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Abstract

Several state-of-the-art methods for isoform identification and quantification are based on
sparse probabilistic models, such as Lasso regression. However, explicitly listing the – possibly
exponentially – large set of candidate transcripts is intractable for genes with many exons. For
this reason, existing approaches using sparse models are either restricted to genes with few
exons, or only run the regression algorithm on a small set of pre-selected isoforms.

We introduce in this paper a new technique, called FlipFlop, based on network flow opti-
mization which can efficiently tackle the sparse estimation problem on the full set of candidate
isoforms. By removing the need of preselection step, we obtain better isoform identification
while keeping a low computational cost. Experiments with synthetic and real single-end RNA-
Seq data confirm that our approach is more accurate than alternatives methods and one of the
fastest available.

1 Introduction

Over the past decade, quantitation of mRNA molecules in a cell population has become a popular
approach to study the effect of several factors on cellular activity. Typical applications include the
detection of genes whose expression varies between two or more populations of samples (differential
analysis); classification of samples based on gene expression (van’t Veer et al., 2002); and clustering,
which consists of identifying a grouping structure in a sample set (Perou et al., 2000). While probe-
based DNA microarray technologies only allow to quantitate mRNA molecules whose sequence
is known in advance, the recent development of deep sequencing has removed this restriction.
More specifically, RNA-Seq technologies (Mortazavi et al., 2008) allow the sequencing of cDNA
molecules obtained by reverse transcription of RNA molecules present in the cell. Consequently,
any transcript can be sequenced and therefore quantitated, even when its sequence is not available
a priori to design a specific probe. In addition to facilitating the study of non-coding parts of
known genomes and organisms whose genome has not been sequenced (Mortazavi et al., 2010), this
facilitates the quantitation of alternatively spliced genes. Genes in eukaryote cells indeed contain
a succession of exon and intron sequences. Gene transcription results in a pre-mRNA molecule
from which most introns are removed and some exons are retained during a processing step called
RNA splicing. It is estimated that more than 95% of multiexonic genes are subject to alternative
splicing (Pan et al., 2008) : the set of exons — and possibly introns — retained during splicing
can vary, resulting in different versions of the mRNA molecule for the same gene, referred to as
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transcripts or isoforms. Identification and quantification of isoforms present in a sample is of
outmost interest because different isoforms can later be translated as different proteins. Detection
of isoforms whose presence or quantity varies between samples may lead to new biomarkers and
highlight novel biological processes invisible at the gene level.

Sequencing technologies are well suited to transcript quantitation as the read density observed
along the different exons of a gene provide information on which alternatively spliced mRNAs were
expressed in the sample, and in which proportions. Since the read length is typically smaller than
the mRNA molecule of a transcript, identifying and quantifying the transcripts is however non-
trivial : an observed read mapping to a particular exon may come from an mRNA molecule of
any transcript containing this exon. Some methods consider that the set (Jiang and Wong, 2009)
of expressed isoforms or a candidate superset (Huang et al., 2012; Xing et al., 2006) is known in
advance, in which case the only problem is to estimate their expression. However in practice little
is known about the possible isoforms of genes, and restricting oneself to isoforms which have been
described in the literature may lead to missing new ones.

Two main paradigms have been used so far to estimate expression at the transcript level while
allowing de novo transcript discovery. On the one hand, the widely used Cufflinks software pack-
age (Trapnell et al., 2010) proceeds in two separate steps to identify expressed isoforms and estimate
their abundances. The list of alternatively spliced transcripts is estimated by building a small set
of isoforms containing all observed exons and exon junctions. The expression of each transcript is
then quantified in a separate step by likelihood maximization given the list of transcripts. Identi-
fication and quantification are therefore done independently. On the other hand, a second family
of methods (Xia et al., 2011; Li et al., 2011b; Bohnert and Rätsch, 2010; Li et al., 2011a; Mezlini
et al., 2013) jointly estimates the set of transcripts and their expression using a penalized likeli-
hood approach. The likelihood models the expression of all possible transcripts, possibly after some
filtering, and the penalty induces sparsity on the set of selected transcripts.

