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Abstract  

This paper aims to develop a system dynamics model in order to formalize causal 

interdependencies between safety factors (technical, organizational and human). These factors 

define safety conditions in a complex industrial system. It is a systemic approach founded on 

the method of system dynamics and the case study is a storage unit for chemical products 

located in Morocco. System dynamics using VENSIM® software has been applied to assess 

the safety of the storage unit by modeling the activity of the industrial system. Through 

simulation, users can define deviant scenarios in order to improve safety of the industrial 

system and implement managerial tools involving organizational, technical and human 

factors. 
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1. Introduction 

The complexity of industrial systems poses a challenge for industrial safety as it can be a 

source of deviations from normal behavior. These deviations are the cause of incidents or 

accidents. Complexity is a source of unpredictable system behavior because of the causal 

interactions between its different elements (technical, human, organizational). 

There are many examples of accidents such as Bhopal (1984), Piper Alpha (1988) and 

Chernobyl (1986), which demonstrate the role played by technical, human and also 

organizational factors in these catastrophic events (Jasanoff, 1994; Paté-Cornell, 1999; Salge 

& Milling, 2006). The lessons learned from these accidents show the complexity of industrial 

systems that are composed, in reality, of a set of elements. The nature of the relations between 

these elements gives the system a certain level of unpredictable behavior over time (Reason, 

1997; Perrow, 1994; Roberts, 1990).  

The field of industrial risk has evolved in terms of risk analysis methods. Methods have 

traditionally focused primarily on the technical dimension. They describe accidents using a 

sequential model which represents the linear succession of a set of events linked by cause and 

effect. Among these sequential models, HAZOP (Hazard and Operability Study; Rogers, 

2000), FMEA (Failure Mode Effect Analysis; Nicolet-Monnier, 1996), FTA (Fault Tree 

Analysis; Khan & Abbasi, 1998), FMECA (Failure Mode Effect Criticality Analysis; Rogers, 

2000), and PRA (Preliminary Risks Analysis; Nicolet-Monnier, 1996; Rogers, 2000) are the 

risk analysis models most often seen in safety reports applied to the industrial context.  

These sequential models do not take into account interactions between system components 

and do not adequately address human and organizational factors. These models are based on 

event chain accident approach. Therefore, the traditional methods of risk analysis are not 

appropriate for complex systems, because the interactions between different components of 

the system are not considered in these methods. Weaknesses and limitations of the sequential 

model are detailed in Leveson (2004).  

More recently, new methods have been developed which take into account the human and 

organizational dimension. These methods, known as organizational methods, define an 

accident as the result of the presence of several failure factors. These methods include: 

TRIPOD (Groeneweg, Lancioni, & Metaal, 2002), SAM (System-Action-Management; Paté-

Cornell and Murphy, 1996), ATHOS (Technical Analysis, Human and Organizational 

Security; Le Coze, Vince, Salvi, Prats, & Plot, 2002), and CREAM (Cognitive Reliability and 

Error Analysis Method; Hollnagel, 1998). These methods discuss the organizational factors 

which influence the action and conduct of humans and the equipment operation. They make it 

possible to highlight the influence of the organizational environment on technical and human 

factors. But these organizational methods present only a static model of a system. They do not 

allow the formalization of dynamic interactions between system components and do not take 

into account feedback effects (Garbolino et al., 2009). They are therefore insufficient to 

understand the dynamic complexity of the system. 
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Systems are not static (Leveson, 2004); they change over time in unpredictable ways. The 

dynamic behavior of the system can be understood by considering it as complex and open, 

with many interactions. Therefore, the accident is a phenomenon emerging from the 

interactions within the system (Leveson, 2004; Hollnagel, 2004), and not a sequence of events 

linked by cause and effect as shown by sequential models of risk analysis.  

This paper aims to formalize the dynamic interactions between system components that are 

human, technical and organizational, and to take into account feedback effects of these 

components in the modeling of safety conditions in a complex industrial system. The finality 

is to provide a tool for decision support that allows controlling of safety in a context 

characterized by a diversity of decision levels. A system dynamics has been adopted to 

construct a dynamic model of safety conditions. 

