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Abstract 

Except in few locations, photovoltaic generated electricity remains considerably more 

expensive than conventional sources. It is however expected that innovation and learning-by-

doing will lead to drastic cuts in production cost in the near future. The goal of this paper is to 

predict the cost of PV modules out to 2020 using experience curve models, and to draw 

implications about the cost of PV electricity. Using annual data on photovoltaic module 

prices, cumulative production, R&D knowledge stock and input prices for silicon and silver 

over the period 1990 – 2011, we identify a experience curve model which minimizes the 

difference between predicted and actual module prices. This model predicts a 67% decrease 

of module price from 2011 to 2020. This rate implies that the cost of PV generated electricity 

will reach that of conventional electricity by 2020 in the sunniest countries with annual solar 

irradiation of 2000 kWh/year or more, such as California, Italy, and Spain. 
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1 Introduction 

Experience curves, also called learning curves, are widely used to predict cost paths in the 

mid- to long-term. In its simplest form, an experience curve relates production costs to the 

accumulation of experience (often measured by cumulative production). Experience curves 

are based on the theory of learning-by-doing which asserts that  “technical change in general 

can be ascribed to experience, that it is the very activity of production which gives rise to 

problems for which favourable responses are selected over time” (Arrow, 1962). Strong 

empirical support has been demonstrated through its application across various industriesi.  

In the solar photovoltaic (PV) industry, experience curves are of particular importance in 

policy discussions surrounding the role of solar in the transition towards low carbon energy 

systems. PV technology is not yet competitive against conventional energy sources. It is 

however expected that, given sufficient support in the short-run, the industry will experience 

important cost reductions through learning-by-doing which will lead to important gains in the 

future. In addition to the public goods nature of learning and existence of learning spilloversii, 

this provides the rationale for public policies to support the deployment of PV installation.  

In this policy context, quantitative evaluation using experience curves can inform a number 

of important questions. For example, what return, in terms of the magnitude of the cost 

decrease, can one expect in the future by supporting the development of the market in the 

short-run? What is the optimal pace at which public subsidies should be reduced? Analysis 

can help to prevent repeating mistakes from the recent past. For instance, over-pessimistic 

anticipation of cost reductions led to an uncontrolled PV market boom in Spain in 2008 and in 

France in 2010, triggering subsequent sharp policy revisions (a cap on installations in Spain 

and a three-month moratorium together with a drastic cut in the feed-on tariff level in France). 
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This stop-and-go policy was devastating, resulting in dozens of bankruptcies and thousands of 

job losses in the local PV industry. Reliable cost prediction is therefore crucial to the 

sustainable development of this industry. 

In this paper, we seek to predict the cost of PV modules production out to 2020 using 

experience curves, and thereby the cost of PV generated electricity.  As mentioned, 

experience curves in their basic form are derived by regressing the module price (a proxy for 

the cost) on experience measured by cumulative production. In the recent literature, additional 

explanatory variables have been included, such as input price, scale, or research and 

development (Isoard and Soaria, 2001, Kobos et al., 2006, Yu et al., 2011). However, little 

attention has been paid thus far on the influence of adding these explanatory variables on the 

predictive power of the model. This paper aims to fill this gap, by explicitly addressing 

methodological issues that influence the identifying and selecting of the most reliable 

experience curve model.  

This paper uses annual world average data on module price, cumulative capacity, plant 

size, silicon and silver price, and the R&D knowledge stock from 1990 to 2011, to find a 

specification that gives the best predictive power – i.e. that minimizes the difference between 

predicted and realized module prices. The model is then used to make out-of-sample 

predictions out to 2020. 

Possible additional variables are identified through surveying the literature on experience 

curves for PV modules. We restrict the analysis to modules because they are standard 

products for which price information is readily available (world average prices expressed in 

dollar per Watt-peak for standard conditions). Alternative measures of PV costs were 

considered but deemed unsuitable for the estimation of a global experience curveiii on PV 
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technology (and implications for PV generated electricity). For example, other components of 

PV systems like inverter, battery, and wires are not specific to the PV industry. Other 

observable factors that influence output such as installation costs and sunlight availability are 

dependent on local conditions.  

