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Abstract

Except in few locations, photovoltaic generatedcteieity remains considerably more
expensive than conventional sources. It is howexpected that innovation and learning-by-
doing will lead to drastic cuts in production costhe near future. The goal of this paper is to
predict the cost of PV modules out to 2020 usingeelence curve models, and to draw
implications about the cost of PV electricity. Usiannual data on photovoltaic module
prices, cumulative production, R&D knowledge st@eid input prices for silicon and silver
over the period 1990 — 2011, we identify a expegenurve model which minimizes the
difference between predicted and actual moduleepridhis model predicts a 67% decrease
of module price from 2011 to 2020. This rate implibat the cost of PV generated electricity
will reach that of conventional electricity by 20R0the sunniest countries with annual solar
irradiation of 2000 kWh/year or more, such as @afifa, Italy, and Spain.

Key words: Learning curve; solar photovoltaic eryegpst prediction



1 Introduction

Experience curves, also called learning curvesyagely used to predict cost paths in the
mid- to long-term. In its simplest form, an expeade curve relates production costs to the
accumulation of experience (often measured by cativel production). Experience curves
are based on the theory of learning-by-doing wiaisberts that “technical change in general
can be ascribed to experience, that it is the aetivity of production which gives rise to
problems for which favourable responses are seleoter time” (Arrow, 1962). Strong

empirical support has been demonstrated througtpjtication across various industfies

In the solar photovoltaic (PV) industry, experiertgves are of particular importance in
policy discussions surrounding the role of solathia transition towards low carbon energy
systems. PV technology is not yet competitive agfaconventional energy sources. It is
however expected that, given sufficient suppotthe short-run, the industry will experience
important cost reductions through learning-by-dowigch will lead to important gains in the
future. In addition to the public goods natureezfrhing and existence of learning spilloVers

this provides the rationale for public policiesstgqpport the deployment of PV installation.

In this policy context, quantitative evaluationngiexperience curves can inform a number
of important questions. For example, what retumtarms of the magnitude of the cost
decrease, can one expect in the future by suppgottie development of the market in the
short-run? What is the optimal pace at which publibsidies should be reduced? Analysis
can help to prevent repeating mistakes from thentepast. For instance, over-pessimistic
anticipation of cost reductions led to an uncoidPV market boom in Spain in 2008 and in
France in 2010, triggering subsequent sharp paobeisions (a cap on installations in Spain

and a three-month moratorium together with a drastt in the feed-on tariff level in France).



This stop-and-go policy was devastating, resulimdozens of bankruptcies and thousands of
job losses in the local PV industry. Reliable cpstdiction is therefore crucial to the

sustainable development of this industry.

In this paper, we seek to predict the cost of P\Mahes production out to 2020 using
experience curves, and thereby the cost of PV g&utkrelectricity. As mentioned,
experience curves in their basic form are derivedelgressing the module price (a proxy for
the cost) on experience measured by cumulativeugtamh. In the recent literature, additional
explanatory variables have been included, suchnastiprice, scale, or research and
development (Isoard and Soaria, 2001, Kobos eR@06, Yu et al., 2011However, little
attention has been paid thus far on the influeria@dding these explanatory variables on the
predictive power of the model. This paper aims itotliis gap, by explicitly addressing
methodological issues that influence the identdyiand selecting of the most reliable

experience curve model.

This paper uses annual world average data on mautide, cumulative capacity, plant
size, silicon and silver price, and the R&D knovgedstock from 1990 to 2011, to find a
specification that gives the best predictive powele. that minimizes the difference between
predicted and realized module prices. The modethen used to make out-of-sample

predictions out to 2020.

Possible additional variables are identified thfosgrveying the literature on experience
curves for PV modules. We restrict the analysisntodules because they are standard
products for which price information is readily dshle (world average prices expressed in
dollar per Watt-peak for standard conditions). Alsive measures of PV costs were

considered but deemed unsuitable for the estimatfoa global experience cufeon PV



technology (and implications for PV generated eieity). For example, other components of
PV systems like inverter, battery, and wires ar¢ specific to the PV industry. Other
observable factors that influence output such smllation costs and sunlight availability are

dependent on local conditions.

