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Abstract

Several state-of-the-art methods for isoform identification and quantification are based on ℓ1-
regularized regression, such as the Lasso. However, explicitly listing the—possibly exponentially—
large set of candidate transcripts is intractable for genes with many exons. For this reason,
existing approaches using the ℓ1-penalty are either restricted to genes with few exons, or only
run the regression algorithm on a small set of pre-selected isoforms.

We introduce a new technique called FlipFlop which can efficiently tackle the sparse esti-
mation problem on the full set of candidate isoforms by using network flow optimization. Our
technique removes the need of a preselection step, leading to better isoform identification while
keeping a low computational cost. Experiments with synthetic and real RNA-Seq data confirm
that our approach is more accurate than alternative methods and one of the fastest available.

Source code is freely available as an R package from the Bioconductor web site (http://www.
bioconductor.org/) and more information is available at http://cbio.ensmp.fr/flipflop.

1 Introduction

Over the past decade, quantitation of mRNA molecules in a cell population has become a popular
approach to study the effect of several factors on cellular activity. Typical applications include the
detection of genes whose expression varies between two or more populations of samples (differential
analysis), classification of samples based on gene expression (van’t Veer et al., 2002), and clustering,
which consists of identifying a grouping structure in a sample set (Perou et al., 2000). While probe-
based DNA microarray technologies only allow to quantitate mRNA molecules whose sequence is
known in advance, the recent development of deep sequencing has removed this restriction. More
precisely, RNA-Seq technologies (Mortazavi et al., 2008) allow the sequencing of cDNA molecules
obtained by reverse transcription of RNA molecules present in the cell. Consequently, any transcript
can be sequenced and therefore quantitated, even though its sequence might not be available a priori
for designing a specific probe. In addition to facilitating the study of non-coding parts of known
genomes and organisms whose genome has not been sequenced (Mortazavi et al., 2010), RNA-Seq
technologies facilitate the quantitation of alternatively spliced genes. Genes in eukaryote cells indeed
contain a succession of exon and intron sequences. Transcription results in a pre-mRNA molecule
from which most introns are removed and some exons are retained during a processing step called
RNA splicing. It is estimated that more than 95% of multiexonic genes are subject to alternative
splicing (Pan et al., 2008): the set of exons retained during splicing can vary, resulting for the same
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gene in different versions of the mRNA, referred to as transcripts or isoforms. Identification and
quantification of isoforms present in a sample is of outmost interest because different isoforms can
later be translated as different proteins. Detection of isoforms whose presence or quantity varies
between samples may lead to new biomarkers and highlight novel biological processes invisible at
the gene level.

Sequencing technologies are well suited to transcript quantitation as the read density observed
along the different exons of a gene provide information on which alternatively spliced mRNAs were
expressed in the sample, and in which proportions. Since the read length is typically smaller than
the mRNA molecule of a transcript, identifying and quantifying the transcripts is however difficult:
an observed read mapping to a particular exon may come from an mRNA molecule of any transcript
containing this exon. Some methods consider that the set of expressed isoforms (Jiang and Wong,
2009) or a candidate superset (Huang et al., 2013; Xing et al., 2006) is known in advance, in which
case the only problem is to estimate their expression. However little is known in practice about
the possible isoforms of genes, and restricting oneself to isoforms that have been described in the
literature may lead to missing new ones.

Two main paradigms have been used so far to estimate expression at the transcript level while
allowing de novo transcript discovery. On the one hand, the Cufflinks software package (Trap-
nell et al., 2010) proceeds in two separate steps to identify expressed isoforms and estimate their
abundances. It first estimates the list of alternatively spliced transcripts by building a small set
of isoforms containing all observed exons and exon junctions. In a second step, the expression of
each transcript is quantified by likelihood maximization given the list of transcripts. Identifica-
tion and quantification are therefore done independently. On the other hand, a second family of
methods (Xia et al., 2011; Li et al., 2011b; Bohnert and Rätsch, 2010; Li et al., 2011a; Mezlini
et al., 2013; Behr et al., 2013) jointly estimates the set of transcripts and their expression using a
penalized likelihood approach. These methods model the likelihood of the expression of all possible
transcripts, possibly after some preselection, and the penalty encourages sparse solutions that have
a few expressed transcripts.