The adaptation of system dynamics to industrial safety can show that the accident is also a 

phenomenon emerging from the interactions within the system and not only a sequence of 

events linked by cause and effect. 

 The methodology used to construct the model has been described by Garbolino et al. 

(2009, 2010a and 2010b). This methodology is characterized by four main steps (Figure 1): 

a) Model building and system behavior simulation: this step involves  

a. the choice of variables that continuously describe the state of the interactions 

between system components; 

b. the definition of the assumptions that establish these interactions in order to 

formalize the proposed system; 

c. the development of a causal model of the relations between the variables, and 

d. the modeling of the relations using differential equations and implementing 

them in the VENSIM® software.  

b) Dynamic risk analysis with risk assessment methods: this is based on a very well 

defined method. It allows identification of all possible failures and, using the dynamic 

model, study of the eventual variations in system behavior. 

c) Consequences simulation of all kinds of failure: this step involves simulating 

dangerous phenomena (toxic atmospheric releases, overpressures, heat flux etc.) and 

estimating the impact on infrastructure and the population (workers, residents etc.). 

d) Dynamic testing of prevention and protection measures to assess their efficiency: 

this step consists of measuring the efficiency of prevention and protection measures 

implemented at the plant. It facilitates the definition of new safety measures if 

necessary. This being the case there is a need to return to the model design step in 

order to implement the new prevention and protection measures and to simulate their 

integration. 

 

Figure 1: Description of the dynamic risk analysis methodology (Garbolino et al., 2009, 

2010a and 2010b). 
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This paper presents a new version of the earlier one which was proposed for the risk 

analysis. This version addresses the human factors in detail, the organizational factors and 

also the technical factors: the integration of these three dimensions in the risk management 

process and the simulation of such socio-technical system are particularly innovative.  

There are few works that try to take into account these three dimensions in a dynamic way. 

In the (Kalantarnia et al. 2009), the authors present a method for dynamic safety management 

which is founded on Bayesian Theory to update the likelihood of the event occurrence and 

also probability of the safety system. This method involves essentially technical aspect of risk. 

 

The objective of this paper is to develop a model to which we apply the scenarios tested by 

computer. The aim is not to make a mathematical model but use a soft transparent for de 

system dynamics. System dynamics has been applied to understand the structure of storage 

unit and to represent the interactions between the different variables of the system. The laws 

of evolution of each variable take into account the values of the variables that influence it and 

to which they receive information. The simulation of the equations over time generates the 

dynamic behavior of the system; examples in relation to a chemical storage unit are presented 

in order to illustrate the features of the model. 

 

This paper is organized as follows: section 2 presents the system dynamics method which 

is used in this study. Section 3 describes the case study (a chemical storage unit). Section 4 

defines and presents the proposed dynamic model applied to the case study. In section 4, 

simulations and the results of the proposed modeling are presented, in order to demonstrate 

how the dynamic modeling helps to improve the safety of an industrial system. The 

conclusion underlines the benefits and limits of the approach. 

2. Modeling Method: System Dynamics 

System dynamics is the theory of system structures, a theory that deals with the study of 

the causal interactions between the components which constitute the structure of a complex 

system. It is a modeling methodology for understanding and representing complex systems 

and analyzing their dynamic behavior (Forrester, 1961). It finds its origin in cybernetics, 

which is the interdisciplinary study of the structure of regulatory systems (Weiner, 1948). 

System dynamics is a modeling method that allows a system to be represented in terms of 

feedback. It is founded on the original work of Forrester, who defined it as “the investigation 

of the information-feedback character of industrial systems and the use of models for the 

design of improved organizational form and guiding policy” (Forrester, 1961). System 

dynamics deals with the study of how the behavior of complex system changes over time. 

