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Abstract. Maritime traffic monitoring needs tools for spatiotemporal decision 
support. The operators responsible (e.g. the Coast Guard) must monitor vessels 
that are represented as objects moving in space and time. Operators use 
maritime tracking systems to follow the evolution of traffic and make decisions 
about the risks of a situation. These systems are based on Geographic 
Information Systems (GIS) and OnLine Transaction Processing (OLTP) 
approaches, which are prohibitively expensive, very slow and produce 
operational data unsuited to decision-making. Instead, operators require 
summarized data that is easier for them to produce and use. Therefore, we 
propose the definition of a geographical decision-making chain that adds a 
decision-making dimension to current systems. It consists of a carefully 
assembled set of tools that can automate the three phases of Business 
Intelligence, namely data loading, modelling and analysis. 

Keywords: Spatiotemporal decision aid, geographical decision-making chain, 
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1 Introduction  

The development of new sensor technologies and the introduction of mandatory 
requirements for ships to be equipped with transponders have together contributed to 
the generation of huge volumes of geo-referenced maritime data. This data can be 
used to improve decision-making in the maritime environment; there are already 
operational surveillance systems that enable authorities to track vessel movements in 
near real-time on a display device (screen, touch table, tablet, etc.) and interpret risks 
on the basis of their kinematics. Two approaches to improving these monitoring 



systems can be identified in the literature. The first is a post-hoc event analysis that 
seeks to understand what happened [1], [2] and the second is the real-time 
identification of abnormal ship behaviour [3], [4], [5], [6].  

However, although maritime authorities have expressed their need for decision 
support systems [7], few studies have focused on the design of these systems [7], [8]. 
Such systems consist of a set of tools and methods that reduce the time needed to 
gather, consolidate, model and return data in order to provide a synthesised overview 
of all maritime activity and thereby help decision-makers to take informed decisions. 

In this paper we propose a new paradigm – geo-decision-making – and define the 
elements of the geo-decision-making chain. This chain provides support for all 
decision-making functions (from the collection of data from multiple sources to its 
presentation to end-users) and therefore improves maritime risk analysis. Geo-
decision-making adds a mapping dimension to analysis and indicators and therefore 
enriches decision support systems with a geographic component.  

2 Maritime surveillance systems 

Maritime surveillance systems consist of a data acquisition infrastructure that captures 
and transmits ship data (position, course, speed, home port, etc.) and an information 
processing system that processes, stores and returns information via display devices 
(see Fig. 1). 

 

Fig. 1. Demonstration of a new-generation maritime surveillance system implemented in the 
Maritime Rescue Coordination Centre in France by the I2C project [4]. 

Many previous studies have addressed the issue of improving maritime 
surveillance. As far as the data acquisition infrastructure is concerned new, smart 
sensors are available (heterogeneous sensors, aerial drones, sonar networks, etc.). At 
the information processing level, two approaches can be distinguished. The first is a 
risk analysis approach based on probabilistic methods ([9] in [10]), statistics ([11] 
in[10]) and modelling and digital simulation ([12] in[10]). The second is the real-time 
identification of maritime risk, which can itself be divided into two approaches. The 



first is based on the identification of risk through knowledge modelling [5], [13], [14], 
which necessitates knowledge discovery and formalization. The second is based on 
the identification of risks through visualization [15], [16]. In the latter approach, 
information is presented in such a way as to be able to extract meaning directly 
through visualization. Figure 2 summarises the two approaches.  

Improve 
maritime 

surveillance

Risks analysis

Probabilistic Statistics simulation Clustering

Real time risks 
identification 

knowledge 
modeling

Visualization

(Amrozowicz 1996) 
(Amrozowicz et al. 1997) 
(Kuroda et al. 1982)

(Maio et al. 1991), 
(LeBlanc& Rucks 1996)

(J. R. W. Merrick et al. 
2000), (J. Merrick et al. 
2002)

(Morel et al. 2008; 2009, 
2010, 2011)
(Roy 2008; Roy 2010)
(Etienne et al. 2010)
(Vandecasteele & Napoli, 
2012), (Chaze et al., 2012)
(IDIRI & Napoli, 2012a)
(IDIRI & Napoli, 2012b)