The two-step approach of Cufflinks (Trapnell et al., 2010) is reasonably fast, but does not ex-
ploit the observed read density along the gene, which can be a valuable information to identify
the set of transcripts. This is indeed a conclusion drawn experimentally using methods from the
second paradigm (see Xia et al., 2011; Li et al., 2011b; Bohnert and Rätsch, 2010; Li et al., 2011a;
Mezlini et al., 2013). To summarize, the first paradigm is fast but can be less statistically powerful
than the second one in some cases, while the second paradigm suffers from the exponential number
of candidate isoforms and becomes intractable for genes with many exons. The contribution of
this paper is to allow ℓ1-penalized regression methods from the second family to run efficiently
without pre-filtering the set of isoform candidates, although they solve a non-smooth optimization
problem over an exponential number of variables. To do so, we show that the penalized likelihood
maximization can be reformulated as a convex cost network flow problem, which can be solved
efficiently (Ahuja et al., 1993; Bertsekas, 1998; Mairal and Yu, 2012). Note that a significantly
different approach was adopted by Behr et al. (2013) for non-convex ℓ0-penalty. Even though the
problem they address is NP-hard, they perform simultaneous isoform identification and quantifica-
tion, without explicitly enumerating all possible transcripts, by using mixed integer programming
techniques.

The paper is organized as follows. Section 2 introduces the statistical model (Section 2.1) and
the penalized likelihood approach (Section 2.2) we follow. Our model is similar to the one used
by Xia et al. (2011), but properly models reads that cover more than two exons, effectively taking
advantage of longer reads. We then reformulate the model as a path selection problem over a
particular graph (Section 2.3), and present in Sections 2.4-2.6 our method called FlipFlop (Fast
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Lasso-based Isoform Prediction as a FLOw Problem) for solving it efficiently. Section 3 empirically
compares our approach with the state of the art on simulated and real sequencing data. Our
experiments show that our approach has higher accuracy in isoform discovery than methods which
treat discovery and abundance estimation as two separate steps, and that it runs significantly faster
than methods explicitly listing the candidate isoforms. We discuss the implications of our results
in Section 4.

2 Method

Our approach to isoform deconvolution from RNA-Seq data consists of fitting a sparse probabilistic
model, like several existing methods including rQuant (Bohnert and Rätsch, 2010), NSMAP (Xia
et al., 2011), IsoLasso (Li et al., 2011b), SLIDE (Li et al., 2011a) or iReckon (Mezlini et al., 2013).
The reads from RNA-Seq data are modeled as a linear combination of isoforms expressions that are
estimated by using the maximum likelihood principle. Because the number of candidate isoforms
grows exponentially with the number of exons, the above methods are either computationally
expensive for genes with many exons (such as NSMAP or SLIDE), or include a preselection step
to reduce the number of candidates, which may alter the method accuracy.

The main novelty of our paper is to tackle the sparse estimation problem efficiently without

pre-filtering. In the methodological section, we show that the corresponding penalized maximum
likelihood estimator can be computed in polynomial time with the number of exons despite the
exponential number of candidate transcripts. The key is the use of a non-trivial optimization
technique based on the concept of flow in a graph (Ahuja et al., 1993; Mairal and Yu, 2012).

2.1 Statistical Model

We consider an extension of the model originally introduced by Jiang and Wong (2009) and used in
NSMAP for estimating isoform expression for a known set of expressed transcripts. Given a gene
of interest, we assume that the list of its n exons is known, and that the reads of the RNA-Seq
experiments have been mapped to a reference genome. For the purpose of our work, an exon can
either be defined by read alignment softwares as a cluster of reads, or from a pre-defined annotation
such as the one provided by the UCSC genome browser1. In the latter case, exons with alternative
5’ donor and 3’ acceptor sites are considered as two separate exons. For alternative 5’ donor sites,
the exon is broken down as one exon ending at the first 5’ donor site, and another one starting at
this same point and ending at the second 5’ donor site (similarly for exons with 3’ acceptor sites).

We define a bin to be an ordered set of exons. Each read is assigned to a unique bin, corre-
sponding to the exact set of exons that it overlaps. Our model can involve bins with more than two
exons. It is thus more general than the one of NSMAP, where bins are simply exons and exon-exon
junctions. This extension of NSMAP is particularly useful for long reads, which often cover more
than two exons. We summarize the read information by the counts y1, . . . , yq of reads falling in q

different bins.
We consider in our model all m possible candidate isoforms consisting of an ordered sequence

of exons. Each candidate isoform corresponds to a unique sequence of bins. This sequence can be
generated by virtually moving a read along the candidate isoform, and recording the sets of exons
that it successively overlaps.

The effective length li of a bin i is defined as the number of positions in the candidate isoform
where reads can start and be assigned to the bin. A simple computation shows that for a bin

1http://genome.ucsc.edu/

3



involving a single exon of length le, we have li = le − L + 1, where L is the read length, while for
bins involving several exons, li = min(lleft, L− lint− 1)+min(lright, L− lint− 1)−L+ lint+1, where
lleft and lright are the lengths of the leftmost and rightmost exons of the bin, and lint is the total
length of the internal exons of the bin. Interestingly, we note that the effective length of a bin does
not depend on the candidate isoform it is associated with. A figure illustrating the computation of
the effective length is given in section 1 of the supplementary material.