System dynamics has two interesting aspects: systemic study of the concept of feedback 

and dynamic study of system behavior. It shows how the structure of a feedback system and 

the loops that it contains are responsible for its dynamic behavior. It is a method that focuses 

on the interactions between structural components, and behavior that is founded on the 

concept of feedback (Aracil, 1984). It is a methodology for designing and analyzing a system 
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and simulating its behavior. According to Paulré (1992), the syntax of system dynamics is 

neutral and independent of the field of application. 

2.1. The Forrester model 

Forrester (1961) developed four steps to create a system dynamics model. The first step is 

the articulation of the problem: defining the purpose of modeling and identifying the entities, 

interactions and behaviors to highlight. The second step is to describe the causal relationships 

between these entities, by building the causal (or influence) diagram. Causal diagrams 

represent major feedback mechanisms, which reinforce (positive feedback loop) or counteract 

(negative feedback loop) a given change in a system variable (Sterman, 2000). The third step 

corresponds to the introduction of stock variables and flow in the system by building a stock-

flow diagram. This diagram (Figure 2) is a quantitative model and introduces the time 

dimension by considering the rate of change in the level of variables (stock variables and 

flow) over time. This model consists of three types of element: stock (or level) elements (also 

called state variables); flow elements; and auxiliary variables and constants (Garcia, 2006). 

 

Figure 2: Schematic of a system dynamics model using the stock, flow and auxiliary variables 

proposed by Forrester (Forrester, 1961). 

The fourth step is to formulate simulation models. The laws that govern the evolution of 

each variable take into account the values of the variables that influence it and from which it 

receives information. The equations that simulate the behavior of the system over a period of 

time, using initial values for state (stock) variables, generate the dynamic behavior of the 

system. In this way a system dynamics model allows examination of the long-term behavior 

of complex systems (Rehan et al., 2005). 

2.2. General Applications 

The system dynamics method has been used in a wide variety of applications: in 

economics (Tauheed and Wray, 2006; Meadows et al., 1972), hospital systems (Koelling and 

Schwandt, 2005), engineering (Hjorth and Bagheri, 2006) and geography (Provitolo, 2005). 

The system dynamics method has also been applied to complex managerial problems such as: 

development of inter-organizational networks (Akkermans, 2001), optimizing the allocation 

of marketing resources (Graham and Ariza, 2003), management of multiple projects in 

research and development (Repenning, 2000), the prevention and management of crises in 

organizations (Rudolph and Repenning, 2002) and innovations in process implementation 

(Milling, 2002). 

In the field of industrial risk, some studies are founded on the principles of system 

dynamics in order to analyze industrial accidents. For example, the study by Cooke (2002) 

describes a system for dynamic analysis of the disaster at the Westray mine. It examines the 

causal system of Westray including the relations that created the conditions leading to the 

fatal explosion at the mine in 1992. Paté-Cornell et al. (1997) present a model of relationships 
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between managerial, organizational and functional factors, using a causal diagram. This 

diagram is applied to the analysis of the Piper Alpha accident. Leveson et al. (2003) develop a 

system dynamics model which describes the causal system of the Walkerton Water 

Contamination Accident. Other studies have focused on analyzing the reliability of technical 

systems using system dynamics. This is the case in a study by Kyung and Moosung (2004), 

which uses systems dynamics to analyze the dynamic reliability of a nuclear power plant, and 

involves evaluating the boundary conditions when operating a nuclear power plant. Garbolino 

et al. (2009) propose a methodology based on technical dimensions in order to model and 

simulate the functioning of a chlorine storage and distribution unit. 

Therefore, in this paper, we recommend to develop an integrated framework of modeling 

safety conditions in an industrial system. The novelty of our framework is the possibility to 

study the interactions of technical, organizational and human aspects of industrial safety. 

The purpose is to provide a tool to support decision that allows piloting safety in a context 

characterized by the diversity of decision levels in relation with human, technical and 

organizational factors. The proposed model demonstrates how management practices affect 

safety factors and through simulation, gives users insights into how to improve safety in the 

system, and provides managerial tools to address organizational, technical and human factors. 

