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Abstract 

Preferential feed-in tariffs (FITs) for solar generated electricity increases the demand for solar 

photovoltaic systems. They can thus induce price to increase, creating the potential for PV 

systems producers to collect rents. This paper analyses the interactions between feed-in 

tariffs, silicon prices and module prices, using weekly price data and FIT values in Germany, 

Italy, Spain, and France from January 2005 to May 2012. Relying methodologically on the 

Granger causality tests applied to vector autoregressive models, we show that since the end of 

the period of silicon shortage in 2009, module price variations cause changes in FITs, and not 

the reverse.  This is good news as it suggests that the regulators have been able to prevent 

FITs to inflate module prices. 

Key words: solar photovoltaic energy, feed-in tariffs, photovoltaic panel price 

JEL codes: Q40, Q48 
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1 Introduction  

Preferential feed-in tariffs (FITs, hereafter) for solar generated electricity are the most 

common policy tools to stimulate the installation of solar photovoltaic (PV) generation 

capacities, particularly in Europe and Japan, but also in a growing number of emerging 

economies such as China and India2. This mechanism works by setting guaranteed prices at 

which grid operators is obliged to buy electricity from solar energy sources. Solar PV 

generated power is offered a higher price relative to other sources, reflecting higher costs. The 

mark-up can be substantial, even compared with other renewable energy sources like wind. 

For example, the FIT in Germany for rooftop mounted PV installations was about 24 €-

ct/kWh in 2012, compared to less than 9 €-ct for onshore wind. This price premium is 

financed by the consumers’ electricity bill. 

A direct consequence of FITs is to stimulate the demand for PV systems and services. The 

economic law of supply and demand then predict that this will increase prices in these 

upstream markets, at least in the short-run. The price impacts are more complicated in the 

long-run because increased installation capacity can generate learning-by-doing effects and 

lead to cost reductions and hence lower prices. In the absence of fierce competition, FITs can 

then generate rents for PV systems producers and/or for the companies installing those 

systems. Obviously, the regulators in charge of setting the level of the tariffs seek to avoid 

such windfall profits by keeping FITs as close as possible to the cost of solar-generated 

                                                 
2 A notable exception is the US in which 29 states have opted instead for the use of Renewable Portfolio 

Standards (RPS). RPS are mandates requiring each utility to have a minimum percentage of power that is sold or 

produced by renewable energy sources. That is, the PRS is a quantity instrument in contrast to the FIT which is a 

price instrument. 
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electricity, but this is not an easy task as they are not perfectly informed about production and 

installation costs. 

This paper seeks to contribute towards understanding the impact of FITs on the PV price 

dynamics. We focus on the interactions between the FITs and two upstream markets: the 

market of PV panels and the market of polysilicon. Using time series of FITs, panel and 

polysilicon prices, our main aim is to test whether FITs influence panel prices or vice versa. 

The latter would imply the regulators adjust the level of FITs in order to reduce rents. The 

analysis takes into account the role of polysilicon price, the main material input for panels 

production – previous analysis on the period of polysilicon shortage before 2009 showed that 

its price significantly influences the panel price, and consequently on the PV experience 

curves (de la Tour et al., 2013). 

The panel data used for this analysis consists of weekly polysilicon and module spot price, 

and FITs values in Germany, Italy, France and Spain from January 2005 to May 2012. To 

focus on market effects, we control for underlying long-term cost drivers, as measured by the 

experience effect. Methodologically, we use vector autoregressive variable (VAR) models 

and Granger causality tests to find the direction of the causality between the variables. We 

also study variations of module price around a FIT decrease with polynomial growth models. 

Evidence on how FITs influence panel price is critical information for policy makers for 

several reasons. To begin with, the problem is of significant economic importance as panel 

prices represent about forty percent of the overall cost of PV electricity generation. The fact 

that FITs potentially induce a transfer from the electricity consumers who finance the FITs to 

panel producers becomes extremely sensitive in several industrialized countries as the bulk of 

world PV panels production is located in China. High rents can also induce market 
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overheating which is costly and often followed by drastic production cuts, which harm the 

industry’s long-term development as illustrated by the French or Spanish cases. Last, the 

potential increase of panel prices reduces the effectiveness of FITs as it increases the overall 

cost of PV systems. 