We model read counts as independent Poisson random variables whose means are proportional
to the bins’ effective lengths and to the total abundances of isoforms associated to each bin. More
formally, let us denote by U the m × q binary matrix defined as Uji = 1 if bin i is associated to
isoform j and 0 otherwise, and by θj ∈ R+ the expression of isoform j (the expected number of
reads per base in isoform j). Thus,

∑m
j=1 Ujiθj represents the sum of expressions of all isoforms

involving bin i. We expect the observed count for bin i to be distributed around this value times
the effective length of the bin li, and therefore model the read count yi as a Poisson random variable
with parameter δi = li

∑m
j=1 Ujiθj . For a vector θ = [θj ]

m
j=1 in R

m
+ this yields the log-likelihood

L(θ) =

q
∑

i=1

[−δi + yi log δi − log(yi!)] , (1)

where the scalars δi depend linearly on θ.
Maximizing the likelihood (1) allows to quantify the relative abundance of each transcript when

the model only includes the list of “true” isoforms present in the sample (Jiang and Wong, 2009).
Since this list is unknown a priori, we present in the next section the sparse estimation approach
that can jointly quantify and identify the transcripts using all candidate isoforms, following Xia
et al. (2011).

2.2 Isoform Detection by Sparse Estimation

Since we do not assume that the list of expressed isoforms—i.e., such that θj 6= 0—is known in

advance, we endow θ with an exponential prior θj
iid
∼ E(λ) and maximize over all candidate isoforms

the resulting posterior likelihood, leading to the estimator

θ̂λ = argmin
θ∈Rm

+

[−L(θ) + λ‖ θ ‖1] , (2)

where λ is a regularization parameter, and the ℓ1-norm is defined as ‖ θ ‖1 =
∑m

j=1 |θj |. It is well-
known that the ℓ1-norm penalty and the non-negativity constraint have a sparsity-inducing effect
— that is, lead to estimators θ̂λ that contain many zeroes (Tibshirani, 1996). The parameter λ

controls the number of non-zero elements in the solution θ̂λ, i.e., of selected isoforms, with larger
λ corresponding to fewer isoforms.

Mezlini et al. (2013) claim that the ℓ1-penalty is inappropriate for isoform selection, a claim we
disagree with. As they note, the sum of true abundances in RPKM weighted by isoform lengths
is by definition the true proportion of reads coming from the gene times 109. They conclude that
penalizing by

∑

j θj has little effect on the estimate. However, the sum of the estimator θ̂λ weighted
by isoform lengths has no reason to be equal to the observed number of reads mapping to the gene.
There are several causes for that: model inadequacy, various noise sources, finite sample size, and
bias of the estimator. Penalizing this sum therefore modifies the sparsity level of θ̂λ as observed in
our and other’s experiments (Bohnert and Rätsch, 2010; Xia et al., 2011; Li et al., 2011a,b).

Note also that (2) is better adapted to long reads than the original formulation of NSMAP (Xia
et al., 2011) thanks to the use of general bins. rQuant (Bohnert and Rätsch, 2010), IsoLasso (Li
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et al., 2011b), and SLIDE (Li et al., 2011a) solve a similar problem where the likelihood is a simpler
quadratic function, corresponding to a Gaussian model for the read counts. A difficulty with these
approaches is that the dimension m grows exponentially in n making (2) intractable when n is large.
For example, Li et al. (2011a) restrict themselves to experiments involving genes with less than 10
exons, due to the high computational cost for larger genes. Xia et al. (2011) restrict themselves to
genes with less than 80 exons, but only consider candidates with transcription start/polyadenylation
sites (TSS/PAS) pairs already observed in annotations, and which involve more than half of the
exons of the gene. Other approaches such as IsoLasso include a filtering step to reduce the number
of isoforms, similarly as Cufflinks does — in the case of single-end reads, their set of candidates
is the set of isoforms returned by Cufflinks. As pointed out in Section 1, this filtering may lead
to a loss of power in isoform detection, because it disregards the read density information when
constructing the set of candidates. In the next section, we show that, surprisingly, problem (2) can
be solved efficiently without pre-filtering the isoforms by using network flow algorithms.

2.3 Isoform Detection as a Path Selection Problem

In this section, we reformulate the isoform detection problem as a path selection problem over a
particular graph. Remember that a graph G = (V,E) is composed of a finite set of vertices V and
edges E ⊆ V × V . A path is a sequence of vertices v1, . . . , vk ∈ V such that (vi, vi+1) is an arc in
E for all indices 1 ≤ i < k. A graph is a DAG if it contains no path (v1, . . . , vk) with v1 = vk. In
other words, the graph does not contain any cycle.

