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Abstract

Mathematical morphology is a nonlinear image processing methodology based on the

application of complete lattice theory to spatial structures. Let us consider an image

model where at each pixel is given a univariate Gaussian distribution. This model is

interesting to represent for each pixel the measured mean intensity as well as the variance

(or uncertainty) for such measurement. The aim of this work is to formulate morpho-

logical operators for these images by embedding Gaussian distribution pixel values on

the Poincaré upper-half plane. More precisely, it is explored how to endow this classical

hyperbolic space with various families of partial orderings which lead to a complete lattice

structure. Properties of order invariance are explored and application to morphological

processing of univariate Gaussian distribution-valued images is illustrated.

Keywords: Ordered Poincaré half-plane, hyperbolic partial ordering, hyperbolic com-

plete lattice, mathematical morphology, Gaussian-distribution valued image, information

geometry image filtering

1 Introduction

This work is motivated by the exploration of a mathematical image model f where instead of

having a scalar intensity t ∈ R at each pixel p, i.e., f(p) = t, we have a univariate Gaussian

probability distribution of intensities N(µ, σ2) ∈ N , i.e., image f is defined as the function

f :

{

Ω → N
p 7→ N(µ, σ2)
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where Ω is the support space of pixels p (e.g., for 2D images Ω ⊂ Z
2) andN denotes the family

of univariate Gaussian probability distribution functions (pdf). Nowadays most of imaging

sensors only produces single scalar values since the CCD (charge-coupled device) cameras

typically integrates the light (arriving photons) during a given exposure time τ . To increase

the signal-to-noise ratio (SNR), exposure time is increased to τ ′ = ατ , α > 1. Let suppose

that α is a positive integer number, this is equivalent to a multiple acquisition of α frames

during τ for each frame (i.e., a kind of temporal oversampling). The standard approach only

considers the sum (or average) of the multiple intensities [27], without taking into account

the variance which is a basic estimator of the noise useful for probabilistic image processing.

Another example of such a representation from a gray scale image consists in considering

that each pixel is described by the mean and the variance of the intensity distribution from

its centered neighboring patch.

Henceforth, the corresponding image processing operators should be able to deal with

Gaussian distributions-valued pixels. In particular, morphological operators for images f ∈
F(Ω,N ) involves that the space of Gaussian distributions N must be endowed of a partial

ordering leading to a complete lattice structure. In practice, it means that given a set of

Gaussian pdfs, as the example given in Fig. 1, we need to be able to define a Gaussian

pdf which corresponds to the infimum (inf) of the set and another one to the supremum

(sup). Mathematical morphology is a nonlinear image processing methodology based on the

computation of sup/inf-convolution filters (i.e., dilation/erosion operators) in local neigh-

borhoods [30]. Mathematical morphology is theoretically formulated in the framework of

complete lattices and operators defined on them [28, 20]. When only the supremum or the

infimum are well defined, other morphological operators can be formulated in the framework

of complete semilattices [22, 21]. Both cases are considered here for images f ∈ F(Ω,N ).

A possible way to deal with the partial ordering problem ofN can be founded on stochastic

ordering (or stochastic dominance) [29] which is basically defined in terms of majorization of

cumulative distribution functions.

However, we prefer to adopt here an information geometry approach [4], which is based

on considering that the univariate Gaussian pdfs are points in a hyperbolic space [9, 3]. More

generally, Fisher geometry amounts to hyperbolic geometry of constant curvature for other

location-scale families of probability distributions (Cauchy, Laplace, elliptical) p(x;µ, σ) =
1
σf(

x−µ
σ ), where curvature depends on the dimension and the density profile [3, 13, 14]. For

a deep flavor on hyperbolic geometry see [11]. There are several models representing the

hyperbolic space in R
d, d > 1, such as the three following ones: the (Poincaré) upper half-

space model Hd, the Poincaré disk model Pd and the Klein disk model Kd.

1. The (Poincaré) upper half-space model is the domainHd = {(x1, · · · , xd) ∈ R
d | xd > 0}

with the Riemannian metric ds2 =
dx2

1+···+dx2
d

x2
d

;

2. The Poincaré disk model is the domain Pd = {(x1, · · · , xd) ∈ R
d | x21 + · · · + x2d < 1}
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Figure 1: (a) Example of a set of nine univariate Gaussian pdfs, Nk(µk, σ
2
k), 1 ≤ k ≤ 9. (b)

Same set of Gaussian pdfs represented as points of coordinates (xk = µk/
√
2, yk = σk) in the

upper-half plane.

with the Riemannian metric ds2 = 4
dx2

1+···+dx2
d

(1−x2
1−···−x2

d)
2 ;

3. The Klein disk model is the space Kd = {(x1, · · · , xd) ∈ R
d | x21 + · · · + x2d < 1} with

the Riemannian metric ds2 =
dx2

1+···+dx2
d

1−x2
1−···−x2

d
+ (x1dx1+···+xddxd)

2

(1−x2
1−···−x2

d)
2 .