Panel prices reflect production costs, plus margin. Cost are driven by technical factors, such 

as scale effect, R&D, learning-by-doing brought by the accumulation of experience. In 

contrast, the profit margin component - the difference between price and cost - are more 

driven by market based elements, such as competition, demand and supply balance and 

strategic behaviours. A substantial amount of literature focuses on the analysis and prediction 

of the cost of solar PV modules and systems using several methodologies: econometric 

estimation of learning curves (Yu et al., 2011; Poponi, 2003), expert elicitation surveys 

(Bosetti  et al., 2012), and engineering studies (Nemet, 2006; Branker et al., 2011). 

To the best of our knowledge, there are no academic work to date on pricing issues, and more 

specifically on the interactions between FITs and panel prices. These market effects issues 

are, however, often mentioned in the grey literature. Hayward and Graham (2011) suggest 

that second to the experience effect, market forces such as demand/supply imbalance or input 

price are responsible for recent deviation in module price from the historical trend.  

This paper provides descriptive statistics which show that the evolutions of FITs and module 

price are strongly correlated. Moreover, the econometric analysis shows that since 2009, the 

direction of causality is from panel price to FITs and not the reverse. This result suggests that 

regulators were able to adjust tariffs levels according to the module price, thereby limiting the 

rents collected by panel manufacturers. This result is in line with the prevailing fierce 

competition observed in the module manufacturing market which has helped bridge the gap 
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between cost and price. We also examine the very short-term effects of changes in FIT levels, 

and show that module prices tend to increase before FITs decrease, indicating that firms’ 

anticipate policy changes and this influences their pricing strategies. However, this effect is 

temporary. 

The remaining of the paper is structured as follows. Section two introduces the analytical 

framework and the hypothesis that are tested later on. The dataset is presented in Section 3 

together with a first correlation analysis. Section 4 aims at finding the direction of the 

causality to test the hypotheses set out by the analytical framework.  In Section 5, we analyse 

the influence of past and future FIT changes on module prices using polynomial growth 

models. Section 6 concludes. 

2    Background and tested assumptions  

Before introducing a simple framework used to formulate hypothesis about the influence of 

FITs and silicon price on module price, it is worth describing briefly the crystalline PV 

production chain. Panel production from silicon involves several steps. The silicon is 

crystallised, forming ingots which are sliced into wafers. The wafers are processes and 

assembled by pairs into cells, which are soldered and encapsulated to build modules. Then the 

deployment of the PV system requires combining the modules with complementary 

equipment (such as batteries and inverters) into integrated systems which, once installed, can 

generate power. In 2006, modules on average accounted for 40% of the cost of installed PV 

systems globally. 

The upstream production of polysilicon is a key step in the PV chain, given silicon is the 

main material input and accounts for 20% of the module costs. This stage also accounts for 
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the largest share of the energy use in PV production. Other material inputs – glass, aluminium 

and silver - account for a small part of the manufacturing cost and/or have stable prices. 

Polysilicon is a commodity: Once silicon exceeds the minimum purity level of 999.999%, this 

leaves little room for product differentiation. Firms instead compete on price. The intensity of 

competition is, however, strongly influenced by production capacity, which is constrained 

since it takes two years to build a production plant. To illustrate this point, silicon shortage 

gave considerable market power to silicon producers during this pre-2009 period, leading to a 

dramatic price increase. Since the price peak, overcapacity has prevailed and prices declined 

as a consequence. We come back on the evolution of the silicon market below. 

 To a large extent, crystalline PV panels are also commodities, but its supply is capacity 

constrained to a lesser extent. Rather, supply is a function of the experience effect which 

steadily reduces cost through accumulation of experience. The price of silicon is also a 

potential driver; this hypothesis will be tested below.  

Figure 1: Crystalline photovoltaic production chain 

 

 

 

Source: de la Tour et al. (2011) 
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We formulate four assumptions – represented in Figure 2 - which will be tested in the rest of 

the paper: 

Hypothesis 1a: FITs follow module price, reducing rents in the downstream segments of the 

industry, i.e. PV systems installation and electricity production.  

Hypothesis 1b: FITs influence module price, a higher FIT leading to increasing module 

prices and creating rents in the cell and module production segments. The causality is the 

reverse of Hypothesis 1a. 

Hypothesis 2a: Silicon producers are price setters. They can pass through silicon price 

increase to module prices. This implies that silicon prices should be used as an exogenous 

variable in models predicting module price. 

Hypothesis 2b: Silicon producers are price takers. Since module production is the main 

market for silicon (87% in 2011, SolarBuzz 2012), a module price variation changes the 

demand for silicon, thus impacting its price. 