The majority of existing studies on PV modules on a global scale use experience as the 

only explanatory variable, with an average learning rate of 20.9% (see the references below). 

Three studies include other variables: R&D, scale, silicon price, or/and silver price. Our 

contribution is to carry out a systematic analysis with respect to the inclusion of such 

variables, to derive a combination with the best predictive power. 

This analysis shows that supplementing experience with silicon price series best predicts 

module costs. Based on this model, a 67% cost decrease is predicted between 2011 to 2020, 

75% of this evolution being attributed to experience, and 25% to the fall in silicon price. 

The remainder of this paper is structured as follows: The next section presents the 

experience curve model and a critical survey of the literature applied to PV modules. We 

perform an out of sample evaluation to choose the best specification of the model in section 

three. Section four presents scenarios for module cost until 2020 based on the best 

specification, and section five the implications for PV electricity’s competitiveness. Section 

six concludes.  

2 Literature review 

Experience curves are classical econometric models in which the key explanatory variable 

is experience, as measured by cumulative production or cumulative installed capacity. The 

simplest specification is defined by: 
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P� �	P�	Y�–�																						(1) 

where P� is the price of one unit of output at time t. This price is a proxy for cost. P0  is the 

price of the first unit, and Y� is cumulative output at t. E captures the experience parameter. A 

related indicator is the learning rate giving the percentage of change in cost corresponding to a 

doubling of experience: 

Learning rate= 1 - 2–E 

A learning rate of 0.1 means, for instance, that unit cost decreases by 10% for each 

doubling of experience. To estimate E econometrically, the following specification can be 

derived from (1): 

log�P� � 	 log	�P� � E	log�	Y� � ε�	 

with ε�, an i.i.d. error term. 

We find 17 studies that estimate one-variable equations with module price as the 

dependent variable (see Table 1). They differ in terms of time frame used for the estimation, 

geographical scale, and data source. The average learning rate is 20.2%. The standard error 

for studies on a global scale is 3.2%, and 7.6% for experience curves estimated at the country 

level. We explain this difference below by the existence of knowledge spillovers.  
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Table 1 Review of experience curves of PV modules with experience as only explanatory variable 

Study 
Geographical 

scale 

Time 

frame 

Learning 

rate 
Data Source 

Maycock & Wakefield 
(1975) 

Global 1965-1973 20.0% n.a. 

Tsuchiya (1992) Japan 1979-1988 19.0% n.a. 

Williams and Terzian (1993) Global 1976-1992 18.4% Strategies Unlimited 

Cody and Tiedje (1997) US 1976-1988 22.0% Maycock 

Tsuchiya (1999) Japan  1979-1998 17.6% n.a. 

IEA (2000) Global 
1976-1984 16.0% 

EU-Atlas and Nitsch (1998) 
1987-1996 21.0% 

Harmon (2000) Global 1968-1998 20.2% Maycock 

Wiliams (2002) Global 1976-2000 20.0% Strategies Unlimited 

Parente et al. (2002) Global 
1981-2000 22.8% 

Maycock 1981-1990 20.2% 
1991-2000 22.6% 

Poponi (2003) Global 
1976-2002 25.0% 

Maycock 
1989-2002 19.5% 

Schaeffer (2004) 
Global 

1976-2001 20.0% 
Strategies Unlimited 

1987-2001 23.0% 
Germany 1992-2001 10.0% Photex database 

Papineau (2004) 
Germany 1992-2000 15.0% 

Extool Project, IEA Switzerland 1992-2000 10.0% 
US 1992-2001 32.0% 

  US 1992-2001 20.0% US DOE 

Nemet (2006) Global 
1978-2001 26.0% Maycock 

1976-2001 17.0% Strategies Unlimited 

Van Sark (2006)  Global 
1976-2001 20.6% 

Strategies Unlimited 1981-1990 16.6% 
1991-2000 29.6% 

Swanson (2006) Global 1979-2005 19.0% Strategies Unlimited & other 

Van Sark (2008)  Global 1976-2006 20.6% Strategies Unlimited & other 

Breyer et al. (2010) Global 
1976-2003 22.8% 

Strategies Unlimited & other 
1976-2010 19.3% 

 

Total cost may also be driven down by factors other than experience (Hall and Howell, 

1985) that are omitted in the base model: 

• Other forms of learning, including learning-by-searching (brought by R&D), learning-

by-using (through feed-backs from users which helps optimising the product), and 
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learning-by-interacting (transfer of knowledge between users, producers, research 

institutes and policy makers due to knowledge networks) (Kamp, 2004). 