These models are isomorphic between them in the sense that one-to-one correspondences can

be set up between the points and lines in one model to the points and lines in the other so as to

preserver the relations of incidence, betweenness and congruence. In particular, there exists

an isometric mapping between any pair among these models and analytical transformations

to convert from one to other are well known [11].

Klein disk model has been considered for instance in computational information geometry

(Voronöı diagrams, clustering, etc.) [25] and Poincaré disk model in information geometric

radar processing [5, 6, 7]. In this paper, we focus on the Poincaré half-plane model, H2, which

is sufficient for our practical purposes of manipulating Gaussian pdfs. Fig. 1(b) illustrates

the example of a set of nine Gaussian pdfs Nk(µk, σ
2
k) represented as points of coordinates

(µk/
√
2, σk) in the upper-half plane as follows:

(µ, σ) 7→ z =
µ√
2
+ iσ.

The rationale behind the scaling factor
√
2 is given in Section 3.

In summary, from a theoretical viewpoint, the aim of this paper is to endow H2 with

partial orderings which lead to useful invariance properties in order to formulate appropriate
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morphological operators for images f : Ω → H2. This work is an extension to the conference

paper [1]. The rest of the paper is organized as follows. Section 2 reminds the basics on

the geometry of Poincaré half-plane model. The connection between Poincaré half-plane

model of hyperbolic geometry and Fisher Information geometry of Gaussian distributions is

briefly recalled in Section 3. Then, various partial orderings on H2 are studied in Section 4.

Based on the corresponding complete lattice structure of H2, Section 5 presents definition

of morphological operators for images on F(Ω,H2) and its application to morphological

processing univariate Gaussian distribution-valued images. Section 6 concludes the paper

with the perspectives of the present work.

2 Geometry of Poincaré upper-half plane H2

In complex analysis, the upper-half plane is the set of complex numbers with positive imagi-

nary part:

H2 = {z = x+ iy ∈ C | y > 0} . (1)

We use also the notation x = ℜ(z) and y = ℑ(z). The boundary of upper-half plane (called

sometimes circle at infinity) is the real axis together with the infinity, i.e., ∂H2 = R ∪∞ =

{z = x+ iy | y = 0, x = ±∞, y = ∞}.

2.1 Riemannian metric, angle and distance

In hyperbolic geometry, the Poincaré upper-half plane model (originated with Beltrami and

also known as Lobachevskii space in Soviet scientific literature) is the space H2 together with

the Poincaré metric

(gkl) =

(

1
y2

0

0 1
y2

)

(2)

such that the hyperbolic arc length is given by

ds2 =
∑

k,l=1,2

gkl dx dy =
dx2 + dy2

y2
=

|dz|2
y2

= y−1dz y−1dz∗. (3)

With this metric, the Poincaré upper-half plane is a complet Riemannian manifold of constant

sectional curvature K equal to −1. We can consider a continuum of other hyperbolic spaces

by multiplying the hyperbolic arc length (3) by a positive constant k which leads to a metric

of constant Gaussian curvature K = −1/k2. The tangent space to H2 at a point z is defined

as the space of tangent vectors at z. It has the structure of a 2-dimensional real vector space,

TzH2 ≃ R
2. The Riemannian metric (3) is induced by the following inner product on TzH2:

for ζ1, ζ2 ∈ TzH2, with ζk = (ξk, ηk), we put

〈ζ1, ζ2〉z =
(ζ1, ζ2)

ℑ(z)2 (4)
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which is a scalar multiple of the Euclidean inner product (ζ1, ζ2) = ξ1ξ2 + η1η2.

The angle θ between two geodesics in H2 at their intersection point z as the angle between

their tangent vectors in TzH2, i.e.,

cosθ =
〈ζ1, ζ2〉z

‖ζ1‖z‖ζ2‖z
=

(ζ1, ζ2)
√

(ζ1, ζ1)
√

(ζ2, ζ2)
. (5)

We see that this notion of angle measure coincides with the Euclidean angle measure. Con-

sequently, the Poincaré upper-half plane is a conformal model.