We construct an oriented graph G = (V,E) whose vertices are the bins with positive effective
length defined in Section 2.1 — each corresponding to an ordered set of exons. An edge connects
bin vi to vj if they can be associated to two reads starting at successive positions in a candidate
isoform. In general, vj is obtained from vi by removing the first exon of its ordered set or by adding
one extra exon at the end of the ordered set, depending on the lengths of the exons composing
the bin (see Figure 1). We call starting bins (respectively stopping bins) the bins that can contain
a read at the left-most (respectively right-most) position of an isoform. The resulting graph is a
DAG generalizing the splicing graph (Heber et al., 2002), whose vertices are single exons and edges
are exon-exon junctions.

We also consider two new vertices s and t respectively dubbed source and sink, and connected
to all starting (resp. stopping) bins. We do not impose any restriction on the set of TSS/PAS sites
and each exon can potentially start or end an isoform. Consequently, the source is connected to
all bins modeling an exon start, and the sink to all bins modeling an exon end. This leads to the
definition of an extended graph G′ = (V ′, E′) with V ′ = V ∪ {s, t} and E′ is obtained by adding to
E all edges of the form (s, v) where v ∈ V is a starting bin, and (v, t) where v ∈ V is a stopping bin.
This graph construction is illustrated in Figure 1. Montgomery et al. (2010) use a similar graph
structure in the context of estimating the expression of a set of known annotated transcripts.

Let us denote by P the set of paths in G′ starting from s and ending at t, which are called (s, t)-
paths. By construction, one easily checks that P is in bijection with the set of candidate isoforms,
the path in G′ corresponding to a candidate isoform being the set of bins that reads generated from
the isoform can produce. Based on this one-to-one mapping, we can reformulate the penalized
maximum likelihood problem (1)-(2) as follows: we want to find nonnegative weights θp for each
path p ∈ P which minimize:

∑

v∈V

[δv − yv log δv] + λ
∑

p∈P

θp with δv =
(

lv
∑

p∈P:p∋v

θp

)

, (3)

where the sum
∑

p∈P θp is equal to the ℓ1-norm ‖θ‖1 since the entries of θ are non-negative. Note
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(a) Splicing graph for a gene with 5 ex-
ons.
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(b) Graph G′ when all exons are bigger than the read length.
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(c) Graph G′ when the length of exon 3 is smaller than the read
length.

Figure 1: Illustration of the graph construction for a gene with 5 exons. The original splicing graph
is represented in (a). The 5 exons are represented as vertices and an arrow between two vertices
indicates a junction. The nodes of graph G′ in (b) and (c) are bins with positive effective length
denoted by gray square, as well as source s and sink t represented as circles. G′ in (b) is the resulting
graph when all exons are bigger than the read length. In that case, each bin either corresponds to
a unique exon, or to a junction between two exons. G′ in (c) is the resulting graph when the length
of exon 3 is smaller than the read length. Some bins involve then more than two exons, here bins
(2-3-4) and (2-3-5). The source links all possible starting bins and conversely all possible stopping
bins are linked to the sink. There is a one-to-one correspondence between (s, t)-paths in G′ (paths
starting at s and ending at t) and isoform candidates. For example, the path (s, 1, 1-4, 4, 4-5, 5, t)
corresponds to isoform 1-4-5.
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(a) Reads at every node corresponding to one isoform.
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(b) Reads at every node after adding another isoform.

Figure 2: Flow interpretation of isoforms using the same graph as in Figure 1(b). For the sake of
clarity, some edges connecting s and t to internal nodes are not represented, and the length of the
different bins are assumed to be equal. In (a), one unit of flow is carried along the path in red,
corresponding to an isoform with abundance 1. In (b), another isoform with abundance 3 is added,
yielding additional read counts at every node.

that we have removed the constant term log(yv!) from the log likelihood since it does not play a
role in the optimization. This reformulation is therefore a path selection (finding which θp are non-
zero) and quantification problem over G′. The next section shows how (3) can further be written
as a flow problem, i.e., technically a constrained optimization problem over the edges of the graph
rather than the set of paths in P. A computationally feasible approach can then be devised to
solve (3) efficiently, following Mairal and Yu (2012).

2.4 Optimization with Network Flows

A flow f on G′ is defined as a non-negative function on arcs [fuv](u,v)∈E′ that satisfies conservation
constraints: the sum of incoming flow at a vertex is equal to the sum of outgoing flow except for
the source s and the sink t. Such conservation property leads to a physical interpretation about
flows as quantities circulating in the network, for instance, water in a pipe network or electrons in
a circuit board. The source node s injects into the network some units of flow, which move along
the arcs before reaching the sink t.