2.3. VENSIM® software: a platform to simulate complex systems 

In this paper, VENSIM® software is applied to system dynamics. VENSIM® is simulation 

software developed by Ventana Systems which analyses variable relationships and the 

structural elements of a diagram using a model equation. It is characterized by a visual output; 

system behavior and system status are shown graphically. It is useful for comparative 

analysis. The features of the software are outlined in their reference manual (Ventana 

Systems, 1999). 

 

3. The Case Study 

The chemical storage unit which is the subject of this case study belongs to a company 

specialized in the manufacture of chemical substances for industrial use. It is located in the 

industrial area of Casablanca (Morocco). This company is part of an industrial group which is 

a global leader in the field of specialized chemicals. The industrial group is active worldwide 

and has over one hundred companies on five continents. It is organized into the following 

divisions: chemicals for textile, leather and paper (i.e. polymer dispersions, dyes, acids, and 

silicones), pigments and additives (i.e. polymer additives, flame retardants, wax) and 

functional chemical products (i.e. body care products, detergents). The Morocco plant consists 

of the following units: a storage unit, a manufacturing unit, an analysis laboratory and a 

maintenance workshop (Figure 3).  

 

Figure 3: Configuration of the industrial site. 
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Liquid materials received in bulk are stored in tanks; other bulk materials are stored 

outside in warehouses identified using common procedures (signs indicating the type of 

chemical product and instruction labels). The handling of bulk materials outside is done by 

two means: a forklift and a pallet. Forklifts are used for stacking materials on the shelves and 

for loading and unloading delivery trucks. Pallets are used to transport materials from one 

place to another in the plant.  

The particular storage unit studied in this paper is the warehouse for flammable materials.  

The storage temperature for these flammable products should not exceed 35°, as these 

products can ignite in air and burn continuously. The storage unit is considered as a complex 

system composed of interacting technical, human and organizational components. The 

interacting components are: 

 Operators: the operator has responsibility for proper operation of the storage facility. 

 Procedures: constitute supporting information and consist of instructions for product 

storage, safety data sheets, protection measures in case of an accidental product spill, 

safety checklists, location sheets, etc. 

 Safety devices: correspond to prevention (alarm, temperature detector) and protection 

(sprinkler, individual protection kit) equipment. 

 

All these components must be organized in line with the goal of ensuring adequate storage 

for the products, and avoiding or mitigating any situation that might present a risk. 

 

4. Proposed Modeling 

In order to better structure the presentation of the dynamic model proposed in this paper, 

we will follow the steps of the modeling process defined by Forrester (1961). The first step of 

the modeling process is the articulation of the problem by defining the purpose of modeling 

and identifying the important entities and interactions. The second step is the development of 

the causal diagram. The third step is to develop the stock and flow diagram. The fourth step 

corresponds to the implementation of the model and simulation of its behavior.  

4.1 Articulation of the problem (step 1) 

The purpose of this study is to provide a decision support tool which facilitates risk control 

management in an environment characterized by diversity of decision levels. These decision 

levels correspond to human, technical and organizational factors. Once the problem is 

defined, the variables to be included in the model are identified. As previously mentioned, the 

purpose of this paper is to formalize the causal interdependencies between safety measures. 

We propose that risk control is founded on the control of, and interactions between, each 

component of the industrial system. Control of each component and each interaction means 

that the component in question must be in a safe state (Bouloiz et al, 2010). Interviews and 
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observations were conducted in order to define the level of safety measures at the storage unit 

in order to draw up an initial causal diagram. 

4.2 Causal diagram (step 2) 

This diagram must show whether the relationship between each pair of variables is positive 

or negative, that is, if the influence of one variable on another is amplifying (positive 

influence) or stabilizing (negative influence). Then it is necessary to study the nature of the 

feedback loops that are formed.  

In order to define the interactions related to behavioral factors (motivation, stress, 

competence, training, work environment), we have relied on existing studies which have 

examined these factors (Ryan and Deci, 2000; Karsky and Donnadieu, 1990; Giambiasi et al., 

2005; Jones, 2005; Boucher and Burlat, 2003; Harvey et al, 2006).  