The two step approach of Cufflinks (Trapnell et al., 2010) results in a reasonably fast method
but does not exploit the observed read density along the gene, which can be a valuable information
to identify the set of transcripts. This is indeed a conclusion drawn experimentally using methods
from the more computationally expensive second paradigm (see Xia et al., 2011; Li et al., 2011b;
Bohnert and Rätsch, 2010; Li et al., 2011a; Mezlini et al., 2013). To summarize, the first paradigm
is fast but can be less statistically powerful than the second one in some cases, and the second
paradigm should always be powerful but becomes untractable for genes with many exons. The
contribution of this paper is to allow methods of the second family to run efficiently without pre-
filtering the set of isoform candidates, although they solve a non-smooth optimization problem over
an exponential number of variables. To do so, we show that the penalized likelihood maximization
can be reformulated as a convex cost network flow problem, which can be solved efficiently (Ahuja
et al., 1993; Bertsekas, 1998; Mairal and Yu, 2012).

The paper is organized as follows. Section 2 introduces the statistical model and the penalized
likelihood approach. Section 3 describes our method dubbed FlipFlop (Fast Lasso-based Isoform
Prediction as a FLOw Problem) for solving the regularized maximum likelihood problem. Sec-
tion 4 empirically compares existing approaches with the one we introduce on simulated and real
sequencing data. Our experiments show that the proposed approach leads to higher accuracy in
isoform discovery than methods which treat discovery and abundance estimation as two separate
steps, and that it does so much faster than the methods which explicitly list the candidate isoforms.
A discussion is given in Section 5.
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2 Approach

Our approach to isoform deconvolution from RNA-Seq data consists of fitting a sparse probabilistic
model, like several existing methods including rQuant (Bohnert and Rätsch, 2010), NSMAP (Xia
et al., 2011), IsoLasso (Li et al., 2011b), SLIDE (Li et al., 2011a) or iReckon (Mezlini et al., 2013).
The reads from RNA-Seq data are modeled as a linear combination of isoforms expressions that are
estimated using the maximum likelihood principle. Because the number of candidate isoforms grows
exponentially with the number of exons, the above methods are either computationally expensive
for genes with many exons (such as NSMAP or SLIDE), or include a prefiltering step to reduce the
number of candidates.

The main novelty of our paper is to tackle the sparse estimation problem efficiently without pre-
filtering. More precisely, we show in the methodological section that the corresponding penalized
maximum likelihood estimator can be computed in polynomial time despite the exponential number
of candidate transcripts. The key is the use of a non-trivial optimization technique based on the
concept of flow in a graph (Ahuja et al., 1993; Mairal and Yu, 2012).

2.1 Statistical Model

We consider the same statistical model as NSMAP, which was originally introduced by Jiang and
Wong (2009) for estimating isoform expression for a known set of expressed transcripts. Given a
gene of interest, we assume that the list of its n exons is known, and that the reads of the RNA-Seq
experiments have been mapped to a reference genome.

We summarize the read information by the counts y1, . . . , yq of reads falling in q bins, where
each bin is either an exon or a junction between two exons. A read is counted in a junction between
two exons if it starts in one of them and ends in the other. For the purpose of our work, an exon can
either be defined by read alignment softwares as a cluster of reads, or from a pre-defined annotation
such as the one provided by the UCSC genome browser1. In the latter case, exons with alternative
5’ donor and 3’ acceptor sites are considered as two separate exons. For alternative 5’ donor sites,
the exon is broken down as one exon ending at the first 5’ donor site, and another one start at this
same point and ending at the second 5’ donor site (similarly for exons with 3’ acceptor sites).

Formally, reads are modeled as random variables whose mean is the sum of isoform abundances.
We consider in our model all possible candidate isoforms consisting of a sequence of exons linked by
junctions. We denote by U the m×q binary matrix defined as Uji = 1 if bin i is present in isoform j
and 0 otherwise, and by θj ∈ R+ the expression of isoform j (the expected number of reads per
base in isoform j). Thus,

∑m
j=1 Ujiθj represents the sum of expressions of all isoforms involving bin

i. We expect the observed count for bin i to be distributed around this value times the length of
the bin li. More specifically, we assume that the read count yi follows a Poisson distribution with
parameter δi = li

∑m
j=1 Ujiθj . This yields for a vector θ = [θj ]

m
j=1 in Rm+ the log-likelihood

L(θ) =

q∑
i=1

[−δi + yi log δi − log(yi!)] , (1)

where the δi’s depend linearly on θ. Note that for exons, li is simply the exon length whereas for
junctions it is computed as min(lleft, read length - 1) + min(lright, read length - 1) where lleft and
lright are the lengths of the left and right exons of the junction respectively.