• Knowledge spillovers, that is, the flow of knowledge that has benefits outside the 

organisation where it has been created, but with no automatic market compensation. 

Spillovers are more important between firms that are geographically or 

technologically close. For experience curves at the firm scale, they induce a cost 

reduction that is not generated by the firm’s own experience, thus altering the 

experience parameter. However, for global experience curves based on world average 

cost, spillovers are included in the global experience effect. It explains the difference 

previously noted in Table 1 between country-level and world-level studies. 

• Scale effect, which is the unit cost variation corresponding to an increase in 

production scale at the plant level. 

• Product standardisation, reducing transaction costs in the industry. 

To account for some of these factors, in more recent analysis, new explanatory variables 

such as input price, R&D, or scale effect have been included in three studies, leading to more 

complex experience curves (Table 2). Kobos et al. (2006) find that R&D through learning-by-

searching has a significant positive effect. Isoard and Soria (2001) find constant return to 

scale. However, allowing for a flexible value of the parameter, they find decreasing return to 

scale before 1994. With more recent data, Yu et al. (2011) find increasing return to scale. 

These contradicting results are inconsistent with the constant parameters hypothesis. 

However, the variability of the scale parameter may be due to multicollinearity increasing the 

variance of the estimator. Yu et al. (2011) find a strong positive effect of silicon price on 

module price. They also find a slight negative effect of silver price, explaining it by a 

substitution effect with other inputs. 
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The average learning-by-doing rate found by experience curves with several explanatory 

variables in Table 2 is 13.7%, markedly lower than learning rates found in models with 

experience only (20.9% on a global scale). This suggests that the experience parameter is 

seriously biased when it is the only explanatory variable as it captures the influence of other 

drivers.  

The objective of this paper is not, however, to produce unbiased estimates of the learning 

rate. Our focus is on identifying the specification with the best predictive power. In this 

respect, the addition of explanatory variables has two opposite effects. On the one hand, it 

limits the omitted variable bias, which increases the predictive power of the model. Yet on the 

other hand, it can create multicollinearity if additional variables are highly correlated to the 

other explanatory variables, thus increasing the variance of the estimator and decreasing the 

model’s predictive power. Whether or not to include an additional variable is thus an 

empirical question. In the next section, we develop and implement an empirical strategy to 

select the set of variables that gives the best predict power. 

Table 2 Review of multifactor experience curves for PV modules 

Study Time scale 
Learning-

by-doing 

Learning-by-

searching 

(R&D) 

Return to 

scale* 

Input price* 

Silicon Silver 

Isoard and Soaria 
(2001) 

1976-1994 9.2% - 1 - - 

Kobos et al. (2006) 1975-2000 18.4% 14.3% - - - 

Yu et al. (2011)  1976-2006 13.5% - 1.066 0.285 -0.135 

Note: The log-log specification implies that the estimated coefficients reported in the table are 

elasticities. 
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3 Selection of the specification with the highest predictive power 

3.1 Methodology 

Our methodological approach empirically evaluates the predictive power of 33 possible 

specifications with different sets of explanatory variables. All include an experience variable. 

We test two proxies: one half of the specifications includes cumulative capacity; the others 

include cumulative capacity with a one year lag, to account for the time it takes for the 

learning process to take place. Apart from the experience variable, each specification is a 

particular combination of four variables identified in the literature: R&D, scale, silicon price, 

and silver price.iv The combinations are listed in Table 3.  