Other variables are more related to the system being studied (the chemical storage unit). In 

this case, we relied on our field observations and also on the expertise of workers within the 

company.  

The objective is not to detail all the organizational, human variables and their 

interconnections. Components used are the components that are specific to the studied system. 

All the variables of the model developed is only the parameters that this system analysis in its 

approach of risk management. However, among the interests of this model, users can 

implement other managerial components in order to improve managerial safety of the 

industrial system. Figure 4 illustrates the causal diagram using VENSIM®. 

 

 

Figure 4: Causal diagram showing safety conditions in the chemical storage unit. 

 

This causal diagram makes it possible to visualize a set of feedback loops. A favorable 

work environment has a positive effect on the motivation of operators, and a negative effect 

on stress (loop B1). Loop B2 shows that the motivation of operators has a positive influence 

on their safety behavior. Stress has a negative impact on their behavior.  

Learning through training increases the competence of operators and has a positive 

influence on their safety behavior. The relevance of maintenance procedures together with the 

behavior of operators influences the quality of maintenance, which in turn affects the 

reliability of the temperature detector and the reliability of the alarm in the warehouse. In this 

way, the safety behavior of operators defines the quality of monitoring of the storage 

temperature.  

Maintaining the storage temperature in the warehouse (loop B3) depends on the quality of 

temperature monitoring by operators, the reliability of the temperature detectors and the safety 

system (a cooling system) activated when the temperature in the storage depot exceeds the 

prescribed limit of 35°C. 
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Quality of storage safety control is determined by the relevance of checklists and the safety 

behavior of operators (loop B5). When non-compliant situations are detected, there is a need 

to analyze them. This both improves safety (loop B6) and has a positive effect on the behavior 

of operators, who learn and acquire additional knowledge (loop B7). The causal diagram 

shown in Figure 4 describes the safety conditions in the storage unit and highlights the causal 

interdependencies between these safety factors. 

4.3 Stock and flow diagram (step 3) 

The flow and stock diagram corresponding to the causal diagram shown in Figure 4 is 

presented in Figure 5. This figure is a clear demonstration of the relations between the various 

variables of stock, flow and control.  

 

Figure 5: Stock and flow diagram showing the safety conditions in the chemical storage unit. 

 

Table 1 lists the definition of the variables used to model the safety conditions in the 

chemical storage unit.  

 

Table 1: Definition and role of all variables used to model the safety conditions in the warehouse for 

flammables. 

 

Variable Name Definition Function 

Temperature alarm in the 

warehouse for flammables 

IF THEN ELSE (T° in the 

warehouse >35, 1, alarm 

reliability)  

Variable activated when the 

temperature in the warehouse 

exceeds 35 °C. 

Maintaining the temperature in 

the warehouse for flammables  

Equal :  

Reliability of temperature 

sensor + quality of monitoring 

of storage temperature + 

tripping of cooling system  

Maintaining the temperature is a 

safety condition in the warehouse in 

order to avoid the risk of fire or 

explosion of the product containers. 

Quality of maintenance  Equal :  

Safety behavior of operators + 

relevance of maintenance 

procedures 

 

Quality of maintenance influences 

the functioning and reliability of 

equipment. 

Quality of monitoring of storage 

temperature 

Depends on the behavior of 

operators.   

Monitoring of storage temperature is 

a safety condition in the warehouse.   

Quality of safety control of 

storage. 

Depends on the behavior of 

operators and the relevance of 

Safety control makes it possible to 

identify anomalies in the warehouse 

(i.e. packaging, shelving).  
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checklists 

Safety behavior of operators  State variable  

INTEG (entry of behavior – exit 

of behavior) 

 

Variable representing the level of 

operator behavior.  

Stress  State variable  

INTEG (entry of stress – exit of 

stress) 

 

Variable representing the level of 

stress. 

Motivation  State variable  

INTEG (entry of motivation – 

exit of motivation) 

 

Variable representing the level of 

motivation. 

Safety conditions  State variable  

INTEG (entry of safety 

conditions, 0.5) 

 

Variable representing the state of 

safety conditions in the warehouse.  