Maximizing the likelihood (1) allows to quantify the relative abundance of each transcript when
the model only includes the list of “true” isoforms present in the sample (Jiang and Wong, 2009).

1http://genome.ucsc.edu/
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Since this list is unknown a priori, we present in the next section the sparse estimation approach
that can jointly quantify and identify the transcripts using all candidate isoforms (Xia et al., 2011).

2.2 Isoform Detection by Sparse Estimation

Since we do not assume that the list of expressed isoforms — i.e. such that θj 6= 0 — is known in

advance, we endow θ with an exponential prior θj
iid∼ E(λ) and maximize over all candidate isoforms

the resulting posterior likelihood, leading to the estimator

θ̂λ = arg min
θ∈Rm

+

[−L(θ) + λ‖ θ ‖1] , (2)

where λ acts as a regularization parameter, and the `1-norm is defined as ‖ θ ‖1 =
∑m

j=1 |θj |. It
is well-known that the `1-norm penalty and the non-negativity constraint have a sparsity-inducing
effect — that is, lead to estimators θ̂λ that contain many zeroes (Tibshirani, 1996). The parameter
λ controls the number of non-zero elements in the solution θ̂λ, i.e., of selected isoforms, with larger
λ corresponding to fewer isoforms.

Mezlini et al. (2013) claim that the `1-penalty is inappropriate for isoform selection, a claim we
disagree with. As they note, the sum of true abundances in RPKM weighted by isoform lengths
is by definition the true proportion of reads coming from the gene times 109. They conclude that
penalizing by

∑
j θj has little effect on the estimate. However, the sum of the estimator θ̂λ weighted

by isoform lengths has no reason to be equal to the observed number of reads mapping to the gene.
There are several causes for that: model inadequacy, various noise sources, finite sample size, and
bias of the estimator. Penalizing this sum therefore modifies the sparsity level of θ̂λ as observed in
our and other’s experiments (Bohnert and Rätsch, 2010; Xia et al., 2011; Li et al., 2011a,b).

Note also that (2) is exactly the problem that NSMAP (Xia et al., 2011) tries to solve, while
rQuant (Bohnert and Rätsch, 2010), IsoLasso (Li et al., 2011b) and SLIDE (Li et al., 2011a) solve
a similar problem where the likelihood is a simpler quadratic function, corresponding to a Gaussian
model for the read counts. A difficulty with these approaches is that the dimension m of the
optimization problem (2) grows exponentially in n leading to computational intractability when n
is large. For example, Li et al. (2011a) restrict themselves to experiments with genes having less than
10 exons, due to high computational cost for larger genes. Xia et al. (2011) restrict themselves to
genes with less than 80 exons, but only consider candidates with transcription start/polyadenylation
sites (TSS/PAS) pairs already observed in annotations, and which involve more than half of the
exons of the gene. Other approaches such as IsoLasso include a filtering step to reduce the number
of isoforms, similarly as Cufflinks does — in the case of single end reads, their set of candidates
is the set of isoforms returned by Cufflinks. As pointed out in Section 1, this filtering may lead
to a loss of power in isoform detection, because it disregards the read density information when
constructing the set of candidates.

In the next section we show that, surprisingly, problem (2) can be solved efficiently without
prefiltering the isoforms using network flow optimization (Ahuja et al., 1993; Mairal and Yu, 2012).

3 Methods

Our first step is to reformulate isoform detection as an optimization problem over the paths of a
directed acyclic graph (DAG), similar to the classical splicing graph (Heber et al., 2002).
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(a) Splicing graph for a gene with 5 ex-
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(b) Graph G′ with junctions, source s and sink t nodes.