The distance between two points z1 = x1 + iy1 and z2 = x2 + iy2 in
(

H2, ds2
)

is the

function

distH2(z1, z2) = cosh−1

(

1 +
(x1 − x2)

2 + (y1 − y2)
2

2y1y2

)

(6)

Distance (6) is derived from the logarithm of the cross-ratio between these two points and the

points at the infinity, i.e., distH2(z1, z2) = logD(z∞1 , z1, z2, z
∞
2 ) where D(z∞1 , z1, z2, z

∞
2 ) =

z1−z∞2
z1−z∞1

z2−z∞1
z2−z∞2

. To obtain their equivalence, we remind that cosh−1(x) = log(x +
√
x2 − 1).

From this formulation is easy to check that for two points with x1 = x2 the distance is

distH2(z1, z2) =
∣

∣

∣
log
(

y1
y2

)∣

∣

∣
.

To see that distH2(z1, z2) is a metric distance in H2, we first notice the argument of cosh−1

always lies in [1,∞) and cosh(x) = ex+e−x

2 , so cosh is increasing and concave on [0,∞). Thus

cosh−1(1) = 0 and cosh−1 is increasing and concave down on [1,∞), growing logarithmically.

The properties required to be a metric (non-negativity, symmetry and triangle inequality)

are proven using the cross-ratio formulation of the distance.

We note that the distance from any point z ∈ H2 to ∂H2 is infinity.

2.2 Geodesics

The geodesics of H2 are the vertical lines, V L(a) = {z ∈ H2 | ℜ(z) = a}, and the semi-circles

in H2 which meet the horizontal axis ℜ(z) = 0 orthogonally, SCr(a) = {z ∈ H2 | |z − z′| =
r; ℜ(z′) = a and ℑ(z′) = 0}; see Fig 2(a). Thus given any pair z1, z2 ∈ H2, there is a unique

geodesic connecting them parameterized for instance in polar coordinates by the angle, i.e.,

γ(t) = a+ reit = (a+ r cos t) + i(r sin t), θ1 ≤ t ≤ θ2 (7)

where z1 = a+ reiθ1 and z2 = a+ reiθ2 .

A more useful expression of the geodesics involves explicitly the cartesian coordinates of

the pair of points. First, given the pair z1, z2 ∈ H2, x1 6= x2, the semi-circle orthogonal to x-

axis connecting them has a center c = (a1⌢2, 0) and a radius r1⌢2 , (z1, z2) 7→ SCr1⌢2(a1⌢2),

where

a1⌢2 =
x22 − x21 + y22 − y21

2(x2 − x1)
; r1⌢2 =

√

(x1 − a1⌢2)2 + y21 =
√

(x2 − a1⌢2)2 + y22. (8)
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Then, the unique geodesic parameterized by the length, t 7→ γ(z1, z2; t), γ : [0, 1] → H2 joining

two points z1 = x1 + iy1 and z2 = x2 + iy2 such as γ(z1, z2; 0) = z1 and γ(z1, z2; 1) = z2 is

given by

γ(z1, z2; t) =

{

x1 + ieξt+t0 if x1 = x2

[r tanh(ξt+ t0) + a] + i
[

r
cosh(ξt+t0)

]

if x1 6= x2
(9)

with a and r given in (8) and where for x1 = x2, t0 = log(y1), ξ = log y2
y1

and for x1 6= x2

t0 = cosh−1

(

r

y1

)

= sinh−1

(

x1 − a

y1

)

, ξ = log

(

y1
y2

r +
√

r2 − y22
r +

√

r2 − y21

)

.

(a) (b)

Figure 2: (a) Geodesics of H2: z1 and z2 are connected by a unique semi-circle; the geodesic

between z2 and z3 is a segment of vertical line. (b) Hyperbolic polar coordinates.

If we take the parameterized smooth curve γ(t) = x(t) + iy(t), where x(t) and y(t) are

continuously differentiable for b ≤ t ≤ c, then the hyperbolic length along the curve is

determined by integrating the metric (3) as:

L(γ) =

∫

γ
ds =

∫ b

a
|γ̇(t)|γdt =

∫ b

a

√

ẋ(t)2 + ẏ(t)2

y(t)
dt =

∫ b

a

|ż(t)|
y(t)

dt.