Non-compliance situations  1/safety conditions  Depends on the state of safety 

conditions in the warehouse. 

Improvement of safety  Depends on the presence of 

non-compliance situations 

 

Improvement of safety is an 

important condition in the 

warehouse.   

Correction of abnormalities  Depends on the results of the 

safety control of the storage  

Abnormalities identified during the 

safety control are corrected.  

Information Depends on the analysis of non-

compliance situations 

Analysis of non-compliance 

situations is a source of information 

which improves the competence of 

operators. 

Learning  Flow  Learning is done through training 

and through acquisition of additional 

knowledge during analysis of non-

compliant situations. 

Competence State variable  

INTEG (learning – exit of 

competence) 

 

Variable representing the level of 

competence. 

Work environment  Graded on a qualitative scale 

bounded at 0 for the lower limit 

and 1 for the upper limit. For 

example, a low quality work 

environment equals 0 and a high 

quality environment has a value 

of 1 

Work environment influences the 

behavior of operators. 

 

 

Training   Graded on a qualitative scale 

bounded at 0 for the lower limit 

and 1 for the upper limit. For 

example a low intensity of 

training equals 0 and a high 

Training is a source of operator 

competence. 
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intensity corresponds to a value 

of 1 

Relevance of checklists  Graded on a qualitative scale 

bounded at 0 for the lower limit 

and 1 for the upper limit. For 

example, a less relevant 

checklist equals 0 and a highly 

relevant one has a value of 1 

 

Checklists are used to safety control 

in warehouse storage. 

 

Relevance of maintenance 

procedure  

Graded on a qualitative scale 

bounded at 0 for the lower limit 

and 1 for the upper limit. For 

example, a poor relevance of 

maintenance procedures equals 

0 and high relevance 

corresponds to a value of 1 

Maintenance procedures are used 

during maintenance of safety 

devices.  

 

Any operation simulation in system dynamics begins from a specified state of the system. 

Before running the simulation, the initial conditions for each state (or stock) variable must be 

defined. Every three years the industry concerned performs a safety audit. In this audit, a 

questionnaire is used to evaluate safety at the plant. The last audit was conducted at the end of 

2009. To define the initial values of variables in the proposed model, we have relied on the 

results of this last audit. We developed an evaluation grid with a qualitative value scale (very 

low, low, medium, strong, very strong) which corresponds to the interval [0; 0.25; 0.5; 0.75; 

1]. A value of 0 means very low and the value 1 means very strong. 

Various sensitivity, or case studies, such as examining changes in the different variables, 

can be carried out using the model presented in Figure 5.  

4.4 Simulation and results (step 4) 

First of all, two case studies on the effect of training and work environment were carried 

out, to understand the impact of these safety variables. These factors were chosen following a 

request from the company. In each case study, we simulated the effects of two scenarios, an 

increase of 20%, and a decrease of 20% of the factors in question: training and work 

environment. We chose a range of variation of 20% in order to follow the evolution of system 

safety and to test the sensibility of our model. This range of 20% was defined according to the 

most often range used in the literature (engineering, biology, mathematics, finance etc.), 

which is commonly between 10 and 20%, in order to test the sensibility of the model.  

Before showing the results of the simulation, the conditions of each case study are 

described in following table (table 2):  

 

  Table 2:  Case study conditions. 

Case Study Data Set Description 
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Case 1: Effect of 

training 

 

Current situation 0.75 

High training Degree of increase: + 20% of the current situation 

Low training Degree of decrease: - 20% of the current situation 

Case 2: Effect of the 

quality of the working                   

environment 

 

Current situation 0.75 

Low relevance Degree of increase: + 20% of the current situation 

High relevance Degree of decrease: - 20% of the current situation 

Time bounds for 

model 
 

Initial time: 0 

Final time : 6 

Time step  0.25 day 

 

The values given for the current situation correspond to the values of variables estimated in 

the 2009 safety audit. The duration of the simulation period is defined arbitrarily as six days.  