Figure 1: Illustration of the graph construction on a gene with 5 exons. The original splicing
graph is represented in (a). The 5 exons are represented as red circles and an arrow between two
nodes indicates a junction. The graph G′ in (b) includes junction nodes denoted by gray squares,
as well as source s and sink t nodes. When an exon is linked to the source, it means that it is
considered as a starting exon. Conversely, an exon linked to the sink is a stopping exon. There is
a one-to-one correspondence between (s, t)-paths in G′ (paths starting at s and ending at t) and
isoform candidates. For example, the path (s, 1, 1-4, 4, 4-5, 5, t) corresponds to isoform 1-4-5.

3.1 Isoform Detection as a Path Selection Problem

Remember that a graph G = (V,E) is composed of a finite set of vertices V and edges E ⊆ V ×V .
A path is a sequence of vertices v1, . . . , vk ∈ V such that (vi, vi+1) is an arc in E for all indices
1 ≤ i < k. A graph is a DAG if it contains no path (v1, . . . , vk) with v1 = vk. In other words, the
graph does not contain any cycle.

For a given gene, we construct the graph G = (V,E) whose vertex set V is the set of bins,
i.e., the set of exons and exon-exon junctions, and whose edges connect exon bins to junction bins
according to the following rule: connect exon e to the junction e-e′, and connect the junction e-e′

to the exon e′. Note that the set of exons (e1, . . . , en) is ordered, and that junctions only connect
exons in strictly increasing order, i.e., ei-ej is a junction only if i < j. The resulting graph G is
therefore a DAG, since any path must move along vertices with strictly increasing exons. This
graph is similar to the splicing graph (Heber et al., 2002), whose vertices are single exons and edges
are exon-exon junctions. For reasons that will become clear in the next section, we simply replace
each edge of the splicing graph by an exon-exon junction vertex.

We also consider two new vertices s and t respectively dubbed source and sink, which are used
to specify starting (TSS) and stopping exons (PAS). This leads to the definition of an extended
graph G′ = (V ′, E′) with V ′ = V ∪ {s, t} and E′ is obtained by adding to E all edges of the form
(s, e) where e ∈ V is a bin corresponding to a starting exon, and (e, t) where e ∈ V is a stopping
exon. This graph construction is illustrated in Figure 1.

Let us denote by P the set of paths in G′ starting from s and ending at t, which are called
(s, t)-paths. By construction, any path in P is a sequence (s, ei1 , ei1-ei2 , ei2 , . . . , eik−1

-eik , eik , t).
It corresponds to a candidate isoform (ei1 , ei2 , . . . , eik), in the sense that it passes exactly on the
bins contained in the isoform, ei1 is a starting exon, and eik is a stopping exon. Conversely, any
candidate isoform (ei1 , ei2 , . . . , eik) corresponds to the path (s, ei1 , ei1-ei2 , ei2 , . . . , eik−1

-eik , eik , t)
in P. We therefore have a one-to-one mapping between the set of candidate isoforms, on the
one hand, and P, on the other hand. Based on this one-to-one mapping, we can reformulate the
penalized maximum likelihood problem (1)-(2) as follows: we want to find nonnegative weights θp
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for each path p ∈ P which minimize:∑
v∈V

[δv − yv log δv] + λ
∑
p∈P

θp with δv =
(
lv

∑
p∈P:p3v

θp

)
, (3)

where the sum
∑

p∈P θp is equal to the `1-norm ‖θ‖1 since the entries of θ are non-negative. Note
that we have removed the constant term log(yv!) from the log likelihood since it does not play a
role in the optimization. This reformulation is therefore a path selection (finding which θp are non-
zero) and quantification problem over G′. The next section shows how (3) can further be written
as a flow problem, i.e., technically a constrained optimization problem over the edges of the graph
rather than the set of paths in P. A computationally feasible approach can then be devised to
solve (3) efficiently, following Mairal and Yu (2012).

3.2 Optimization with Network Flows

A flow f on G′ is defined as a non-negative function on arcs [fuv](u,v)∈E′ that satisfies conservation
constraints: the sum of incoming flow at a vertex is equal to the sum of outgoing flow except for
the source s and the sink t. Such conservation property leads to a physical interpretation about
flows as quantities circulating in the network, for instance, water in a pipe network or electrons in
a circuit board. The source node s injects into the network some units of flow, which move along
the arcs before reaching the sink t.