 

Figure 2: Our four hypotheses 
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3 Descriptive statistics 

The hypotheses formulated in the preceding section are tested with a dataset of weekly 

silicon and module spot prices from PV Insight3, and FITs values in Germany, Italy, France, 

and Spain (various sources, listed in Annex 1). The time series start in January 2005 and end 

in May 2012. 

As Table 1 indicates, silicon and module price have been very unstable during the period 

considered, with a standard deviation of 75% of the mean for silicon price, and 38% for 

module price. This is illustrated by Figure 3 representing silicon and module price evolutions 

during our sample period. Silicon price increased markedly from 56 $/kg in 2005 to 396 $/kg 

in 2008. This corresponds to a period of global silicon shortage from 2005 to 2009. 

Meanwhile, module prices also increased from 2.55 $/Wp in 2005 to 3.56 $/Wp in 2008. 

                                                 
3 http://pvinsights.com/  
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From July 2009 on, prices are much more stable, with silicon prices returning to January 2005 

levels, indicating the end of the silicon shortage. 

Silicon and module price are highly synchronised (the correlation coefficient is 0.91). At the 

same time, the rate of price increase is considerably lower for modules (40%) compared to 

silicon (607%). Two facts explain this observation: First, silicon price represents only 20% of 

a module’s total cost4. Second, silicon is sold by and large through long-term contracts (about 

80%, Photon Consulting 2012), thus the average purchase price did not rise in the same 

proportions as the spot price (143%, from 51$/kg to 124$/kg , Photon Consulting 2012). 

The high correlation between silicon and module price, however, does not provide 

indication of the direction of the causality between the two variables; that is, which of the two 

hypotheses  - 2a and 2b - holds true. 

Table 1 Summary statistics of module and silicon price data (Data source: PV Insight) 

Variable Obs Mean Std. Dev. Min Max 

silicon 387 168 127 24.1 396 

module 387 2.57 0.98 0.84 4.60 

 

                                                 
4 Source: Photon consulting annual report 2012, p. 154. 
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 Figure 3 Silicon and PV modules spot price evolution from January 2005 to May 2012 

  

 

Turning next to feed-in tariffs, we collected weekly values of FITs in Germany, Italy, 

Spain, and France from January 2005 to May 2012. Other countries are not considered 

because they implemented alternative PV technology development policies (RPS, investment 

subsidies, etc.) such as in Japan or the US, or they do not account for a significant share of the 

global market. The four countries included in the study covers more than 60% of the global 

market over the sample period.  

Among the four countries studied, different tariffs are set for different types of PV sytems 

(ground based, commercial, residential, etc.). We therefore calculate the average value 

weighted by the market share of each type in any given period. On the period considered, 

there have been 11 changes to FIT levels in Germany, 14 in Italy, 6 in Spain, and 9 in France. 

Figure 4 shows the evolution of the average FIT for Germany, Italy, France, and Spain. It 

indicates that the German and Italian FITs have been decreasing steadily, while more chaotic 
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variation was observed in the Spanish and French markets. Table 3 shows the correlation of 

module price with the average FIT in the four countries studied. It indicates that the German 

and Italian FITs are not only more stable than the Spanish and French ones, but also more 

correlated to module prices. But once again, this gives no information about the direction of 

the causality, which is investigated in next section. 

 

Figure 4 Average FIT evolution in the main countries 
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Table 2 Correlation table of module price and countries FITs 

 

German FIT Italian FIT Spanish FIT French FIT 

Module price 0.86 0.76 0.67 0.39 

 

 

How does the evolution of panel prices compare to that of the FITs implemented in the 

various countries? The comparison is not straightforward as the two variables are not 

expressed in the same unit: FITs correspond to the price of a quantity of electricity (in 

$/kWh), while module prices corresponds to the price of a production capacity (in $/kWp5). 

To allow comparison, we convert the module price into the net present value of the electricity 

generated over its lifetime by a module of a standard capacity of 1kWp and sold at this FIT. 

The net present value of the electricity generated by the module in country i is given by the 

usual formula: 

 ����,� � �	
�,� �∑ 
�	∗	����
������������              (1)

where �	
�,� is the feed-in tariff in country i at time t. T is the lifetime of the PV system, r is 

the discount rate. The product �!	 ∗ 	"#	� is the electricity produced each year in country i by 

the PV system, with �!, the Performance Ratio of the installation (the ratio of the actual and 

theoretically possible energy output) and, ASI, the Annual Solar Irradiation (the sum of the 

quantity of solar energy reaching the installation over a year) which is country-specific. 