Generally, in the storage unit studied, the prevention and reduction of risk situations 

provide safe working conditions. The safety level using the dataset from the current situation 

(or normal status) is presented in Figure 6. This figure shows the state of the variable “safety 

conditions” in the current situation, which is regarded here as the normal situation without any 

change of model variables. 

 

Figure 6: Simulation of current situation. 

 

First, the effects of training on safety are simulated (Figure 7). When the degree of training 

is increased, safety is little affected. The level of training in the system studied was qualified 

strong in 2009 (a value of 0.75). However, a high degree of training does not ensure a high 

degree of safety (the line with dashes and dots) compared to the current situation (the 

continuous line). On the other hand, a low level of training (untrained operators) can decrease 

safety (the dotted line) by a very significant amount. This reveals that managers should not 

decrease the level of training even if an increase seems to have no significant effect.  

 

Figure 7:  Effect of training on safety. 

 

The effect of the quality of the working environment is shown in Figure 8.  

 

Figure 8: Effect of the quality of the working environment on safety. 
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As shown in Figure 8, deterioration in the working environment (reduction of quality) has 

a significant effect on safety (the dotted line), and a favorable work environment improves 

safety (the line with dashes and dots). These results can be explained through the impact that 

the working environment has on the behavior of operators, which is presented in Figure 9. 

    

Figure 9: Effect of the quality of the working environment on the safety behavior of operators. 

 

Figure 9 shows the effects of work environment quality on the behavior of operators. Line 

with dashes and dots presents the effect of a favorable work environment (+20% of quality of 

work environment) on the behavior of operators. Dotted line presents the effect of an 

unfavorable work environment (-20% of quality of work environment) on the behavior of 

operators. The causal diagram (Figure 4, particularly loops B1 and B2), shows that the 

variable “work environment” influences both behavioral factors “motivation” and “stress”. 

When the work environment is favorable, motivation increases and stress decreases. 

Therefore, the motivation of operators positively influences their behavior. Operators, through 

their behavior affect the quality and success of all operations and actions relating to risk 

control in the system. The tree shown in Figure 10 illustrates the relationship between the 

safety behavior of operators and the various actions and measures relating to risk control that 

define safety conditions in the chemical warehouse.  

This tree shows the importance of operators’ behavior as the major challenge in system 

safety, and explains the effect of the quality of the working environment on safety shown in 

Figure 8. Operators through their behavior, influence the quality and success of all safety 

actions in the system. Indeed, the operators perform the following activities: 

 Correction of abnormalities to avoid a potential accident. 

 Monitoring the storage temperature which allows maintaining the temperature in the 

warehouse. 

 Maintenance which influence the reliability of safety devices 

 Control of storage which allows correcting any defect in storage. 

All of these actions are safety measures in the system and operators' behavior is considered 

as the major challenge in system safety.  

The causal diagram presented in the figure 4 shows the influence of work environment on 

the behavior of operators. A favorable work environment positively influences the behavior of 

operators, and an unfavorable work environment negatively influences operators. Always in 

the causal diagram, poor operator performance during a maintenance operation will generate 

poor quality equipment maintenance, and therefore failure of the temperature sensor and a 

dysfunctional alarm. So, any change in the quality of the work environment has an effect on 

the behavior of operators and consequently on the safety of system. However, adequate 
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control of storage enables abnormalities to be corrected and maintains the system in a safe 

condition. 

 

Figure 10: Use tree showing the variable “safety behavior of operators”. 

  

 

All of these various actions and factors that define the safety conditions in the chemical 

warehouse are illustrated in the tree shown in Figure 11. This tree is a graphical representation 

giving a full description of the various feedback loops shown in Figure 4 and highlights the 

causal interdependencies between safety conditions.  

 

Figure 11: Cause tree showing the variable “safety conditions”. 
 