For example, given a path p ∈ P and a non-negative number θp, we can make a flow by setting
fuv = θp when u and v are two consecutive vertices along the path p, and fuv = 0 otherwise. This
corresponds to sending θp units of flows from s to t along the path p. Such simple flows are called

(s, t)-path flows. More interestingly, if we have a set of non-negative weights θ ∈ R|P|
+ associated

to all paths in P, then we can form a more complex flow by superimposing all (s, t)-path flows
according to

fuv =
∑

p∈P:p3(u,v)

θp, (4)

where (u, v) ∈ p means that u and v are consecutive nodes on p.
While (4) shows how to make a complex flow from simple ones, a converse exists, known as

the flow decomposition theorem (see, e.g., Ahuja et al., 1993). It says that for any DAG, every
flow vector can always be decomposed into a sum of (s, t)-path flows. In other words, given a flow

[fuv](u,v)∈E′ , there exists a vector θ in R|P|
+ such that (4) holds. Moreover, there exists linear-time

algorithms to perform this decomposition (Ahuja et al., 1993). As illustrated in Figure 2, this leads
to a flow interpretation for isoforms.

We now have all the tools in hand to turn (3) into a flow problem by following Mairal and Yu
(2012). Given a flow f = [fuv](u,v)∈E′ , let us define the amount of flow incoming to a node v in

V ′ as fv ,
∑

u∈V ′:(u,v)∈E′ fuv. Given a vector θ ∈ R|P|
+ associated to f by the flow decomposition

theorem, i.e., such that (4) holds, we remark that fv =
∑

p∈P:p3v θp and that ft =
∑

p∈P θp.
Therefore, problem (3) can be equivalently rewritten as:

min
f∈F

∑
v∈V

[δv − yv log δv] + λft with δv = lvfv . (5)

where F denotes the set of possible flows. Once a solution f? of (5) is found, a solution θ? of (3)
can be recovered by decomposing f? into (s, t)-path flows, as discussed in the next section.

The use of network flows has two consequences. First, (5) involves a polynomial number of
variables, as many as arcs in the graph, whereas this number was exponential in (3). Second,
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(b) Reads at every node after adding another isoform.

Figure 2: Flow interpretation of isoforms using the same graph as in Figure 1. For simplification
purposes, the length of the different bins are assumed to be equal. In (a), one unit of flow is carried
along the path in red, corresponding to an isoform with abundance 1. In (b), another isoform with
abundance 3 is added, yielding additional read counts at every node.

problem (5) falls into the class of convex cost flow problems (Ahuja et al., 1993), for which effi-
cient algorithms exist.2 In our experiments, we implemented a variant of the scaling push-relabel
algorithm (Goldberg, 1997), which also appears under the name of ε-relaxation method (Bertsekas,
1998). Note that the approach can be generalized to any concave likelihood function, including the
Gaussian model used by IsoLasso and SLIDE.

We remark that network flows have been used in several occasions in bioinformatics. For
example, the terminology of “flow” for RNA-Seq data appears in Montgomery et al. (2010); Singh
et al. (2011). The context of these two works is significantly different than ours since they neither
perform isoform detection, nor use any network flow algorithm. The work closest to ours in terms
of optimization is probably the genome assembly technique of Medvedev and Brudno (2009), who
solve minimum cost flow problems to find a genome maximizing a read-count likelihood. It however
neither involves RNA-Seq data, nor a similar type of graph as ours.

3.3 Flow Decomposition

We have seen that after solving (5) we need to decompose f? into (s, t)-path flows to obtain a
solution θ? of (2). As illustrated in Figure 2, this corresponds to finding the two isoforms from 2(b).
Whereas the decomposition might not be ambiguous when f? is a sum of few (s, t)-path flows, it
is not unique in general. Our approach to flow decomposition consists of finding an (s, t)-path
carrying the maximum amount of flow (equivalently finding an isoform with maximum expression),
removing its contribution from the flow, and repeating until convergence. We remark that finding
(s, t)-path flows according to this criterion can be done efficiently using dynamic programming,
similarly as for finding a shortest path in a directed acyclic graph (Ahuja et al., 1993).