                                                 
5 Watt-peak (Wp) is a measure of the nominal power of a photovoltaic device under 

laboratory illumination conditions. 
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We take the following values for the different parameters: a discount rate of 10%, a 

lifetime of 25 years, and a performance ratio of 0.75. The ASI is assumed to be 1200 

kWh/kWp/year for Germany, 1500 for Italy, 1700 for Spain, and 1350 for France6. 

The net present value of electricity given by Equation (1) needs to be compared to the price 

of the whole PV system, of which in 2011 the panel price accounted for around 40% (Photon 

Consulting, 2012). To obtain the price of a PV system, we add to the module price, the price 

of other components such as the inverter, wire and mounting system. Weekly values of the 

prices of other components are computed using the annual price trends obtained from Photon 

international (2012). 

For each country, Figure 5 compares the cost of a PV system (the shaded area) with the net 

present values of the electricity produced by a PV system sold at the national FIT. It shows 

that the German FIT follows PV system price the most closely. In contrast, important 

divergences can be observed between the FIT and module price in 2007/2008 in Spain and in 

2009/2010 in France, following the uncontrolled developments of the PV market and the 

subsequent sharp FIT cuts. The significant gap in 2010/2011 in Italy can also be explained by 

the fast market growth during this period, which multiplied by 13 in two years, from 720 MW 

in 2009 to 9300 MW in 2011 according to the  EPIA (2012). Note that additional incentive 

policies such as tax rebates are not taken into account here but act to further increase the 

attractiveness of PV systems. 

   

                                                 
6 Source : solarGIS website http://solargis.info/ 
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Figure 5 Comparison of PV systems price (shaded area) with the value of the FIT corresponding 

to all the electricity produced by a PV system over its lifetime (line) 

 

 

4 Econometric methodology 

In this section, we further analyse the interdependencies by disentangling the causal 

relationships. We test the hypotheses represented in Figure 2: (1a) Do FITs follow module 

price closely? (1b) Do FITs cause module price by driving the demand? (2a) Are silicon 

producer price makers? Or (2b) price takers? 

As we make no assumption about the direction of the causal relationships for now, all the 

variables are endogenous in an econometric sense. The only equations that can be estimated 

are then one variable written as a function of its own lagged values and the lagged values of 

all the other variables. Those equations make up a vector-autoregressive (VAR) model. 

Furthermore, “real” causality cannot be identified with econometric tools. Therefore we adopt 
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the definition of Granger (Granger, 1969):  x “granger causes” y if the prediction of the 

current value of y is enhanced by the knowledge of past values of x. In the following sections, 

as “causes” we mean “granger causes”. Granger developed a methodology based on VAR 

models to test for this causality. We use this test to identify causality among the variables. 

As mentioned before, the module price is made of a cost and a margin. The former is 

influenced by long-term drivers, in particular learning-by-doing improvements that need to be 

controlled for, in order to focus on market effects. We do so by adopting the learning curve 

theory which predicts that learning-by-doing decreases price through the accumulation of 

experience measured by cumulative production, according to the following  formula: 

 $%&'()� � $%&'()�* ∗ + ,'$_./%&�,'$_./%&�*
0
12

 (2)

Here,  $%&'()� is module price at time t. ,'$_./%&� is the cumulative PV module 

production at the same date7. to is an arbitrarily chosen reference date. E is the experience 

parameter, measuring the intensity of the learning-by-doing process. Equation (2) is usually 

estimated econometrically. In this paper, we use an experience parameter of 0.338, 

corresponding to a learning rate8 of 20.1%, which has been estimated in the study by de la 

Tour et al. (2013) who used the same data. 

                                                 
7 Since the learning effect is a slow process which cannot be affected to the production of a 

particular week or even month, we create a proxy for weekly cumulative production following 

the yearly production trend obtained from Photon Consulting (2012). 
8 A learning rate of 20.1 means that unit cost decreases by 20.1% for each doubling of 

cumulative production. 
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Using data on cumulative production9, we are able to predict the value of $%&'()�* , which 

is the module price equivalent to $%&'()� 	if no learning would have happened since 34. We 

denote $%&'()�4 , the corresponding predicted value. 

