma. After eliminating Z from equations (49) and (50),
we get:

X − ε D

1− X−X0

ρ

+ ϕ1

(
c(1)D + F̄ +G

) X
ρ

=
ϕ1

(
c(1)εD + F̄ + εG

)
1− X−X0

ρ

(53)

that is, if we let Y = (X −X0)/ρ

(X0 + ρY )− ε D

1− Y
+
α+ β

ρ
(X0 + ρY ) =

β + εα

(1− Y )
(54)

For ε = 1, we must have Y = 0, that is:

X0 =
ρ(D + α+ β)

ρ+ α+ β
(55)

Equation then (54) becomes

Y 2 − Y D − ρ
ρ+ α+ β

− (1− ε)(α+D)

ρ+ α+ β
= 0 (56)

The discriminant is positive; there is only one positive root, which gives:

Y (ε) =
1

2(ρ+ α+ β)

[
D − ρ+

√
(ρ−D)2 − 4(ε− 1)(D + α)

]
(57)

We have Y (1) = 0 if and only if D ≤ ρ.
If we denote by 1 −

∑∞
1 σkx

k the power series associated to the analytical
function

√
1− x, we can derive, thanks to the preceding lemma, the following

expression for Xr:

Xr = σr
ρ

ρ+ α+ β

(D + α)r

(ρ−D2 )2r−1
≤ σr

(D + α)r

(ρ−D2 )2r−1
(58)
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The result follows now from the Taylor formula:

x(1, t) =

m=r−1∑
m=0

x[m](0, t) + x[r](θ, t) , θ ∈]0, 1[ (59)

and from lemma 5.3.

5.3 Discussion on the estimates

In this section, we are going to prove that the estimation of the rest in theorem
5.3 is essentially of the form (D/ρ2)r. We will use then this result to prove that
the expansions of the previous sections are also expansions with respect to the
period µ in the periodic case, or in the case of KBM vectorfields, and with
respect to the window width d in the case of windowed averaging (the previous
being actually a particular case of the latter).

By looking at (51), we see that our claim will be true if the composite variable
α can be bound linearly with respect to D. Let us first show that G can be
bound linearly with respect to D, at least for a finite number of differentiations.

Lemma 5.5 Assume that ∆ satisfies ‖∆[k]‖ ≤ D/ρk and that f satisfies ‖f [k]‖ ≤
F/ρk, for 0 ≤ k ≤ r. Define Γ = F

ρ
(r+2)(r+1)

2 . Then g = ∆[1]f satisfies

‖g[k]‖ ≤ ΓD

ρk
(60)

Proof: We have, from the definition of g:

‖g[k]‖ ≤

 DF

ρ
(

1− X
ρ

)3


[k]

(X=0)

(61)

Since (1 − x/ρ)−3 is equal to ρ2/2 multiplied by the second derivative of (1 −
x/ρ)−1, we see that the second hand of the preceding inequality is equal to
DF (k+2)(k+1)

2ρk+1 . This quantity is smaller than some G/ρk if we take, for instance,

G = max
k

DF (k + 2)(k + 1)

2ρ
=
DF (r + 2)(r + 1)

2ρ

def
= ΓD (62)

Let us us draw now a finer estimation on the rest of the Taylor expansion,
independently of the averaging method used. After that, we shall particularize
this result to the case of windowed averaging, periodic averaging, etc. . .

Theorem 5.4 Assume that D is such that

D ≤ ρ

2
min

(
1,

1

2ϕ0(F̄ /ρ+ Γ)

)
(63)
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Then

‖x(1, t)−
m=r−1∑
m=0

x[m](0, t)‖ ≤ σrDr (1 + 2ϕ0(F̄ /ρ+ Γ))r

(ρ4 )2r−1
(64)

Proof: Assumption (63) is there just to make sure that D ≤ ρ/2 and c(1)ϕ0 ≤
1/2. We see that we have then ϕ1 ≤ 2ϕ0, and that c(1) ≤ F̄ /ρ+ Γ. This leads
to

α ≤ 2Dϕ0(
F̄

ρ
+ 2Γ) (65)

The rest follows from theorem 5.3.
To get asymptotic estimates, we have now to make distinctions on the differ-

ent possible averaging schemes. One good reason lies in the fact that, depending
on the methods, the “small” averaging parameter defines a family of averages
f̄ (such as for d in the windowed averaging scheme8), or a family of “original”
vectorfields f (such as in periodic averaging, or KBM dynamics). Let us start
with the windowed averaging method.

5.3.1 The windowed averaging case

Let us first notice that the derivatives (with respect to x) of the windowed
average f̄ are also the windowed averages of the corresponding derivatives of f .
This implies that, if f satisfies ‖f [j]‖ ≤ F/ρj , then the same Cauchy estimates
can be drawn on f̄ , e.g. ‖f̄ [j]‖ ≤ F/ρj , whatever the choice of the width d.
Moreover, we can draw from theorem 4.1 the following result:

Theorem 5.5 Assume that f satisfies ‖f [k]‖ ≤ F/ρk on a neighborhood V of
the initial conditions, and consider ∆ as defined by the windowed averaging
scheme of section 4. Then ∆ satisfies

‖∆[k](x, •)‖∞ ≤ dσ(f [k]) ≤ d F
ρk

(66)

Proof: This comes straight from theorem 4.1.
The conclusion from this is that we can take F̄ = F and D = dF , and

that ρ and Γ can be chosen independently of d. However, ϕ0 depends on d,
since the average itself depends on d. Thanks to lemma 3.2, we know that
ϕ0 ≤ Φ1/(1− c(1)Φ1) where Φ1 denotes the convolution norm of the transition
matrix at ε = 1 (which is different from ϕ1); Φ1 is independent of d.