For example, given a path p ∈ P and a non-negative number θp, we can make a flow by setting
fuv = θp when u and v are two consecutive vertices along the path p, and fuv = 0 otherwise. This
construction corresponds to sending θp units of flows from s to t along the path p. Such simple flows

are called (s, t)-path flows. More interestingly, if we have a set of non-negative weights θ ∈ R
|P|
+

associated to all paths in P, then we can form a more complex flow by superimposing all (s, t)-path
flows according to

fuv =
∑

p∈P:p∋(u,v)

θp, (4)

where (u, v) ∈ p means that u and v are consecutive nodes on p.
While (4) shows how to make a complex flow from simple ones, a converse exists, known as

the flow decomposition theorem (see, e.g., Ahuja et al., 1993). It says that for any DAG, every
flow vector can always be decomposed into a sum of (s, t)-path flows. In other words, given a flow

[fuv](u,v)∈E′ , there exists a vector θ in R
|P|
+ such that (4) holds. Moreover, there exists linear-time

algorithms to perform this decomposition (Ahuja et al., 1993). As illustrated in Figure 2, this leads
to a flow interpretation for isoforms.

We now have all the tools in hand to turn (3) into a flow problem by following Mairal and Yu
(2012). Given a flow f = [fuv](u,v)∈E′ , let us define the amount of flow incoming to a node v in
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V ′ as fv ,
∑

u∈V ′:(u,v)∈E′ fuv. Given a vector θ ∈ R
|P|
+ associated to f by the flow decomposition

theorem, i.e., such that (4) holds, we remark that fv =
∑

p∈P:p∋v θp and that ft =
∑

p∈P θp.
Therefore, problem (3) can be equivalently rewritten as:

min
f∈F

∑

v∈V

[δv − yv log δv] + λft with δv = lvfv . (5)

where F denotes the set of possible flows. Once a solution f⋆ of (5) is found, a solution θ⋆ of (3)
can be recovered by decomposing f⋆ into (s, t)-path flows, as discussed in the next section.

The use of network flows has two consequences. First, (5) involves a polynomial number of
variables, as many as arcs in the graph, whereas this number was exponential in (3). Second,
problem (5) falls into the class of convex cost flow problems (Ahuja et al., 1993), for which effi-
cient algorithms exist.2 In our experiments, we implemented a variant of the scaling push-relabel
algorithm (Goldberg, 1997), which also appears under the name of ε-relaxation method (Bertsekas,
1998). Note that the approach can be generalized to any concave likelihood function, including the
Gaussian model used by IsoLasso and SLIDE.

Network flows have been used in several occasions in bioinformatics. Medvedev and Brudno
(2009) solve a convex cost flow problem on a bidirected de Bruijn graph for maximum likelihood
whole genome shotgun assembly. Montgomery et al. (2010) introduced the formalism of flows for
RNA-Seq data; however they did not perform isoform discovery but quantification from a set of
known transcripts. Their formulation is a linear program, the dimension of which is the number of
candidate transcripts considered, which is not a network flow problem. Singh et al. (2011) uses the
terminology of flows for RNA-Seq data in the context of testing differential transcription without
reconstructing transcripts. Finally, while this paper was under revision, Tomescu et al. (2013)
published a similar method which also uses minimum cost flow techniques for isoform recovery.
However, their method only involves bins corresponding to exons and exon-exon junction, and, more
importantly, does not solve the penalized likelihood approach. They have therefore no principled
way to balance the sparsity of the solution with its likelihood, and even mention that this leads
to a NP-hard problem. To our knowledge, our work is the first to show that the sparsity-inducing
ℓ1 penalty can be integrated with the likelihood term in the language of network flow, in order to
estimate a flow with large likelihood that can be easily decomposed in a number of paths as small
as we wish.

2.5 Flow Decomposition

We have seen that after solving (5) we need to decompose f⋆ into (s, t)-path flows to obtain a
solution θ⋆ of (2). As illustrated in Figure 2, this corresponds to finding the two isoforms from 2(b).
Whereas the decomposition might not be ambiguous when f⋆ is a sum of few (s, t)-path flows, it is
not unique in general. Our approach to flow decomposition consists of finding an (s, t)-path carrying
the maximum amount of flow (equivalently finding an isoform with maximum expression), removing
its contribution from the flow, and repeating until convergence. We remark that finding (s, t)-path
flows according to this criterion can be done efficiently using dynamic programming, similarly as
for finding a shortest path in a directed acyclic graph (Ahuja et al., 1993). We insist on the fact
that the flow decomposition returns one solution of the ℓ1-penalized estimator given by problem 3.
This problem can have several solutions yielding the same objective value, and which are typically