We also create a variable �	
, the average of countries’ FITs, weighted by the size of the 

national electricity markets: 

 �	
� � ∑ �	
�,� ∗ )(),�,��    (3)

where )(),�,� is the size of the electricity market of country i at time t. 

Then we apply the VAR model to the first order derivative of the logarithm of module 

price, silicon price, and FIT with a lag equal to l. This gives: 

 6. 7� 	� 	∑ 89 	6. 7�19:9�� ; E�,�       (4)

In this equation, 6. 7� is the vector of the first order derivatives of the three price variables 

which are logged: ln�$%&'()�4�, ln�?@(@,%A��, and ln��	
��. 	89 is the vector of parameters to 

be estimated and E@ is the vector of error terms, assumed to be independent and identically 

distributed. 

The estimation is done by running a separate regression for each variable, regressing it on 

lags of itself and all other variables, using ordinary least squares (OLS). A Dickey-Fuller test 

for unit root shows that the time series are not stationary, even when a trend is allowed, but 

they are first-order stationary. This explains why we apply the VAR model to the first-order 

derivatives of the variables. A Clemonte-Montañés-Reyes test for unit root, allowing for one 

or two breaks in the time series, points out a break in the fourth week of September for 

                                                 
9 Photon consulting annual reports 
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ln�?@(@,%A�� (see Annex 2). We therefore run the regressions of the VAR models on two 

periods: before and after 24/09/2009. The first period corresponds to the silicon shortage, 

while the second period starts after this event. The optimal lags are found by maximizing the 

AIC information criterion; 2 weeks during the silicon shortage, and 3 weeks after. 

5 Results 

The model (4) is estimated during and after the silicon shortage. The regression 

coefficients are all significant at the standard significance levels. Tables 4 and 5 show the 

results of Granger causality tests applied to the estimations of the model during the silicon 

shortage between January 2005 and July 2009 (Table 4) and after the shortage (Table 5). The 

grey boxes correspond to the cases where the null hypothesis - that the excluded variable does 

not cause the dependant variable - is rejected at a 0.05 significance level.  

Consider first, the causality between silicon and module price. There is a switch at the end 

of the silicon shortage period. During the silicon shortage period, silicon price causes module 

price (hypothesis 2b), while after the end of the shortage, the opposite holds (hypothesis 2a). 

These results are completely in line with economic theory which predict that, in commodity 

markets, producers have market power only in case of under capacity of production. The shift 

in market power from silicon producers to module manufacturers can also be due to the PV 

industry becoming a more and more important market for silicon, overtaking the semi-

conductor  industry since 2007 (SolarBuzz 2012). 

Results on the causality between module price and FITs are more ambiguous. During the 

first period, the Granger test does not yield any conclusion regarding causal relationships, at 

least at the 5% or even the 10% significance level. After July 2009, FIT still does not cause 

module price, but the test indicates that silicon price causes FITs. As module price causes 
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silicon price, we can conclude that the module price indirectly causes FITs (hypothesis 1a). 

This can be interpreted as a consequence of the fierce competition prevailing in the cell and 

module market, keeping prices close to production costs, preventing producers from 

collecting rent from attractive FITs. 

Looking at Figure 4 helps understand why module price causes FITs after 2009 but not 

before. Before 2009, FITs were very stable, modified only once a year in Germany, and even 

less frequently in other countries. Their level was set well in advance, sometimes years 

ahead10. FITs were thus very rigid, explaining why they couldn’t follow module price closely. 

After 2009, however, FITs became much more flexible with intra-year adjustments, 

sometimes unscheduled, to follow module price more closely. Moreover, volume responsive 

systems have been implemented including the FIT corridor in Germany in 2009 and in France 

in 2011, further enhancing the flexibility. The fact that FITs track module price more closely 

in the recent years should then be interpreted as a consequence of a modification of the FITs 

schemes. 

 

 

 

Table 3 Granger causality test results for the period of the silicon shortage 

Dependent variable Excluded chi2 df Prob > chi2 

ln�$%&'()�4�  ln�?@(@,%A��  22.48 2 0.000 

                                                 
10 This was adapted to the steady and predictable price decrease triggered by the 

experience effect before the silicon shortage. 