Table 3: Sets of additional variables in specifications tested 

1) No additional variable 9) Ar and Scale 

2) Si (Silicon) 10) Ar and R&D 

3) Ar (Silver) 11) Scale and R&D 

4) Scale 12) Si, Ar, and Scale 

5) R&D 13) Si, Ar, and R&D 

6) Si and Ar 14) Si, Scale, and R&D 

7) Si and Scale 15) Ar, Scale, and RD 

8) Si and R&D 16) All (Si, Ar, Scale, and R&D) 

 

The strategy then involves making predictions and comparing the predicted price with the 

actual value observed in the data, as we now explain by using an example. Using data from 

1990 to 2010, the first step involves estimating the specification, indexed by i, on a ten-year 

period, for instance 1990 to 1999. The estimates are then used to predict the annual module 

prices from the subsequent year (2000 in this case) to 2011, the last year for which we have 
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historical values. The predictions are based on historical data for the explanatory variables. 

Let ���,� denote the predicted price and  ��,� the actual value where i is the specification’s index 

and t, the time horizon (1 for the prediction in 2000, 2 for 2011 in the above example). The 

error is given by: 

����,� � ��,���,� � 

We consider the error relative to the price by taking the percentage error, because price 

decreases quickly. We also consider the absolute value of these percentage errors, since the 

direction of the error can be negative or positive. 

This procedure is replicated for all possible ten-years periods: from 1991-2000, to 2001 to 

2010. The final step is to compute the Mean Absolute Percentage Error (MAPE) of 

specification i at time horizon t defined by: 

�����,� � �
�� ∗ ∑ � �!,�" !,� !,� ����#�               (2) 

where $� is the number of estimations of the specification at this time horizon. This 

methodology provides us with the MAPE of the predictions for time horizons between 1 and 

11 years for each of the 16 specifications. 

3.2 Data 

The dataset consists of world average annual values of module price, cumulative capacity, 

plant size, silicon price, and R&D knowledge stock from 1990 to 2011, except R&D for 

which the data stops in 2007. Data sources are listed in annex 1. The R&D knowledge stock 

has been measured using the cumulative number of patent families as proxy for innovation, 
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according to the methodology developed by Dechezleprêtre et al. (2011). A patent family is 

the set of patents granted in different countries for the same innovation. Therefore one patent 

family represents one innovation. We use an annual depreciation rate of 10% to account for 

technology obsolescence. The patent data is obtained from the European Patent Office. 

(http://www.epo.org/) 

In Figure 1, we show the evolution of module price which in general declines during the 

twelve year sample period, except from the slight reversal of the trend between 2004 and 

2008.  The latter corresponds to the period with a global shortage in silicon supply, pushing 

up silicon prices which peaked in 2008 (Figure 2). Silver price (Figure 3) also started to rise 

in 2004, due to growing investor’s interest in silver which modified the supply/demand 

balance. Other variables - cumulative capacity, scale, and R&D - increased steadily over time, 

with the size of the industry.  

Figure 1 Evolution of module price from 1990 to 2011 

 

Source: see Annex 1 
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Figure 2 Evolution of silicon and silver price from 1990 to 2011 

 

Source: see Annex 1 
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This result illustrates that adding explanatory variables does not necessarily improve 

predictive power. It can be interpreted in terms of the trade-off between omitted variable bias 

and multicollinearity. The inclusion of silicon price reduces the omitted variable bias. Figure 

4 showing the learning rate of experience curves with and without silicon price shows that the 

bias corresponding to the omission of silicon price is important and temporally not stable due 

to the silicon shortage between 2004 and 2009. Moreover, there is limited risk of loss of 

accuracy due to multicollinearity,vi because the correlation between silicon price and 

experience is low (ρ=0.46). On the contrary, the introduction of scale or R&D reduces the 

accuracy of the model, because they are highly correlatedvii to experience (ρ>0.98). Yet the 

bias resulting from their omission does not affect the predictions’ accuracy much: because 

their relation with experience is stable, the effect of this omitted variable bias in the 

predictions accounts for the real effect of the omitted variable. Silver price is less correlated to 

experience (ρ=0.78)viii, but it has only a small effect on module price, hence should be left 

out.  
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Figure 3 Comparison of MAPE(t) for each model, MAPE(t) being the mean absolute percentage 

error according to the time horizon t 

 

Note: The specifications including R&D (5,8,10,11,13,14,15,16)  end after a time horizon of 7 years 
because we do not have data for R&D after 2007, so no long term evaluation could be done. 