The majority of existing studies on PV modules ogl@bal scale use experience as the
only explanatory variable, with an average learnmaig of 20.9% (see the references below).
Three studies include other variables: R&D, scalégon price, or/and silver price. Our
contribution is to carry out a systematic analysish respect to the inclusion of such

variables, to derive a combination with the bestptive power.

This analysis shows that supplementing experiente silicon price series best predicts
module costs. Based on this model, a 67% cost dgers predicted between 2011 to 2020,

75% of this evolution being attributed to experignand 25% to the fall in silicon price.

The remainder of this paper is structured as fdtowhe next section presents the
experience curve model and a critical survey of litezature applied to PV modules. We
perform an out of sample evaluation to choose #st bpecification of the model in section
three. Section four presents scenarios for modwst wntil 2020 based on the best
specification, and section five the implications RV electricity’s competitiveness. Section

six concludes.

2 Literaturereview

Experience curves are classical econometric madeiich the key explanatory variable
is experience, as measured by cumulative produciocumulative installed capacity. The

simplest specification is defined by:



P, =Py Yt_E (1)

whereP; is the price of one unit of output at tiheThis price is a proxy for costyPis the
price of the first unit, andl; is cumulative output dt E captures the experience parameter. A
related indicator is the learning rate giving tleegentage of change in cost corresponding to a

doubling of experience:
Learning rate= 1 -2

A learning rate of 0.1 means, for instance, that gost decreases by 10% for each
doubling of experience. To estimate E econometyic#the following specification can be

derived from (1):
log(P,) = log(Py) — Elog(Y,) + &,
with g;, an i.i.d. error term.

We find 17 studies that estimate one-variable egustwith module price as the
dependent variable (see Table 1). They differ imgeof time frame used for the estimation,
geographical scale, and data source. The averagarg rate is 20.2%. The standard error
for studies on a global scale is 3.2%, and 7.6%eXperience curves estimated at the country

level. We explain this difference below by the éxce of knowledge spillovers.



Table 1 Review of experience curves of PV moduleswith experience asonly explanatory variable

Study Geographical Time Learning Data Sour ce
scale frame rate
Maycock & Wakefield i 0
(1975) Global 1965-1973 20.0%| n.a.
Tsuchiya (1992) Japan 1979-1988 19.0% n.a.
Williams and Terzian (1993) Global 1976-1992 18.4%Strategies Unlimited
Cody and Tiedje (1997) us 1976-1988 22.0% Maycock
Tsuchiya (1999) Japan 1979-1998 17.6% n.a.
1976-1984 16.0% :
IEA (2000) Global 1987-1996 51.0% EU-Atlas and Nitsch (1998)
Harmon (2000) Global 1968-1998 20.2% Maycock
Wiliams (2002) Global 1976-2000 20.0% Strategie$irbited
1981-2000 22.8%
Parente et al. (2002) Global 1981-1990 20.2% | Maycock
1991-2000 22.6%
. 1976-2002 25.0%
Poponi (2003) Global 1989-2002 19.5% Maycock
1976-2001 20.0% . -
Schaeffer (2004) Global 1087-2001|  23.0% | Svategies Unlimited
Germany 1992-2001 10.0%| Photex database
Germany 1992-2000 15.0%
Papineau (2004) Switzerland 1992-2000  10.0%| Extool Project, IEA
us 1992-2001 32.0%
us 1992-2001 20.0%| US DOE
1978-2001 26.0% Maycock
Nemet (2006) Global 1976-2001 17.0% | Strategies Unlimited
1976-2001 20.6%
Van Sark (2006) Global 1981-1990 16.6% | Strategies Unlimited
1991-2000 29.6%
Swanson (2006) Global 1979-2005 19.0%  Strategidisnidad & other
Van Sark (2008) Global 1976-2006 20.6%  Stratedmgmited & other
1976-2003 22.8% . -
Breyer et al. (2010) Global 1976.2010 19.3% Strategies Unlimited & othe

Total cost may also be driven down by factors othen experience (Hall and Howell,

1985) that are omitted in the base model:

» Other forms of learning, including learning-by-sg#ang (brought by R&D), learning-

by-using (through feed-backs from users which h&psmising the product), and




learning-by-interacting (transfer of knowledge beén users, producers, research
institutes and policy makers due to knowledge nets)aKamp, 2004).