2The function (5) can be decomposed into costs Cv(fv) over vertices v. The general convex cost flow objective
function is usually presented as a sum of costs Cuv(fuv) over arcs (u, v). It is however easy to show that costs over
vertices can be reduced to costs over arcs by a simple network transformation (see Ahuja et al., 1993, Section 2.4).
Note that all arcs have zero lower capacities and infinite upper capacities.
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sparse in the number of transcripts (see supplementary material, Figure S2). The non-uniqueness
of the solution is not an artifact of our network flow approach, but a property of the ℓ1-penalized
estimator. Algorithms such as SLIDE, NSMAP, or others that explicitly enumerate the candidates
and minimize the parameter in the candidate space also return one of several solutions. In parallel,
the stability of the estimator is investigated in section 4 of the supplementary.

2.6 Model Selection

The last problem we need to solve is model selection: even if we know how to solve (2) efficiently,
we need to choose a regularization parameter λ. For large values of λ, (2) yields solutions involving
few expressed isoforms. As we decrease λ, more isoforms have a non-zero estimated expression θj ,
leading to a better data fit but also leading to a more complex model. A classical way of balancing
fit and model complexity is to use likelihood ratio tests. Xia et al. (2011) chose this approach, but
we found the log likelihood ratio statistics to be empirically poorly calibrated due to the typically
small number of samples units — exons — and the non-independence of the observed read counts.
We choose a related approach, which we found better behaved, and select the model having the
largest BIC criterion (Schwarz, 1978). An alternative approach taken by Li et al. (2011a) would be
to use stability selection (Meinshausen and Bühlmann, 2010).

3 Results

We now compare our proposed method FlipFlop to Cufflinks (Trapnell et al., 2010) version 2.0.0,
IsoLasso (Li et al., 2011b) version 2.6.1 and NSMAP (Xia et al., 2011) on both simulated and real
data. All experiments were run on a desktop computer on a single core of an Intel Xeon CPU X5460
3.16Ghz with 16Gb of RAM. Reads are aligned to a reference genome by using TopHat (Trapnell
et al., 2009) version 2.0.6, and the constructed alignment files are used as input to the methods we
compare. IsoLasso, Cufflinks, and FlipFlop only use these aligned reads as input, and estimate their
exon boundaries and TSS/PAS from read density. NSMAP additionally requires exon boundaries
and known TSS/PAS as input. For paired-end experiments, we extended our initial model designed
for single-end: a pair of reads is considered as a long single-end read. When the two reads of a
pair span bins potentially separated by some exons, we use heuristics based on genomic distances
to decide wether or not these exons are spliced. All softwares are used with default parameters,
except that for paired-end experiments we provide fragment length mean and standard deviation
to IsoLasso, Cufflinks and FlipFlop. Note that all results can be easily reproduced by following the
tutorials available at http://cbio.ensmp.fr/flipflop/experiments.html.

3.1 Simulated Human RNA-Seq Data

Since little is known about the true set of isoforms expressed in real data, we start our experimental
validation with a set of simulations. We use the RNASeqReadSimulator software3 to generate single-
end and paired-end reads from the annotated human transcripts available in the UCSC genome
browser (hg19). We restrict ourselves to the 1137 multi-exons genes on the positive strand for
chromosome 1, corresponding to 3709 expressed transcripts.

We follow the protocol of Isolasso (Li et al., 2011b) and consider that a transcript from the
annotation has been detected by a method if it predicts a transcript that (i) includes the same set
of exons, and such that (ii) all internal boundary coordinates (i.e., all the exon coordinates except

3
http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
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(a) Single-end reads with different lengths (100, 200, 300bp)

(b) Paired-end reads with different lengths (100, 125, 150, 175bp)

(c) Single-end reads with a fixed 150bp length and an increasing amout of material (1, 5, 10 million)

Figure 3: Precision and recall of compared methods on simulated reads from the UCSC annotated
human transcripts.
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Figure 4: Average CPU times in milliseconds (logarithmic scale) for the compared methods to
process a gene from human simulated 100bp single-end reads.

Figure 5: Precision and recall of compared methods on human embryonic stem cells data.

the beginning of the first exon and the end of the last exon) are identical. The objective for each
method is to recover a large proportion of transcripts that were used for read generation — high
recall — without detecting too many transcripts that were not used to generate the reads — high
precision.