Figure 4 Learning rates according to the end of the 10 years estimations, for two specifications: 

experience only and experience and silicon price. 

 

Note: The learning rate is temporally stable when silicon is included in the specification. But with 
experience only, the learning rate is not stable. The difference corresponds to the omitted variable bias 

due to the omission of silicon price in the model. 
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Table 4 shows the regression results for the selected specification that will be used to make 

module price predictions below. The estimation period is from 1990 to 2011. The experience 

parameter of -0.338 corresponds to a learning rate of 20.1%. 

Table 4 Results of the regression of log(module price) on log(lagged cumulative capacity) and 

log(silicon price) on 1990/2011 

LogPrice Coef. Std. Err. t P>|t| [95% Conf. Interval] 

LogExp -0.338 0.010 -34.030 0.000 -0.359 -0.317 

LogSilicon 0.385 0.027 14.300 0.000 0.328 0.441 

Constant 2.490 0.073 33.920 0.000 2.336 2.644 

 

4 Prediction of module price beyond 2011 

The best specification includes two independent variables: lagged cumulative capacity (one 

year) and silicon price. As a next step, we need to obtain plausible projections of the value of 

these two explanatory variables until 2020,in order to use this model to predict module prices 

after 2011. 

4.1 Cumulative capacity scenarios 

Figure 5 shows the cumulative capacity scenarios made in 2012 by Photon Consultingix 

and Solarbuzzx, the two leading market research companies in the PV sector, and by the 

European Photovoltaic Industry Association (EPIA)xixii. In the following, we consider the two 

extreme scenarios, which correspond to Compound Annual Growth Rates (CAGRs) of the 

market from 15%  to 23% (EPIA low and high scenarios respectively) between 2011 and 

2020. These CAGRs are much lower than that observed between 2000 and 2011 (55%) 

because lower incentive policies are expected in Europe, the main market. 
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Figure 5 Cumulative capacity forecast until 2020 

 

Source: Photon consulting (2012), Solarbuzz (2012), EPIA (2012) 

 

4.2 Silicon price scenarios 

We build two scenarios of silicon price evolution until 2020, as shown in Figure 6. The 

first assume a linear decrease from 53$/kg in 2011 to 20 $/kg in 2020, corresponding to the 

lower-bound price predictions found across market forecasts from 2012xiii. In the second 

scenario, the price decreases less, to 40 $/kgxiv. Linearity is assumed (constant decrease of 

silicon price) because, based on the announcement of new production capacity, the current 

oversupply of polysilicon is expected to last in the long-term. 
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Figure 6 Silicon price forecast until 2020 
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Figure 7 Module price predictions until 2020 
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systems. Typically inverters are replaced once during the systems’ lifetime. This accounts for 

most of the operation and maintenance cost. The lifetime of the system itself has an influence 

on the LCOE.  

Sunlight availability, measured by the Annual Solar Irradiation (ASI), has important 

influence on LCOE. For example, the North of Germany or Alaska has an ASI of 1000 

kWh/year, while the south of Spain, Italy, or California has an ASI of 2000 kWh/year. The 

discount rate is also an important determinant, since 95% of the cost of a PV system over its 

lifetime is capital expenditure (CAPEX). As Branker et al. (2011) noted in a survey of studies 

of PV LCOE, the assumptions regarding the discount rate are often not made explicit, 

although they typically lie between 5% and 10% in most studies. We use 6.8%, which is the 

rate used by the IEA (2012) to compute LCOEs. 

We computed the LCOE for three types of PV systems: residential, commercial, and 

utility. Two ASI levels are considered, 1000 kWh/year and 2000 kWh/year, corresponding 

respectively to the north of Germany, and to the sunniest areas such as California or south of 

Spainxvi. The lifetime of the systems is assumed to increase from 25 years in 2011 to 35 years 

in 2020. The other underlying assumptions are listed in Annex 3. 

Figure 8 shows the predicted LCOE in 2020. The differences in the results illustrate the 

importance of the geographic location, and the type of PV system on the cost of PV 

electricity. These results are in line with those of Bosetti et al. (2012) who predict a LCOE 

between 75 and 145 $/MWh for 2030 with an expert elicitation survey, with the most likely 

scenario being 108$/MWh, not differentiating the location or the type of system. 