We use all this to get the main result:

Theorem 5.6 Let d such that

d ≤ ρ

2F
min

(
1,

1

4Φ1(F/ρ+ Γ)

)
(67)

8It is interesting to remark that, in this case, the “limit” average (e.g., when the small
parameter goes to 0) is the original function itself. This means that gains are to be expected
from averaging when values of d that are neither too small, nor too large.
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Denote by f̄d the windowed average of f with step d and xd(ε, t) the trajectories
defined by the averaging homotopy between the dynamics f and f̄d, and Φ1 the
convolution norm of the tangent system of f at x0. Note that xd(1, t) does not
depend on d. Then

‖x(1, t)−
m=r−1∑
m=0

x
[m]
d (0, t)‖ ≤ σr(dF )r

(1 + 4Φ1(F/ρ+ Γ))r

(ρ4 )2r−1
(68)

and the homotopy expansion is also an asymptotic expansion with respect to d.

Proof: We take D = dF . The assumption on d makes sure that c(1) is smaller
than 1/2Φ1; then ϕ0 is smaller than 2Φ1, and we retrieve assumption (63). The
rest follows from theorem 5.4.

5.3.2 KBM vectorfields

In opposition to the previous case, we have here a unique average and a multiplic-
ity of non averaged dynamics. These are under the form fµ(x, t) = f(x, t, t/µ).
We shall assume that f(x, t, τ) satisfies some ergodicity assumption in τ , and
that Cauchy estimates on its derivatives with respect to x and t can be drawn
uniformly in τ , something that is quite reasonable in the periodic case. We shall
eliminate the dependence of fµ and f̄ in t by augmenting the two dynamics with
dt/dt = 1. Then the estimates on the new dynamics include the behavior of the
original ones with respect to t. The corresponding ∆ function is the original
augmented with a zero. Since the dynamics fµ are actually expressed in terms
of a fixed functional f , it is natural to assume that the Cauchy estimates F/ρk

and F̄ /ρk are known from the start; considering the assumptions above, these
estimates can be drawn independently of τ . This means in particular that F ,
F̄ and ρ can be computed independently of the small parameter µ. The same
can be said of ϕ0 and Γ.

The ergodicity assumption will be the following: there exists a bound M
such that ∣∣∣∣∣

∫ T

0

(f [k](x, τ)− f̄ [k](x))dτ

∣∣∣∣∣ ≤ M

ρk
, 0 ≤ k ≤ r (69)

for all positive T and all x in the domain V where the other estimates are drawn.
This means that the limit in (3) goes to 0 like 1/T . This is a reasonable

assumption that is satisfied in the periodic case. In fact, the derivatives of the
averages are, in the case of periodic as well as windowed averaging, the averages
of the derivatives; this means that we can always take M = 2F in these cases.
We have the following result

Lemma 5.6 Define ∆µ(x, t) =
∫ t

0
(f̄(x)− fµ(x, s))ds. Then ∆µ satisfies

‖∆[k]
µ (x, t)‖ ≤ µM

ρk
(70)
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Proof: A simple change of integration variable and the use of assumption (69)
do the trick.

We can now go to the main result:

Theorem 5.7 Let µ such that

µ ≤ ρ

2M
min

(
1,

1

2ϕ0(F̄ /ρ+ Γ)

)
(71)

Denote by xµ(ε, t) the trajectories defined by the averaging homotopy between
the dynamics fµ and f̄ . Note that xµ(0, t) does not depend on µ. Then

‖xµ(1, t)−
m=r−1∑
m=0

x[m](0, t)‖ ≤ σr(µM)r
(1 + 2ϕ0(F̄ /ρ+ Γ))r

(ρ4 )2r−1
(72)

and the homotopy expansion is also an asymptotic expansion with respect to µ.

Proof: We can take D = µM . The rest follows from theorem 5.4.

Comment It is interesting to notice that, depending on the case (windowed
or classical averaging), the limit lies at one end of the homotopy or at the other.
This shows that there is no reason to privilege one endpoint at the expense of
the other, and, at least in the opinion of the author, the expression of averaging
in terms of a distance (∆ in this case) between two dynamics is more flexible
than the asymptotic approach.

6 Conclusion

We have show that the classical averaging theory which is base on time scales
in the dependency of the dynamics with respect to time can be reformulated
under an homotopty between two dynamical systems. This homotopy is similar
to regular perturbations in the sense that a small difference in amplitude be-
tween the two dynamics leads to close trajectories. It also encompasses classical
averaging, with the difference that the perturbed dynamics f̄ is to required to
be defined by some ergodic approximation of f , but can be freely defined by the
user; typically, signal processing tools can be used to define (̄f) for the time be-
havior of f . First order approximations and higher order approximations have
been studied and the convergence of the series for ε = 1 has been investigated.

The next step is the generalization of the extension of this theory to in-
put/output systems and should the subject of future work.
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