Knowledge spillovers, that is, the flow of knowledghat has benefits outside the
organisation where it has been created, but witlautomatic market compensation.
Spillovers are more important between firms thate ageographically or
technologically close. For experience curves at fthma scale, they induce a cost
reduction that is not generated by the firm’s owipezience, thus altering the
experience parameter. However, for global expedenoves based on world average
cost, spillovers are included in the global expaeeffect. It explains the difference
previously noted in Table 1 between country-level sorld-level studies.

Scale effect, which is the unit cost variation esponding to an increase in
production scale at the plant level.

Product standardisation, reducing transaction dodtee industry.

To account for some of these factors, in more reaaalysis, new explanatory variables

such as input price, R&D, or scale effect have beeluded in three studies, leading to more

complex experience curves (Table 2). Kobos e8l0§) find that R&D through learning-by-

searching has a significant positive effect. Isoand Soria (2001) find constant return to

scale. However, allowing for a flexible value oétpharameter, they find decreasing return to

scale before 1994. With more recent data, Yu e{28l11) find increasing return to scale.

These contradicting results are inconsistent wille tonstant parameters hypothesis.

However, the variability of the scale parameter rbaydue to multicollinearity increasing the

variance of the estimator. Yu et al. (2011) findteong positive effect of silicon price on

module price. They also find a slight negative dffef silver price, explaining it by a

substitution effect with other inputs.



The average learning-by-doing rate found by expegecurves with several explanatory
variables in Table 2 is 13.7%, markedly lower tHearning rates found in models with
experience only (20.9% on a global scale). Thisgeats that the experience parameter is
seriously biased when it is the only explanatorgalde as it captures the influence of other

drivers.

The objective of this paper is not, however, todoice unbiased estimates of the learning
rate. Our focus is on identifying the specificatiaith the best predictive power. In this
respect, the addition of explanatory variables twas opposite effects. On the one hand, it
limits the omitted variable bias, which increades predictive power of the model. Yet on the
other hand, it can create multicollinearity if atehal variables are highly correlated to the
other explanatory variables, thus increasing théamae of the estimator and decreasing the
model’'s predictive power. Whether or not to include additional variable is thus an
empirical question. In the next section, we devedod implement an empirical strategy to

select the set of variables that gives the besligirpower.

Table 2 Review of multifactor experience curvesfor PV modules

.| Learning-by- Input price*
Study Time scale ie%rgi?]g sear ching Reil;rg*to Sl Sil
y g (R&D) ilicon ilver
Isoard and Soaria o
(2001) 1976-1994 9.2% - 1 - -
Kobos et al. (2006) 1975-2000 18.4% 14.3% - - -
Yu et al. (2011) 1976-2006 13.5% - 1.066 0.285 13B.

Note: The log-log specification implies that thetirested coefficients reported in the table are

elasticities.



3 Selection of the specification with the highest predictive power

3.1 Methodology

Our methodological approach empirically evaluates predictive power of 33 possible
specifications with different sets of explanatogyigbles. All include an experience variable.
We test two proxies: one half of the specificatiomdudes cumulative capacity; the others
include cumulative capacity with a one year lag,atzount for the time it takes for the
learning process to take place. Apart from the egpee variable, each specification is a
particular combination of four variables identifiedthe literature: R&D, scale, silicon price,

and silver pricé’ The combinations are listed in Table 3.