3.4 Model Selection

The last problem we need to solve is model selection: even if we know how to solve (2) efficiently,
we need to choose a regularization parameter λ. For large values of λ, (2) yields solutions involving
few expressed isoforms. As we decrease λ, more isoforms have a non-zero estimated expression θj ,
leading to a better data fit but also leading to a more complex model. A classical way of balancing

2The function (5) can be decomposed into costs Cv(fv) over vertices v. The general convex cost flow objective
function is usually presented as a sum of costs Cuv(fuv) over arcs (u, v). It is however easy to show that costs over
vertices can be reduced to costs over arcs by a simple network transformation (see Ahuja et al., 1993, Section 2.4).
Note that all arcs have zero lower capacities and infinite upper capacities.
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fit and model complexity is to use likelihood ratio tests. Xia et al. (2011) chose this approach, but
we found the log likelihood ratio statistics to be empirically poorly calibrated due to the typically
small number of samples units — exons — and the non-independence of the observed read counts.
We choose a related approach, which we found better behaved, and select the model having the
largest BIC criterion (Schwarz, 1978). An alternative approach taken by Li et al. (2011a) would be
to use stability selection (Meinshausen and Bühlmann, 2010).

4 Results

We now compare our proposed method FlipFlop to Cufflinks (Trapnell et al., 2010) version 2.0.0,
Isolasso (Li et al., 2011b) version 2.6.1, NSMAP (Xia et al., 2011) and SLIDE (Li et al., 2011a)
on both simulated and real data. We did not include iReckon (Mezlini et al., 2013) in the compar-
ison as their software only works on paired-end data and ours on single-end. We do not include
rQuant (Bohnert and Rätsch, 2010) either, as it is intended to select transcripts out of a given
annotation rather than build a list of all potential transcripts and select from this list.

All experiments were run on a desktop computer on a single core of an Intel Xeon CPU
X5460 3.16Ghz with 16Gb of RAM. In each case, reads are aligned to a reference genome us-
ing TopHat (Trapnell et al., 2009) version 2.0.6, and the constructed alignment files are used as
input to the methods we compare. IsoLasso, Cufflinks and FlipFlop only use these aligned reads as
input, and estimate their exon boundaries and TSS/PAS from read density. SLIDE and NSMAP
additionally require exon boundaries as input.

All softwares are used in their default mode, except that SLIDE is run using its stability selection
mode to estimate the number of isoforms. We also bring a small modification to NSMAP: it still
restricts the TSS (resp. PAS) of its candidates to sites that are observed to be TSS (resp. PAS)
in the annotation, but it does not restrict the TSS/PAS couples of its candidates to couples that
are in the annotation. In practice, unknown isoforms with alternative TSS/PAS couples may be
expressed. Therefore, using this information and validating on a set of transcripts coming from the
annotation may lead to over-optimistic conclusions.

4.1 Simulated Human RNA-Seq Data

Since little is known about the true set of isoforms expressed in real data, we start our experimental
validation with a set of simulations. We use the RNASeqReadSimulator software3 to generate
single-end reads from the annotated human transcripts available in the UCSC genome browser
(hg19). We restrict ourselves to the 1137 multi-exons genes on the positive strand for chromosome
1, corresponding to 3553 expressed transcripts. Each experiment comes with 1 million reads of 75
base pair length, aligned against the human genome also available in the UCSC genome browser.

We follow the protocol of Isolasso (Li et al., 2011b) and consider that a transcript from the
annotation has been detected by a method if it predicts a transcript that (i) includes the same set
of exons; and such that (ii) all internal boundary coordinates (i.e., all the exon coordinates except
the beginning of the first exon and the end of the last exon) are identical. The objective for each
method is to recover a large proportion of transcripts that were used for read generation — high
recall — without detecting too many transcripts that were not used to generate the reads — high
precision.