Figure 3 shows the precision and recall of the compared methods on single-end and paired-end
simulations. Since we expect the difficulty of the deconvolution problem to increase with the number
of transcripts of the gene, we stratify the result by this number: each dot represents the precision
and recall of one method for genes with a particular number of transcripts in the UCSC annotation.
As expected, genes with more transcripts lead to more difficult estimation problems and decreased
performances for all methods. Figure 3(a) shows single-end results for different read lengths from
100bp to 300bp and a fixed number of 1 million reads per experiment. FlipFlop clearly takes
advantage of longer reads: the longer the read the better the accuracy for all transcript levels. For
100bp long reads, FlipFlop and Cufflinks show similar results, while NSMAP gives slightly better
precision and recall for 2 transcript level and degraded results compared to FlipFlop for more than
4 expressed transcripts. These differences might arise from the fact that NSMAP restricts its search
to the TSS and PAS observed in the annotation whereas FlipFlop estimates them from reads, and
the fact that the two methods use different graphs and model selection techniques. For 300bp
long reads, FlipFlop outperforms all other methods as soon as there is more than one expressed
transcript. For instance for the 3-4 transcripts level, FlipFlop achieves 75% of precision and 67% of
recall, while Cufflinks reaches 74% and 52% and IsoLasso reaches 64% and 51%. This demonstrates
that an adapted model for long reads is critical for isoform recovery. NSMAP optimizes a similar
Poisson objective function as FlipFlop but only models reads at the exon or exon-exon junction
levels; it looses statistical power when the read length increases. Figure 3(b) shows paired-end
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results for 400bp fragment length, 20bp standard deviation, 1 million read pairs, and read lengths
from 100 to 175bp. Although our model is designed for single-end reads and is particularly adapted
to long reads, it shows competitive or better accuracy for paired-end reads. Once again, when
the read length increases, FlipFlop performance improves proportionally more than other methods.
In Figure 3(c), the read length is set to 150bp and the number of simulated reads varies from 1
million to 10 million. Increasing the coverage clearly helps FlipFlop whereas it does not change
much for Cufflinks and IsoLasso. Indeed Cufflinks constructs its set of transcripts and estimates
their abundances in two separate steps, and the construction of the set of returned transcripts does
not take read density into account: it intends to find the smallest set of isoforms covering all the
observed reads. IsoLasso is based on penalized likelihood maximization like FlipFlop and NSMAP,
but starts from a restricted set of isoforms — the same set returned by Cufflinks for single-end
data. Consequently, this family of methods discards some information that can help identifying
the set of expressed isoforms. While results in Figure 3 are obtained with default parameters for
all methods, Figure S6 of the supplementary shows performances when parameters are first tuned
on an independent training set; in that case results are not significantly different. Note that the
number of exons of a gene significantly affects the difficulty of isoform reconstruction. We show
in the supplementary material (Figure S3) similar results to the ones presented in Figure 3 with a
stratification by number of exons instead of number of transcripts. We also detail in section 6 of
the supplementary material more realistic simulations that include typical library preparation and
sequencing biases using another simulator—the Flux-Simulator (Griebel et al., 2012) which aims
at modeling RNA-Seq experiments in silico—and we show results that are consistent with the ones
of Figure 3.

Figure 4 shows the mean CPU time taken by each method to perform the deconvolution of genes
with different sizes. Genes with more exons tend to have more candidate isoforms and experiments
involving such genes are expected to take more time. Therefore, we stratify the observed times by
exon number of the genes: each barplot represents the mean time taken by each method for finding
the transcripts of genes having a particular number of exons. As expected, FlipFlop is always faster
than NSMAP, more than a hundred times faster for genes with more than 20 exons. FlipFlop speed
is comparable with Cufflinks, and about 4 times slower than IsoLasso. This is because IsoLasso
maximizes its objective over a very restricted set of candidates — in these simulations never more
than 9 and around 2-3 on average. Overall, FlipFlop estimates the set of expressed isoforms for
1137 genes in less than 9 minutes, i.e., about 2 genes per second. Note also that the time for data
pre-preprocessing (finding exon boundaries and read counts for exons and junctions) is taken into
account for all methods except NSMAP.

These simulations confirm several facts. First, methods that identify and quantify transcripts as
a single penalized maximum likelihood problem show good performances and take clear advantage
of an increase in coverage. Second, correctly modeling long reads allows to greatly improve the
accuracy of isoform reconstruction. Third, the proposed network flow strategy allows to solve the
penalized likelihood approach quickly even when the set of candidate isoforms is extremely large.

3.2 Real RNA-Seq Data

Our second round of experiments involves two independent real human embryonic stem cell data
sets. They both contain about 50 million 75bp reads, either paired-end or single-end, with respec-
tively NCBI SRA accession number SRR065504 and ERR361241.