19 
 

ln��	
��  0.120 2 0.942 

ALL 22.76 4 0.000 

ln�?@(@,%A��  

ln�$%&'()�4�  1.373 2 0.503 

ln��	
��  0.078 2 0.962 

ALL 1.468 4 0.832 

ln��	
��  

ln�$%&'()�4�  0.724 2 0.696 

ln�?@(@,%A��  4.288 2 0.117 

ALL 7.046 4 0.133 

  

Table 4 Granger causality test results for the period after the silicon shortage 

Dependent variable Excluded chi2 df Prob > chi2 

ln�$%&'()�4�  

ln�?@(@,%A��  3.090 3 0.378 

ln��	
��  2.722 3 0.436 

ALL 7.006 6 0.320 

ln�?@(@,%A��  

ln�$%&'()�4�  17.47 3 0.001 

ln��	
��  0.567 3 0.904 

ALL 18.69 6 0.005 

ln��	
��  

ln�$%&'()�4�  1.518 3 0.678 

ln�?@(@,%A��  19.73 3 0.000 

ALL 21.50 6 0.001 

 

 

6 Anticipations of feed-in tariffs change 

VAR models use past values as explanatory variables, while FITs are announced, and 

therefore anticipated, months or even years ahead. This section further investigates the FITs’ 
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effect on module price, by analysing the effect of future FIT changes on module price. Our 

approach examines the variation of module price before a FIT decrease (which occurred 24 

times during the period considered). A simple theoretical reasoning suggests that firms would 

anticipate a decrease of FIT by purchasing more modules before the change to benefit from 

the higher FIT, which eventually increases price. Anecdotal evidence supports this 

assumption. For instance, the observation of monthly PV installation levels and the FIT 

evolution in Germany depicted in Figure 6 clearly indicates that peaks of installation, 

measured by the number of connections to the grid, arise in the months before the FIT 

decreases. 

 While Figure 6 describes the impact of anticipations on quantities, what about the impact 

on module prices? To answer this question, we build a difference-in-difference indicator to 

measure short-term price variations: the variable &)B@C3@%A� is the deviation of the first order 

derivative11 of module price compared to a business as usual (BAU) scenario at date t: 

 &)B@C3@%A� ≡ 6.$%&'()� E 6.$%&'()�F�G       (5)

If &)B@C3@%A� is positive, this indicates that the increase in module price in week t exceeds 

the BAU scenario prediction. 

                                                 
11 We use its first-order derivative because, contrary to $%&'()�, the derivative is 

stationary. 
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Figure 6 Impact of the feed-in tariff reductions on monthly capacity addition in Germany 

 

Source: Enerdata, from German Ministry for Environment, SolarWirtshaft 

 

We rely on results from Section 4.4 to calculate the BAU price. They say that module 

pricing obeys to different rules during and after the silicon shortage. During the silicon 

shortage, the price is driven by the silicon price. We thus assume the following relationship: 

        (6)

The length of the lag of silicon price used is two weeks as found optimal in Section 4.4. 

After the silicon shortage, the BAU price is assumed constant: 
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           (7)

Regression results of (6) and (7) are presented in the Appendix. 

Using the indicator , we indeed observe a positive effect during the few months 

before a FIT decrease, and a negative one afterwards. This is illustrated in Figure 7, showing 

the evolution of the variable  over a 1 year-period around a FIT decrease which 

occurred simultaneously in Germany and Italy on January 1st 2007.  

 

Figure 7: Deviation of module price compared to a business as usual scenario before and after a 

FIT decrease in January 2007. 

 

 

In order to gain further understanding of the dynamic effect of a FIT decrease on module 

prices, we now estimate a polynomial growth model. This explains the deviation of module 

price by a polynomial function of the time before the following FIT decrease. The regression 

equation is:  

-0,01

0

0,01

Deviation
t

FIT decrease

Positive effect

Negative effect
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 &)B@C3@%A� � ∑ 	HI�H)J%/)��I 	;KI�� L�																																			         (8)

where H)J%/)� is the number of weeks before the following FIT decrease. L�  is the usual 

i.i.d error term. The observation of Figure 7 suggests that polynomial models should 

preferably be at least quadratic, or degree 3.  

Regression results are given in Annex 4. We use them to predict the value of  &)B@C3@%A� 

before a FIT decrease (Figure 8). Predictions cover a 40 weeks period. As expected, the graph 

shows a positive deviation before FIT decreases. However, the impact becomes negative 5 

weeks before.  