Figure 3 shows the precision and recall of the compared methods. Since we expect the difficulty
of the deconvolution problem to increase with the number of transcripts of the gene, we stratify the

3
http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

8



Figure 3: Precision and recall of compared methods on simulated reads from the UCSC annotated
human transcripts.

result by this number: each dot represents the precision and recall of one method for genes with a
particular number of transcripts in the UCSC annotation. As expected, genes with more transcripts
lead to more difficult estimation problems and decreased performances for all methods. However,
while all methods have similar performances for genes with a single expressed transcript, FlipFlop
and NSMAP are less affected by the increase in transcript number than Cufflinks and IsoLasso.
Cufflinks constructs its set of transcripts and estimates their abundances in two separate steps,
and the construction of the set of returned transcripts does not take read density into account: it
intends to find the smallest set of isoforms covering all the observed reads. IsoLasso is based on
penalized likelihood maximization like FlipFlop and NSMAP, but starts from a very restricted set
of isoforms — the same set returned by Cufflinks for single-end data. Consequently, this family of
methods discards some information that can help identifying the set of expressed isoforms.

Consider for example the case of a gene with two exons A and B, with reads observed for
both exons. Any method that builds the set of expressed exons as the smallest set covering all
reads should conclude that only transcript A-B is present. Assume now that many more reads are
observed for exon A than for exon B – e.g., because an isoform only containing A is also present.
The set of isoforms returned by Cufflinks and IsoLasso would not change. FlipFlop and NSMAP
on the other hand maximize the penalized likelihood of the data over all possible transcripts, and
are able to detect this type of structure. SLIDE maximizes the same type of objective as FlipFlop
and NSMAP but behaves poorly in this experiment. We assume this may result from a problem
for single-end data in the code: even though the software package of SLIDE explicitly states that it
is compatible with single-end data, the experiments of Li et al. (2011a)— performed on paired-end
data — report a similar improvement over Cufflinks as the one we observe here for FlipFlop and
NSMAP. This poor behavior may also be caused by the model selection procedure: SLIDE uses
stability selection whereas FlipFlop and NSMAP use similar procedures based on BIC criterion
and likelihood ratio tests. Finally, FlipFlop and NSMAP yield very similar performances, which is
expected given that they optimize the same objective function. The observed minor differences may
arise from FlipFlop better optimizing the objective function (data not shown), NSMAP restricting
its search to the TSS and PAS observed in the annotation whereas FlipFlop estimates them from
reads, and the two methods using different model selection techniques.

Figure 4 shows the mean CPU time taken by each method to perform the deconvolution of genes
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Figure 4: Average CPU times in milliseconds (on a logarithmic scale) for the compared methods
to process a gene from human simulated RNA-Seq data.

with different sizes. Genes with more exons tend to have more candidate isoforms and experiments
involving such genes are expected to take more time. Therefore, we stratify the observed times by
exon number of the genes: each barplot represents the mean time taken by each method to find the
transcripts of genes having a particular number of exons. As expected, FlipFlop is always faster
than NSMAP and SLIDE which maximize similar objective function: more than a hundred times
faster than SLIDE for all gene sizes, and a hundred times faster than NSMAP for genes with more
than 5 exons. The fact that SLIDE is slower than NSMAP may be explained by its using stability
selection for model selection — requiring to solve the maximization problem several times.

FlipFlop is actually a little faster than Cufflinks, and about 4 times slower than IsoLasso. This
is because IsoLasso maximizes its objective over a very restricted set of candidates — in these
simulations never more than 9 and around 2-3 on average. Overall, FlipFlop estimates the set of
expressed isoforms for 1137 genes in less than 4 minutes, i.e., about 5 genes per second. Note also
that the time for data pre-preprocessing (finding exon boundaries and and read counts for exons
and junctions) is not taken into account except for Cufflinks and SLIDE.

This simulation confirms two facts. First, methods that identify and quantify transcripts as a
single penalized maximum likelihood problem yield better performances than the ones estimating
the set of expressed isoforms as the smallest set covering all reads. Second, the proposed net-
work flow strategy allows to solve the penalized likelihood approach quickly even when the set of
candidate isoforms is extremely large.

4.2 Real RNA-Seq Data

Our second set of experiments involves the C57BL6 mouse liver cell line (Trapnell et al., 2010),
which contains about 42 million 33-bp reads (NCBI SRA accession number SRX000351). Reads
are aligned to the mm9 reference genome of the UCSC genome browser. We only include FlipFlop,
Cufflinks and IsoLasso in this comparison: NSMAP and SLIDE optimize similar objectives as
FlipFlop and were already compared in Section 4.1.