(Willems et al. 2009; 2011)
(Riveiro et al. 2008; Riveiro & Goran 
Falkman2009; Riveiro& Göran
Falkman2011) (Gouin et al. 2011; 
Lavigne & Gouin 2011)

(Torun & Düzgün 2006)
(Marvenet al. 2007)

 

Fig. 2. A summary of current approaches to improving maritime surveillance at the 
information processing level 

3 Approaches to decision support 

There are potentially many ways to improve decision support in the maritime domain. 
For example, approaches have been based on advanced spatial analysis [7], 
knowledge representation [17] and automatic risk identification [5]. Here, we propose 
an innovative approach based on knowledge extraction using automatic and semi-
automatic data mining techniques. Automatic data mining enables data to be explored 
for the purpose of knowledge discovery, while semi-automatic data mining gives 
users the power to interact with the data in order to extract meaning (relationships, 
models, etc.) through a visual exploration. This user participation in knowledge 
modelling is particularly interesting as the actors involved are most familiar with the 
area of application. 

To achieve this integration of data mining into maritime surveillance systems, we 
formalized the use of geo-decision-making tools in the form of a chain (using the 
analogy of the decision-making chain). This chain structure can support all decision-
making functions, from the collection of data from multiple sources to its presentation 
to end-users. Gouarné [18] describes the following four decision support functions: 



Collection: This function supplies the decision support system with data from 
multiple sources (sensors, operational systems, intelligence, etc.). 
Integration: This function ensures data consistency. It provides a unified and 
normalized data storage model that offers all users the same overview of the data. 
Broadcast: This function distributes data used for decision-making to the various 
exploration and visualization applications. 
Presentation: This function enables the presentation of input information and makes 
it possible to manage access to the information disseminated. 
 

The aim of our work is not to replace operational maritime surveillance systems 
with decision support systems. Both systems must evolve in parallel to ensure 
complementary functionality. Table 1 (below) summarises the contribution of 
decision support systems to operational systems according to various criteria, namely 
data, interfaces and queries. 

Table 1. Comparison of operational systems and decision support systems 

 Operational Decision support 
Data Immediate Historical 
 Detailed Aggregated 
 Internal to the system 

Normalised 
Multiple sources 
De-normalised 

Interface Complex Intuitive 
Queries Predefined user queries Open-ended 
 Slow response to aggregated 

queries 
Frequent updates. 

Rapid response to 
aggregated queries  
No updates.    

4 Formalization and support of the geo-decision-making 
chain in the maritime domain 

The concept of the decision-making chain is widely used in the field of Business 
Intelligence. It can be defined as the set of tools that lead to the production of 
actionable information. For example the software vendor SAS1, which has been 
specialized in the field since 1976 uses the term “data production line” or the 
“decision-making chain”. Gouarné [18] uses the term “data provision chain” and 
Sandoval [19] uses the term “supply chain information”. However, we have not been 
able to find equivalent concepts in the realm of geo-decision-making despite the 
existence of specific tools for the processing of geo-decision-making information. 

                                                           

1 http://www.sas.com/ 



4.1 Formalization of the geo-decision-making chain 

Using the analogy of the decision-making chain, we define the geo-decision-making 
chain as the set of tools that form the processing chain for geographic information, 
from data collection to its presentation to decision-makers. Specifically, it consists of 
a collection of tools that are carefully structured in order to ensure the four decision 
support functions previously discussed. These tools are shown in Figure 3 and 
include: Spatial Extract, Transform and Load (Spatial ETL), Spatial Data Warehouse 
(SDW), Spatial OnLine Analytical Processing (SOLAP), Spatial Data Mining (SDM) 
and the DashBoard (DB). 

DBSDW
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SOLAP Spatial 
Request

Spatial ETL

 

Fig. 3. The tools used in the geo-decision-making chain 

The construction of this chain presents a major challenge in terms of the 
interoperability of the various constituent tools. Careful thought is required to arrive 
at a system where each individual tool fulfils a role that supports the global function, 
namely the generation of geo-decision-making information. The links that make up 
the geo-decision-making chain are described in more detail below: 