Table 3: Setsof additional variablesin specifications tested

1) No additional variable 9) Ar and Scale

2) Si (Silicon) 10) Ar and R&D

3) Ar (Silver) 11) Scale and R&D

4) Scale 12) Si, Ar, and Scale

5) R&D 13) Si, Ar, and R&D

6) Si and Ar 14) Si, Scale, and R&D

7) Si and Scale 15) Ar, Scale, and RD

8) Si and R&D 16) All (Si, Ar, Scale, and R&D)

The strategy then involves making predictions amtdgaring the predicted price with the
actual value observed in the data, as we now explausing an example. Using data from
1990 to 2010, the first step involves estimatirg specification, indexed byon a ten-year
period, for instance 1990 to 1999. The estimategtan used to predict the annual module

prices from the subsequent year (2000 in this das2)11, the last year for which we have



historical values. The predictions are based otohcal data for the explanatory variables.
Let P;, denote the predicted price ayJ, the actual value wheigs the specification’s index
andt, the time horizon (1 for the prediction in 200002 2011 in the above example). The

error is given by:

We consider the error relative to the price byngkihe percentage error, because price
decreases quickly. We also consider the absoldtee & these percentage errors, since the

direction of the error can be negative or positive.

This procedure is replicated for all possible tearg periods: from 1991-2000, to 2001 to
2010. The final step is to compute the Mean AbsolBercentage Error (MAPE) of
specification at time horizort defined by:

Pit—Pit

i=1

(2)

where n; is the number of estimations of the specificat@nthis time horizon. This
methodology provides us with the MAPE of the prédits for time horizons between 1 and

11 years for each of the 16 specifications.

3.2 Data

The dataset consists of world average annual vaissdule price, cumulative capacity,
plant size, silicon price, and R&D knowledge stdokm 1990 to 2011, except R&D for
which the data stops in 2007. Data sources aedlist annex 1. The R&D knowledge stock

has been measured using the cumulative numberteftpiamilies as proxy for innovation,

10



according to the methodology developed by Decheztepet al. (2011). A patent family is
the set of patents granted in different countregstiie same innovation. Therefore one patent
family represents one innovation. We use an andepieciation rate of 10% to account for
technology obsolescence. The patent data is obitaireen the European Patent Office.

(http://www.epo.org/)

In Figure 1, we show the evolution of module prndaich in general declines during the
twelve year sample period, except from the slighversal of the trend between 2004 and
2008. The latter corresponds to the period withiodal shortage in silicon supply, pushing
up silicon prices which peaked in 2008 (FigureSllver price (Figure 3) also started to rise
in 2004, due to growing investor’s interest in silwhich modified the supply/demand
balance. Other variables - cumulative capacityles@ad R&D - increased steadily over time,

with the size of the industry.

Figure 1 Evolution of module pricefrom 1990 to 2011
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Source: see Annex 1
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Figure 2 Evolution of silicon and silver pricefrom 1990 to 2011
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3.3 Reaults

Of the 32 estimations conducted, only results lier MAPE are reported in this subsection
in the interest of spacekigure 3 plots the MAPE over time for each of fitespecifications,
where cumulative capacity with one year lag is ussdproxy for experience. These
specifications perform better than those using dative capacity with no lag: the average

MAPE is 41.6% with the lag and 44% without (see &xR).

The numbers marked on each line indicate the spatidn listed in Table 3. The thick and
dark curve represents the MAPE for the classiciipation with experience. It shows that
the best set of explanatory variables is numbeddted curve) with experience and silicon
price. It performs better than the usual specificatvith experience alone, and the addition of
any other explanatory variable decreases the pregligower of the model. We will therefore

use this specification for the prediction beyond 20

12



This result illustrates that adding explanatoryialdes does not necessarily improve
predictive power. It can be interpreted in termshef trade-off between omitted variable bias
and multicollinearity. The inclusion of silicon pe reduces the omitted variable bias. Figure
4 showing the learning rate of experience curvel amd without silicon price shows that the
bias corresponding to the omission of silicon precanportant and temporally not stable due
to the silicon shortage between 2004 and 2009. M@ there is limited risk of loss of
accuracy due to multicollinearity, because the correlation between silicon price and
experience is lowpE0.46). On the contrary, the introduction of scateR&D reduces the
accuracy of the model, because they are highlyetued" to experiencept0.98). Yet the
bias resulting from their omission does not affiéw predictions’ accuracy much: because
their relation with experience is stable, the dffe€ this omitted variable bias in the
predictions accounts for the real effect of thettedivariable. Silver price is less correlated to
experience (=0.78)", but it has only a small effect on module pricen¢e should be left

out.