In the experiments of Section 4.1, we generated the reads based on a known set of transcripts.
In the present case, the reads come from actual mouse tissues, and we do not have access to the
true set of expressed transcripts. Following Xia et al. (2011) and Li et al. (2011a), we choose to use
the UCSC annotation as ground truth in the evaluation. Admittedly, this is not perfect as some
expressed transcripts may be missing from the annotation, and some annotated transcripts may
not be expressed in this particular experiment. However, agreement of the prediction with the set
of known transcripts could be a good sign.

Figure 5 shows the speed, recall and precision of each method. Consistently with what we
observed on simulated data, FlipFlop runs faster than Cufflinks but slower than Isolasso.

The reference transcripts set corresponds to the 33381 known mouse isoforms from the RefSeq
track in UCSC browser. IsoLasso predicts 8096 isoforms with 4056 matching the annotations,
Cufflinks predicts 24605 isoforms with 5804 matching and FlipFlop predicts 15613 isoforms with
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Figure 5: Precision, recall and speed of compared methods on C57BL6 mouse liver data.

4903 matching. These results lead to a much higher precision for IsoLasso than for Cufflinks
and FlipFlop, and a slightly better recall for Cufflinks and FlipFlop. We remark that IsoLasso
does not predict on this data set transcripts below 7 RPKM abundance. Indeed, low abundance
prediction transcripts may result from mapping errors: Li et al. (2011a) actually only considered
genes with at least 1 RPKM in their real data experiments. We therefore look at the precision of the
methods when the set of predicted transcripts is limited to higher value than 7 RPKM. Consistently
with what we observed on simulated data, FlipFlop gives the best precision when considering these
reliable high abundance transcripts only. While it is always possible to manually discard genes with
few observed reads or transcripts with low predicted abundance, this observation suggests that some
systematic improvement of our method is possible, e.g. by using a different flow decomposition
algorithm discouraging low-expression transcripts, a more efficient model selection method, or a
more aggressive sparsity inducing penalty than `1, for instance, a reweighted-`1 technique (Candes
et al., 2008).

5 Discussion

Simultaneously tackling identification and quantitation using penalized likelihood maximization is
known to be a powerful approach to estimate the set of expressed transcripts. However, existing
optimization techniques cannot deal with genes that contain too many exons as the set of candidate
isoforms grows exponentially with the number n of exons. By leveraging network flow optimization
algorithms, we discover a few expressed transcripts among the exponential number of candidates
by solving a problem with a number of variables polynomial in n.

We compared our approach to existing penalized likelihood maximization methods as well as
methods that define expressed isoforms as the smallest set of transcripts covering all observed reads;
the latter methods perform abundance estimation in a separate step. We observed on simulated data
— where the true set of expressed transcripts was known — that penalized likelihood maximization
indeed leads to better precision and recall than the second set of methods. This improvement was
more important for genes with several expressed transcripts. A similar observation was made on
real RNA-Seq data from mouse liver data as long as we restricted ourselves to transcripts whose
abundance was not too low. In addition, the runtime of our method was comparable to the runtime
of the second set of methods, and orders of magnitude faster than existing software for penalized
likelihood maximization.

We believe these results have important practical implications. In addition to the obvious
gain in time when estimating the expression of transcripts for a single gene and a single sample,
our approach makes the task amenable in a reasonable amount of time for all genes in a large
number of samples. This is a necessary step for high throughput differential expression studies at
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the transcript level, a direction we are planning to explore in future work. Differential expression
studies were until now restricted to gene level studies, i.e., ignoring the transcript level information,
to cases where the set of expressed transcripts was known in advance or to methods which were not
using the read density to estimate the set of expressed transcripts — a less efficient approach as
illustrated in our experiments. Furthermore, accurately estimating the transcript level expression
for all genes of all samples in a study may lead to improvements in molecular based diagnosis or
prognosis tools, as well as in clustering of samples, e.g for cancer subtype discovery. The ability of
our approach to deal with splicing graphs with potentially hundreds of nodes also paves the way
to efficient de novo transcript identification, where we do not restrict ourselves to annotated exons
within a single gene. Future versions of the proposed method should also deal with paired-end
data.
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