Spatial Extract, Transform and Load tools make it possible to extract geographic 
data from heterogeneous sources (a database, flat files, business applications, etc.) and 
to transform and load it into the Spatial Data Warehouse (SDW). These tools can be 
re-run each time data sources are updated, or on demand for the production of 
actionable information. 
The Spatial Data Warehouse is a non-volatile spatial database. Each entry into the 
database is time stamped in order to follow its evolution over time. The database is 
the sole repository for all data used by decision support tools. 
Spatial Data Mining is the non-trivial extraction of implicit and potentially useful 
knowledge from data supplied by the spatial database [20]. 
The Spatial OLAP has been defined by Bédard as, “a visual platform specifically 
designed to support a rapid and efficient spatiotemporal analysis through a 
multidimensional approach that includes mapping, graphical and tabular levels of 
aggregation” [21]. 
Reporting groups together tools for the automatic preparation of decision support 
reports or output states based on the data stored in the data warehouse or post-analysis 
results. 
Spatial request are intuitive interfaces for making queries. 



The Dashboard enables activities to be controlled through the monitoring of key 
indicators. 

4.2 The post-hoc analysis of maritime risks 

These decision support tools that include a geographic component make it possible to 
establish the state of the maritime traffic situation. The system integrates data from 
multiple sources related to the same situation with the aim of understanding the 
causality between events. It automates the processing and preparation of raw data 
before its analysis. The data repository (or SDW) that records the evolution of 
maritime activity serves as a tool for automatic (SDM) data mining and semi-
automatic (SOLAP) data mining that leads to knowledge discovery. 

The analysis of maritime phenomena requires the ability to represent information 
cartographically. For example, the left-hand side (Part 1) of Figure 4 shows a 
graphical and tabular representation of the number of vessel accidents according to 
maritime zone. This graphical representation suggests that accidents are uniformly 
distributed across zones. However, a cartographic display of the accident distribution 
reveals a positive correlation with a median tanker trajectory (Part 2, Figure 4). 
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Fig. 4. Example of accident distribution according to maritime zone demonstrating the 
usefulness of the SOLAP analysis 

4.3  Real-time identification of maritime risk  

Geo-decision-making is not suited to the real-time identification of marine risk. On 
the other hand, it makes it possible to model knowledge that can be used to improve 
risk identification. The two data mining components (SDM and SOLAP) make it 
possible to develop knowledge models that lead to a better understanding and perhaps 
anticipation of risks. 



5 Application to the maritime domain 

Our work has focussed on the application of one component of the geo-decision-
making chain (the SDM) to the maritime domain. The application of data mining 
techniques to historical maritime accident data made it possible to automatically 
generate knowledge. For example, the application of association rules2 enabled the 
generation of knowledge in the form of implications such as, “If Incident_Type = 
Capsize/Listing then Location_Of_Accident = Coastal-waters; confidence3 = 77%” 
[22]. This rule means that if there is a capsize-type accident then, in 77% of cases it 
will be located in coastal areas. In addition, the application of spatial clustering4 
techniques made it possible to model zones with a high density of accidents. The 
areas identified in this way can be used as zone patterns that enable maritime 
authorities to focus on specific areas and to identify the vessels that frequent them, in 
order to better target surveillance activities. 

6 Conclusion 

Our aim is to meet the need for decision support in the domain of maritime 
surveillance. Therefore, this paper proposes a transversal approach that supports all 
decision-making functions, from data collection to its presentation to decision-
makers. It is based on a new paradigm that we call geo-decision-making. We describe 
the formalization of the geo-decision-making chain and how it can be applied to the 
domain of maritime surveillance. We have paid particular attention to two 
components of the chain (Spatial Data Mining and Spatial OLAP) which enable the 
discovery of knowledge for the analysis of maritime risks. The application of spatial 
data mining techniques to historical maritime accidents makes it possible to discover 
interesting knowledge that may be used to automate risk identification. 

It is important to note that we are not suggesting that operational maritime 
surveillance systems be replaced by decision support systems; on the contrary, the 
idea is to improve decision support in the domain of maritime surveillance. Both 
systems must evolve in parallel in order to provide complementary functionality. 

                                                           

2 Association rule learning is an unsupervised data mining method that makes it 
possible, from a set of objects that frequently appear together in a database, to 
extract knowledge rules. 

3 This is an indicator of the confidence of the rule. It indicates the frequency of 
transactions in the data set which contain the itemset. 

4 Clustering is a data mining method that makes it possible to automatically group 
objects in clusters according to their degree of similarity or difference.  
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