In the experiments of Section 3.1, we generated the reads based on a known set of transcripts.
In the present case, the reads come from actual human tissues, and we do not have access to the
true set of expressed transcripts. Following Xia et al. (2011) and Li et al. (2011a), we choose to use
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the UCSC annotation as ground truth in the evaluation. Admittedly, this is not perfect as some
expressed transcripts may be missing from the annotation, and some annotated transcripts may
not be expressed in this particular experiment. However, agreement of the prediction with the set
of known transcripts could be a good sign.

Figure 5 shows precision and recall of each method for different FPKM levels. When considering
all transcripts with predicted abundances higher than 1 FPKM, FlipFlop has a higher precision for
both the paired-end and single-end data sets, while Cufflinks has a better recall. For transcripts
with more than 5 FPKM abundance, all methods have a similar recall, with a slight advantage
to Cufflinks, while FlipFlop shows a much better precision. Section 7 of the supplementary gives
additional details on the real RNA-Seq data experiments: Figure S8 shows the running time of the
compared methods and Figure S9 corresponds to the precision-recall curves obtained for FlipFop
when varying the model selection rule.

4 Discussion

Simultaneously tackling identification and quantitation using penalized likelihood maximization is
known to be a powerful approach to estimate the set of expressed transcripts. However, existing
ℓ1-regularized regression techniques cannot deal with genes that contain too many exons as the set
of candidate isoforms grows exponentially with the number n of exons. By leveraging network flow
optimization algorithms, we discover a few expressed transcripts among the exponential number of
candidates by solving a problem with a number of variables polynomial in n.

We compared our approach to existing ℓ1-penalized likelihood maximization methods as well
as methods that define expressed isoforms as the smallest set of transcripts covering all observed
reads; the latter methods perform abundance estimation in a separate step. We observed on
simulation data—where the true set of expressed transcripts is known—that, unlike the second set of
methods, penalized likelihood maximization methods take advantage of an increase in read coverage.
Moreover, we show that correctly modeling long reads is of primary importance for isoform recovery.
Our approach, which models reads covering any number of exons, outperforms other methods for
300bp long reads. We believe this is an important improvement as RNA-Seq technologies are moving
forward longer reads. Our FlipFlop method has also shown to be competitive with state-of-the-art
methods on real single-end and paired-end human stem cells data, especially for transcripts whose
abundance was significant. In addition, the runtime of our method was comparable to the runtime
of the second set of methods, and orders of magnitude faster than existing software for penalized
likelihood maximization.

We believe these results have important practical implications. In addition to the obvious
gain in time when estimating the expression of transcripts for a single gene and a single sample,
our approach makes the task amenable in a reasonable amount of time for all genes in a large
number of samples. This is a necessary step for high-throughput differential expression studies at
the transcript level, a direction we are planning to explore in future work. Differential expression
studies were until now restricted to gene level studies, i.e., ignoring the transcript level information,
to cases where the set of expressed transcripts was known in advance or to methods which were not
using the read density to estimate the set of expressed transcripts — a less efficient approach as
illustrated in our experiments. Furthermore, accurately estimating the transcript level expression
for all genes of all samples in a study may lead to improvements in molecular based diagnosis or
prognosis tools, as well as in clustering of samples, e.g for cancer subtype discovery. The ability of
our approach to deal with splicing graphs with potentially hundreds of nodes also paves the way
to efficient de novo transcript identification, where we do not restrict ourselves to annotated exons
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within a single gene.
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Bohnert, R. and Rätsch, G. (2010). rQuant.web: a tool for RNA-Seq-based transcript quantitation. Nucleic Acids Res, 38(Web Server

issue), W348–W351.

Goldberg, A. V. (1997). An efficient implementation of a scaling minimum-cost flow algorithm. J Algorithm, 22(1), 1–29.

Griebel, T. et al. (2012). Modelling and simulating generic rna-seq experiments with the flux simulator. Nucleic Acids Res, 40(20),

10073–10083.

Heber, S. et al. (2002). Splicing graphs and EST assembly problem. Bioinformatics, 18(suppl 1), S181–S188.

Huang, Y. et al. (2013). A robust method for transcript quantification with RNA-Seq data. J Comput Biol, 20(3), 167–187.

Jiang, H. and Wong, W. H. (2009). Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 25(8), 1026–1032.

Li, J. J. et al. (2011a). Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and

abundance estimation. P Natl Acad Sci USA, 108(50), 19867–19872.

Li, W. et al. (2011b). IsoLasso: a LASSO regression approach to RNA-Seq based transcriptome assembly. J Comput Biol, 18,

1693–1707.

Mairal, J. and Yu, B. (2012). Supervised feature selection in graphs with path coding penalties and network flows. preprint

arXiv:1204.4539v1 . to appear in JMLR.

Medvedev, P. and Brudno, M. (2009). Maximum likelihood genome assembly. J Compute Biol, 16(8), 1101–1116.
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