 

Figure 6 Simulation of the deviation of the first order derivate of module price from a business 

as usual scenario before a FIT decrease 
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These results are easy to interpret: In order to be able to connect the PV installation before 

the FIT decreases, firms installing PV systems need to buy the modules a few weeks before 

for small projects, or a few months for big installations. This boosts module demand during 

the months before the FIT cuts, and therefore increases the module price. A few weeks before 

the decreases, firms lose this incentive since there is not enough time to complete the 

installation and connect it to the grid before the FIT changes. This lowers the demand, 

decreasing the module price, which encourages firms to wait to benefit from this reduction, 

eventually decreasing price even more. Our results indicates that this happens five weeks 

before the decrease. 

7 Conclusion 

This paper aimed to analyse the influence of feed-in tariffs and silicon prices on module 

prices. We rely on a database of silicon and module weekly spot price, and FIT values in 

Germany, Italy, Spain, and France from January 2005 to May 2012. We find the direction of 

causality relations using Granger causality tests on vector-autoregressive (VAR) models.  

Granger causality tests show that since the end of the period of silicon shortage in 2009, 

module price variations cause changes in FITs, and not vice versa.  This is good news as it 

suggests that regulators have been able to prevent FITs to inflate module prices, limiting the 

creation of rents in the PV panel industry. This can be explained by the fierce competition 

prevailing on the module market, keeping module price close to production cost whatever the 

FITs level.  

Nevertheless, polynomial growth models show FIT short-term effects on module price. In 

the months before the FIT decreases, the module price increases. The interpretation is 
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straightforward: a higher demand triggered by market anticipation, accelerate installations 

before the FIT level decreases. This inflation is temporary, however. 

The analysis also suggests that the silicon price was driving module price only during the 

silicon shortage, suggesting that silicon producers had market power. This is in line with the 

observation of production under capacity and a low contestability of the silicon market before 

2009. After the end of the shortage period, they lost their market power and we find that 

module prices now drive silicon prices. This can be explained by an increasing competition 

with new players entering the market, including many Chinese corporations such as LDK 

Solar, which directed the situation from shortage to excess production. 

This study shows that price formation in the PV industry is very complex, and difficult to 

predict. It follows that FIT mechanisms should be sufficiently flexible to avoid important gaps 

in PV electricity cost when price evolution has not been anticipated correctly. So far, 

flexibility has been allowed by several means: a) implementing unscheduled modifications, b) 

increasing the frequency of FITs change, and c) making changes dependent on previous PV 

installation through volume responsive mechanisms. Unscheduled FIT changes are certainly 

not a good solution since they increase the uncertainty in the PV industry. More frequent FIT 

changes allow a faster adaptation to module price. Moreover, a higher frequency implies 

lower size, reducing the magnitude of the price distortions around FIT changes. The volume 

responsive aspect enables fast responses to the market, and the transparent process gives 

visibility to investors. 
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Annex 

 

A1 Sources for FIT values 

International Energy Agency (http://www.iea.org) 

Solar Feed In Tariff website (http://www.solarfeedintariff.net) 

PV Magazine (http://www.pv-magazine.com/) 

RES LEGAL website (http://www.res-legal.de/)  

Solarenergie-Förderverein Deutschland 

(http://www.sfv.de/druckver/lokal/mails/sj/verguetu.htm) 
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A2 Clemonte-Montañés-Reyes test for unit root applied to log (silicon price) 
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A3 Regression results of the BAU model (Equations 6 and 7) 

 

 Before After 

Dependent variable D. lnM$%&'()� N D. lnM$%&'()� N 

LD.	ln�?@(@,%A�� 0.2160*** 

(0.041) 

- 

L2D.	ln�?@(@,%A�� 0.0935** 

(0.041) 

- 

Constant 0.0006 

(0.001) 

-0.0022** 

(0.001) 

Observations 234 150 

R-squared 0.3746 0.0000 

Adj. R-squared 0.3692 0.0000 

 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 Regression performed during 

the silicon shortage. L stands for the operator for Lag, F for Forward lag, and D for first order 

derivative. 

 

  



29 
 

A4 Regression results of the polynomial growth model (8) 

 

Dependent variable  &)B@C3@%A� H)J%/)�  0.001057984*** 

(0.000) 

�H)J%/)��2  -0.000039290*** 

(0.000) 

�H)J%/)��3  0.000000386* 

(0.000) 

Constant -0.005062572*** 

(0.001) 

Observations 380 

R-squared 0.0651 

Adj. R-squared 0.0576 

 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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