The results of these case study simulations on the effects of training and the work 

environment can be used to understand the impact of these variables on safety. The simulation 

results show that a low level of training (untrained operators) can decrease safety (the dotted 

line, Fig 7) by a very significant amount and may result in low performance for an overhaul 

period. The lesson learning from this analysis is that the managers should maintain the high 

level of operator training even if an increase seems to have no significant effect. It means that, 

if managers organize two or three training per year, they must maintain this number because a 

reduction in training has an impact on safety. In fact, training is an important factor that can 

improve operator skills and update their knowledge. As sown in Fig 4, learning through 

training has a positive influence on safety behavior of operators and increases the competence 

of operators (loop B7). 

The simulations results also show that deterioration in the working environment has a 

significant effect on safety and a favorable work environment improves safety (Fig 8). This 

relationship between the work environment and safety is shown in causal diagram through the 

impact that the working environment has on the behavior of operators (Fig 4). A favorable 

work environment has a positive effect on the motivation of operators, and a negative effect 

on stress (loop B1). Loop B2 shows that the motivation of operators has a positive influence 

on their safety behavior. Stress has a negative impact on their behavior. The lesson learning 

from this analysis is that the managers should maintain the quality of working conditions that 

directly and strongly affect the safety behavior of operators.   

All of these results also show the importance of operators’ behavior as the major challenge 

in system safety. In fact, Operators through their behavior, influence the quality and success 

of all safety actions in the system. A more detailed study of operators’ behavior also seems 

very important to monitor and control the human behavior in a complex safety system like 

that of the safety conditions in the storage unit of chemicals. 



15 

 

 

 

The results of this analysis are encouraging and serve as a good demonstration of the 

potential use of proposed modeling to improve our understanding of the safety conditions of 

complex systems and to use it as tools for continuous improvement. 

 

5. Conclusion  

 

This paper describes the use of the system dynamics methodology to support decisions 

related to the improvement of industrial safety and the implementation of managerial tools 

involving organizational, technical and human factors. This model takes into account two 

aspects: the dynamic aspect, by formalizing the causal interactions between system 

components, and the time aspect, showing the behavior of system components over time. The 

use of system dynamics simulation is particularly innovative in the context of risk 

management in the process industries according to the classical methodologies applied in the 

safety reports: these classical methodologies do not take into account the temporal dimension 

and do not simulate the behavior of a socio-technical system that supposes to integrate in the 

model the technical, organizational and human dimensions.  

This model can be applied to review industrial safety in terms of organization. The 

formalization of such model represents a communication mean, even a training tool, for 

policy makers and operators. This model gives information about safety through simulation of 

normal and abnormal conditions in order to check and improve the performance of the safety 

means implemented in the plant. Simulation results give to the managers insights in order to 

support their decisions in terms of safety. When considering situations where managers are 

periodically changed, managers can coherently execute their policies using this model by 

implementing managerial tools involving organizational, technical and human factors. The 

application of this approach in the context of industrial system provides a dynamic analysis of 

safety. This model can be generalized and applied to other industrial sectors which can be 

more complex and for which risk analysis meet difficulties. 

The limits of this approach are essentially linked to the degree of complexity the expert 

seeks to investigate, because of the time it takes to develop the model, to define the variables, 

to create the simulation and to interpret the results. 
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Table 1: Definition and role of all variables used to model the safety conditions in the 

warehouse for flammables. 

 

Table 2: Case study conditions.  

 

 
Figure 1: Description of the dynamic risk analysis methodology (Garbolino et al., 2009, 

2010a and 2010b). 

 

 
Figure 2: Schematic of a system dynamics model using the stock, flow and auxiliary 

variables proposed by Forrester (Forrester, 1961). 
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Figure 3: Configuration of the industrial site. 
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Figure 4: Causal diagram showing safety conditions in the chemical storage unit.  

 



22 

 

 
Figure 5: Stock and flow diagram showing the safety conditions in the chemical storage unit. 
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Figure 6: Simulation of current situation.  

 

 
Figure 7: Effect of training on safety. 
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Figure 8: Effect of the quality of the working environment on safety. 

 

 
Figure 9: Effect of the quality of the working environment on the safety behavior of 

operators. 
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Figure 10: Use tree showing the variable “safety behavior of operators”. 

 
Figure 11: Cause tree showing the variable “safety conditions”.  
 