13



Figure 3 Comparison of MAPE(t) for each model, MAPE(t) being the mean absolute per centage
error accordingtothetimehorizon t
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Note: The specifications including R&D (5,8,10,13,114,15,16) end after a time horizon of 7 years
because we do not have data for R&D after 200vipdong term evaluation could be done.

Figure 4 Learning rates according to the end of the 10 years estimations, for two specifications:
experience only and experience and silicon price.

Learning rate
35%

Experience only
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\ === Experience and silicon price
25% N
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15%
N N\ pd
0% . T . \/

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
End of the 10 years estimation

Note: The learning rate is temporally stable whboos is included in the specification. But with
experience only, the learning rate is not stabe difference corresponds to the omitted variatzde b
due to the omission of silicon price in the model.
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Table 4 shows the regression results for the salespecification that will be used to make
module price predictions below. The estimationquis from 1990 to 2011. The experience

parameter of -0.338 corresponds to a learningafa2®.1%.

Table 4 Results of theregression of log(module price) on log(lagged cumulative capacity) and
log(silicon price) on 1990/2011

LogPrice Coef. Std. Err. t P>|t| [95% Conf. Intdjva
LogExp -0.338 0.010 -34.030 0.000 -0.359 -0.31]
LogSilicon 0.385 0.027 14.300 0.000 0.328 0.441
Constant 2.490 0.073 33.920 0.000 2.336 2.64

4 Prediction of module price beyond 2011

The best specification includes two independentibées: lagged cumulative capacity (one
year) and silicon price. As a next step, we neeabtain plausible projections of the value of
these two explanatory variables until 2020,in otdeuse this model to predict module prices

after 2011.

4.1 Cumulative capacity scenarios

Figure 5 shows the cumulative capacity scenariodenia 2012 by Photon Consultifig
and SolarbuZz the two leading market research companies inPifesector, and by the
European Photovoltaic Industry Association (EPTA) In the following, we consider the two
extreme scenarios, which correspond to Compoundu@in@rowth Rates (CAGRs) of the
market from 15% to 23% (EPIA low and high scemaniespectively) between 2011 and
2020. These CAGRs are much lower than that obsepetdteen 2000 and 2011 (55%)

because lower incentive policies are expected nofg) the main market.
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Figure 5 Cumulative capacity forecast until 2020
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4.2 Silicon price scenarios

We build two scenarios of silicon price evolutiontii2020, as shown in Figure 6. The
first assume a linear decrease from 53%/kg in 20120 $/kg in 2020, corresponding to the
lower-bound price predictions found across markeedasts from 201%. In the second
scenario, the price decreases less, to 40“/kdgnearity is assumed (constant decrease of
silicon price) because, based on the announceniamveo production capacity, the current

oversupply of polysilicon is expected to last ie thng-term.
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Figure 6 Silicon priceforecast until 2020
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4.3 Module price prediction until 2020

We now proceed to forecast the evolution of moghiee, and the results are presented in

Figure 7. The low scenario for module price coroeg}s to the high scenario for PV industry

development, and the low scenario of the silicaneppath. Conversely, the high scenario for

module price corresponds to the low developmerthefindustry and the high scenario for

silicon price. On average, we find a 67% decred&secnlule price from 1.52 $/Wp in 2011 to

0.50%/Wp in 2020. The increase in cumulative cdpais responsible for 75% of this

reduction, and the silicon price decrease for 25%.
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Figure 7 Module price predictions until 2020
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5 Impact on the cost of photovoltaic electricity

In this section, we translate the module price jotemhs out to 2020 in Section 6 to PV
electricity price predictions. We rely on the stardimeasure of the cost of electricity, the
Levelised Cost Of Electricity (LCOE), which is tagerage cost of generating electricity over

the lifetime of the system:

LCOE — Net Present Value (cost of the PV system over the lifetime)

Net Present Value (electricity generated over the lif etime)

Module price accounts for 40% of the total priceanfaverage system in 20'L1We thus
need to make assumptions about the cost of otmep@oents, the type of system, parameters
influencing the quantity of electricity producedchuas sunlight availability and lifetime of

the system, as well as the discount rate.