20 
 

Figure 8 PV LCOE prediction for 2020 with a 6.8% discount rate (source: Author) 

 

Note: ASI: Annual Solar Irradiation, 1000 kWh/year corresponds to the north of Germany or Alaska, 
and 2000 to the south of Spain, Italy, or California. Hypothesis used for the computation of the LCOE 

are explained in Annex 3. 

 

Figure 9 compares predictions of LCOEs in 2020 for conventional electricity sources and a 

PV utility system for two locations: with solar annual irradiation of 1000kWh/year, and 

2000kWh/year. The results suggest that the average cost of electricity generated with PV 

technology will match the cost of conventional technologies in 2020 in the sunniest places. 

Note that these results may or may not underestimate the actual cost of PV electricity as 

the LCOE abstracts the costs involved in system transitions. For example, large scale 

renewables penetration into the electricity system involves costs associated with issues of 

intermittent supply, back-up capacity, storage capacity, grid extension and so forth. These 

costs are highly uncertain, and depend on many assumptions including the carbon costs 

trajectory and the counterfactuals assumed. 
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Moreover, the LCOE does not take into account the country specific load profile. Joskow 

(2011) notes that, since the wholesale price of electricity varies throughout the day, different 

load profiles with different base- and marginal- technologies give different market values for 

the electricity produced. This can have either a negative or a positive impact depending on the 

synchronisation of the production and demand profiles. 

 

Figure 9 Comparison of the LCOE of different electricity sources 

 

Note: ASI stands for Annual Solar Irradiation. 1000 kWh/year corresponds to the north of Germany or 
Alaska, and 2000 to the south of Spain, Italy, or California. The discount rate is 6.8%. Additional 

hypothesis used for the computation of the PV LCOE are explained in annex 3. Source: Author and 
EIA, 2012. 

 

6 Conclusion 

The objective of this paper is to find the best model to predict module price and to use it to 

forecast module price and photovoltaic (PV) electricity cost out to 2020. The selection of the 

best set of combination of explanatory variables is based on an out-of-the sample evaluation 

of the predictive power. 
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We find that the most accurate combination of explanatory variables include both 

experience (measured by cumulative capacity with a one year lag) and silicon price. Based on 

this model and scenarios for the future evolution of the explanatory variables - cumulative 

capacity and silicon price - we are able to predict module price out to 2020.  A 67% decrease 

of module price is predicted between 2011 and 2020. The increase in cumulative capacity is 

responsible for 75% of this evolution and silicon price decrease is responsible for 25% of 

module price reduction. 

The results are then used to derive the Levelised Cost of PV Electricity in 2020.  Our 

findings show that PV can reach conventional technologies’ LCOE in the sunniest areas with 

an annual solar irradiation of 2000 kWh/year or more, such as California, Italy, or Spain. Note 

that these estimates are rather optimistic as the LCOE does not properly take into account 

additional cost of integrating intermittent sources into the grid. 
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Annex 1: Data sources 

 

We use multiple data sources which are listed below. 

(1) Cumulative output and Average prices: 

• 1990-2001: Report PM-52, Five-Year Market Forecast 2002-2007, Strategies 

Unlimited, 2003 (Through Yu, 2008). 

• 2002-2005: Swanson, Progress in Photovoltaics, 2006 (Through Yu, 2008). 

• 2006: Photon International magazine (Through Yu, 2008). 

• 2007 to 2011: Photon consulting annual reports 

 

 (2) Plant size: 

• 1990-2001: Nemet (2007), Policy and Innovation in Low-Carbon Energy 

Technologies Chart 4, 

• Page 170: (Yu (2008 obtained these data from Nemet’s plant size figure.) 

• 2002-2003: Photon International magazine, 7-2003, Page 42. 

• 2004-2005: Photon International magazine, 1-2005, Page 42. 

• 2006: Photon International magazine, 4-2006, Page 42. 

• 2007-2009: Photon international magazine, cell and module production survey 2007, 

2008, 2009, 2010, and 2011. A proxy has been constructed by the average production 

of the 15 biggest firms. 