PV systems can be residential, commercial, or mdlgqutility). Due to economies of

scale, the LCOE is cheaper and modules accourd fogher share of total cost for bigger

18



systems. Typically inverters are replaced oncengdutiie systems’ lifetime. This accounts for
most of the operation and maintenance cost. Therme of the system itself has an influence

on the LCOE.

Sunlight availability, measured by the Annual Solamadiation (ASI), has important
influence on LCOE. For example, the North of Gergnan Alaska has an ASI of 1000
kWh/year, while the south of Spain, Italy, or Cadifia has an ASI of 2000 kWh/year. The
discount rate is also an important determinantes®6% of the cost of a PV system over its
lifetime is capital expenditure (CAPEX). As Brankaral. (2011) noted in a survey of studies
of PV LCOE, the assumptions regarding the discaat¢ are often not made explicit,
although they typically lie between 5% and 10% iostnstudies. We use 6.8%, which is the

rate used by the IEA (2012) to compute LCOEs.

We computed the LCOE for three types of PV systerasidential, commercial, and
utility. Two ASI levels are considered, 1000 kWhdyeand 2000 kWh/year, corresponding
respectively to the north of Germany, and to thengest areas such as California or south of
Spairf"'. The lifetime of the systems is assumed to in&dasm 25 years in 2011 to 35 years

in 2020. The other underlying assumptions aredigteAnnex 3.

Figure 8 shows the predicted LCOE in 2020. Theeddfices in the results illustrate the
importance of the geographic location, and the tgpePV system on the cost of PV
electricity. These results are in line with tho$eBosetti et al. (2012) who predict a LCOE
between 75 and 145 $/MWh for 2030 with an expecditation survey, with the most likely

scenario being 108%/MWh, not differentiating thedtion or the type of system.
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Figure 8 PV LCOE prediction for 2020 with a 6.8% discount rate (sour ce: Author)
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Note: ASI: Annual Solar Irradiation, 1000 kWh/yearresponds to the north of Germany or Alaska,
and 2000 to the south of Spain, Italy, or Califarilypothesis used for the computation of the LCOE
are explained in Annex 3.

Figure 9 compares predictions of LCOEs in 202Ccfarventional electricity sources and a
PV utility system for two locations: with solar aral irradiation of 1000kWh/year, and
2000kWh/year. The results suggest that the avetage of electricity generated with PV

technology will match the cost of conventional tealogies in 2020 in the sunniest places.

Note that these results may or may not underestirtingt actual cost of PV electricity as
the LCOE abstracts the costs involved in systemsitians. For example, large scale
renewables penetration into the electricity sysiamolves costs associated with issues of
intermittent supply, back-up capacity, storage cdpagrid extension and so forth. These
costs are highly uncertain, and depend on manyngssans including the carbon costs

trajectory and the counterfactuals assumed.
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Moreover, the LCOE does not take into account thentry specific load profile. Joskow
(2011) notes that, since the wholesale price aftetity varies throughout the day, different
load profiles with different base- and marginatheologies give different market values for
the electricity produced. This can have eitherg@atige or a positive impact depending on the

synchronisation of the production and demand p@sfil

Figure 9 Comparison of the LCOE of different electricity sources
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Note: ASI stands for Annual Solar Irradiation. 1008h/year corresponds to the north of Germany or
Alaska, and 2000 to the south of Spain, Italy, alif@rnia. The discount rate is 6.8%. Additional
hypothesis used for the computation of the PV LG®Eexplained in annex 3. Source: Author and
EIA, 2012.

6 Conclusion

The objective of this paper is to find the best sldd predict module price and to use it to
forecast module price and photovoltaic (PV) eletiricost out to 2020. The selection of the
best set of combination of explanatory variablebased on an out-of-the sample evaluation

of the predictive power.
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We find that the most accurate combination of exalary variables include both
experience (measured by cumulative capacity witheyear lag) and silicon price. Based on
this model and scenarios for the future evolutibrihe explanatory variables - cumulative
capacity and silicon price - we are able to prediotlule price out to 2020. A 67% decrease
of module price is predicted between 2011 and 208@. increase in cumulative capacity is
responsible for 75% of this evolution and silicomce decrease is responsible for 25% of

module price reduction.

The results are then used to derive the Levelisest Gf PV Electricity in 2020. Our
findings show that PV can reach conventional tetdgies’ LCOE in the sunniest areas with
an annual solar irradiation of 2000 kWh/year or épauch as California, Italy, or Spain. Note
that these estimates are rather optimistic as thOHE does not properly take into account

additional cost of integrating intermittent soura@e the grid.
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Annex 1: Data sour ces

We use multiple data sources which are listed below
(1) Cumulative output and Average prices:

e 1990-2001: Report PM-52, Five-Year Market Forec26102-2007, Strategies
Unlimited, 2003 (Through Yu, 2008).

* 2002-2005: Swanson, Progress in Photovoltaics, Z0&ugh Yu, 2008).

e 2006: Photon International magazine (Through Y@8&0

e 2007 to 2011: Photon consulting annual reports

(2) Plant size:

e« 1990-2001: Nemet (2007), Policy and Innovation irowktCarbon Energy
Technologies Chart 4,

* Page 170: (Yu (2008 obtained these data from Nempédht size figure.)

e 2002-2003: Photon International magazine, 7-20@8ek!2.

e 2004-2005: Photon International magazine, 1-200§eM2.

e 2006: Photon International magazine, 4-2006, P&ge 4

* 2007-2009: Photon international magazine, cell mnadiule production survey 2007,
2008, 2009, 2010, and 2011. A proxy has been amtstit by the average production
of the 15 biggest firms.

(3) Silver price:

¢ 1990-20011, Silver Institute websitgtp://www.silverinstitute.org/site/silver-price/

(4) Silicon price:

e 1990-2002: Nemet (2007), (Through Yu, 2008)

e 2003: Photon International magazine, 4-2006, P&@ge 3

* 2004: Photon International magazine, 9-2006, P&§e 1

* 2005-2006: Photon International magazine, 12-26@ge 115.
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e 2007-2011: Photon Consulting annual reports

(5) R&D knowledge stock

e 1990-2007: Author. The R&D knowledge stock has beamputed with the number
of patent families as proxy for innovation accoglio the methodology developed by
Dechezleprétre et al. (2011). A patent family is et of patents granted in different
countries for the same innovation. Therefore on¢ergafamily represent one
innovation. We use an annual depreciation rate 086 Xo account for technology
obsolescence, but no lag since we use patent anB&D expenditure. The patent
data set comes from the European Patent Officeitegb&p://www.epo.org/)
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Annex 2 M APE of the specifications with cumulative capacity as proxy

for experience

MAPE(t)
150%

100%

50%

O% T T T T T T T T T T

Note: The specifications including R&D (5,8,10,13,14,15,16) end after a time horizon of 7 yearsabee

we do not have data for R&D after 2007, so no ltarga evaluation could be conducted.
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Annex 3. Assumptionsfor the LCOE simulation:

Each year, the quantity of electricity producedeeial to PR * ASI where PR is the
Performance Ratio of the installation (the ratidhe actual and theoretically possible energy
output) and ASI is the Annual Solar Irradiationg(teum of the quantity of solar energy

reaching the installation over a year).
Performance ratio = 0.75
Lifetime: from 25 years in 2011 to 35 in 2020
Operation and maintenance costs: 6% of system cost

The module accounts for around 30% of the pricea akesidential system, 40% of a

commercial system, and 60% of the cost of a ufdignt.

Price evolution of components is derived by exttajing the projections made by Photon
Consulting in 2012.
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