 

(3) Silver price: 

• 1990-20011, Silver Institute website, http://www.silverinstitute.org/site/silver-price/ 

 

(4) Silicon price: 

• 1990-2002: Nemet (2007), (Through Yu, 2008) 

• 2003: Photon International magazine, 4-2006, Page 30. 

• 2004: Photon International magazine, 9-2006, Page 139. 

• 2005-2006: Photon International magazine, 12-2007, Page 115. 
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• 2007-2011: Photon Consulting annual reports 

 

(5) R&D knowledge stock 

• 1990-2007: Author. The R&D knowledge stock has been computed with the number 

of patent families as proxy for innovation according to the methodology developed by 

Dechezleprêtre et al. (2011). A patent family is the set of patents granted in different 

countries for the same innovation. Therefore one patent family represent one 

innovation. We use an annual depreciation rate of 10% to account for technology 

obsolescence, but no lag since we use patent and not R&D expenditure. The patent 

data set comes from the European Patent Office website (http://www.epo.org/) 
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Annex 2 MAPE of the specifications with cumulative capacity as proxy 

for experience 

 

 

Note: The specifications including R&D (5,8,10,11,13,14,15,16)  end after a time horizon of 7 years because 

we do not have data for R&D after 2007, so no long-term evaluation could be conducted. 
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Annex 3: Assumptions for the LCOE simulation: 

 

Each year, the quantity of electricity produced is equal to PR * ASI where PR is the 

Performance Ratio of the installation (the ratio of the actual and theoretically possible energy 

output) and ASI is the Annual Solar Irradiation (the sum of the quantity of solar energy 

reaching the installation over a year). 

Performance ratio = 0.75 

Lifetime: from 25 years in 2011 to 35 in 2020 

Operation and maintenance costs: 6% of system cost 

The module accounts for around 30% of the price of a residential system, 40% of a 

commercial system, and 60% of the cost of a utility plant. 

Price evolution of components is derived by extrapolating the projections made by Photon 

Consulting in 2012. 
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i See for example Dutton and Thomas (1984) who study the results of 108 experience curves in 22 industrial 

sectors 

ii Note that public policies are justified because a share of these cost reductions are external in the sense that they 

do not benefit only the companies which install these capacities due to learning spillovers (Flint, 2009). As a 

result the private return of installing PV panels is less than their social return. 
iii To overcome this issue, Ferioli et al. (2009) propose to consider overall costs as the sum of cost dynamics 

for individual subsystems. 

iv Other input prices such as flat glass price and synthetic rubber price, but found never significant. 

v Results for the other estimations are available upon request. 
vi The Variance Inflation Factor (VIF) of the regression from 1990 to 2011 with experience and silicon price is 

1.64. Since 10 is the maximum acceptable with a 0.1 tolerance value, this does not show multicollinearity. 

vii The VIF are 159 for experience and scale, and 30.9 for experience and R&D, the regression with R&D ending 

in 2007. This shows important multicollinearity. 

viii The VIF for silver price is 5.95. 
ix Photon Consulting annual report 2012, p.149, prediction until 2015. Predictions from 2016 to 2020 have been 

made using the same trend in the CAGR. 

x Solarbuzz, Marketbuzz 2012 (annual market report), p.254, prediction until 2016. Predictions from 2017 to 

2020 have been made using the same trend in the CAGR. 

xi EPIA (Global market outlook for photovoltaic until 2016), EPIA, May 2012. Predictions from 2017 to 2020 

have been made following the same trend in the CAGR. 

xii The International Energy Agency predicted a lower cumulative capacity of 210 GW in its roadmap in 2010. 

However, this scenario is two years older than those from the EPIA, and the prediction for 2010 have already 

shown an important underestimation of 30% (27 instead of 40 GW). Therefore we do not consider this scenario. 
xiii Source: Sun & Wind Energy, 2011 

xiv Source: http://www.pv-magazine.com/news/details/beitrag/report-finds-silicon-market-recovering-on-the-

back-of-solar-demand_100003385/ 
xv Source: Photon Consulting (2012), p. 84 

xvi Source : http://solargis.info/ 
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