Note that this expression is independent of choice of parameter. Hence, using the polar angle

parametrization (7), we obtain an alternative expression of the geodesic distance given

distH2(z1, z2) = inf
γ
L(γ) =

∫ θ2

θ1

r

r sin t
dt =

∣

∣

∣

∣

log

(

cot
θ2
2

)

− log

(

cot
θ1
2

)
∣

∣

∣

∣

which is independent of r and consequently, as described below, dilation is an isometry.

Remark. Interpolation between two univariate normal distributions. Using the closed-

form expression of geodesics t 7→ γ(z1, z2; t), given in (9), it is possible to compute the average
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Figure 3: (a) Example of interpolation of 5 points in H2 between points z1 = −6.3 + i2.6

(in red) and z2 = 3.5 + i0.95 (in blue) using their geodesic t 7→ γ(z1, z2; t), with t = 0.2, 0.4,

0.5, 0.6, 0.8. The average point (in green) corresponds just to γ(z1, z2; 0.5) = 0.89+ i4.6. (b)

Original (in red and blue) univariate Gaussian pdfs and corresponding interpolated ones.

univariate Gaussian pdf between N(µ1, σ
2
1) and N(µ2, σ

2
2), with (µk =

√
2xk, σk = yk), by

taking t = 0.5. More generally, we can interpolate a series of distributions between them by

discretizing t between 0 and 1. An example of such method is given in Fig. 3. We note in

particular that the average Gaussian pdf can have a variance bigger than σ2
1 and σ2

2. We note

also that, due to the “logarithmic scale” of imaginary axis, equally spaces points in t do not

have equal Euclidean arc-length in the semi-circle.

2.3 Hyperbolic polar coordinates

The position of point z = x+ iy in H2 can be given either in terms of Cartesian coordinates

(x, y) or by means of polar hyperbolic coordinates (η, φ), where η represents the distance of

the point from the origin OH2 = (0, 1) and φ represents the slope of the tangent in OH2 to

the geodesic (i.e., semi-circle) joining the point (x, y) with the origin. The formulas which

relate the hyperbolic coordinates (η, φ) to the Cartesian ones (x, y) are [10]

{

x = sinh η cosφ
cosh η−sinh η sinφ , η > 0

y = 1
cosh η−sinh η sinφ , −π

2 < φ < π
2

{

η = distH2(OH2 , z)

φ = arctan x2+y2−1
2x

(10)

We notice that the center of the geodesic passing trough (x, y) from OH2 has Cartesian

coordinates given by (tanφ, 0); see Fig 2(b).
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2.4 Invariance and isometric symmetry

Let the projective special linear group defined by PSL(2,R) = SL(2,R)/ {±I} where the

special linear group SL(2,R) consists of 2 × 2 matrices with real entries whose determinant

equals +1, i.e.,

g ∈ SL(2,R) : g =

(

a b

c d

)

, ad− bc = 1;

and I denotes the identity matrix. This defines the group of Möbius transformations Mg :

H2 → H2 by setting for each g ∈ SL(2,R),

z 7→ Mg(z) =

(

a b

c d

)

· z =
az + b

cz + d
=

ac|z|2 + bd+ (ad+ bc)ℜ(z) + iℑ(z)
|cz + d|2 ,

such that ℑ (Mg(z)) = (y(ad− bc)) /
(

(cx+ d)2 + (cy)2
)

> 0. The inverse map is easily

computed, i.e., z 7→ M−1
g (z) = (dz − b)/(−cz + a). Since Möbius transformations are well

defined in H2 and map H2 to H2 homeomorphically.

The Lie group PSL(2,R) acts on the upper half-plane by preserving the hyperbolic dis-

tance, i.e.,

distH2(Mg(z1),Mg(z2)) = distH2(z1, z2), ∀g ∈ SL(2,R), ∀z1, z2 ∈ H2.

This includes three basic types of transformations: (1) translations z 7→ z + α, α ∈ R; (2)

dilations z 7→ βz, β ∈ R \ 0; (3) inversion z 7→ z−1. More precisely, any generic Möbius

transformation Mg(z), c 6= 0, can be decomposed into the following four maps: f1 = z+ d/c,

f2 = −1/z, f3 = z(ad − bc)/c2, f4 = z + a/c such that Mg(z) = (f1 ◦ f2 ◦ f3 ◦ f4)(z). If

c = 0, we have Mg(z) = (h1 ◦ h2 ◦ h3)(z) where h1(z) = az, h2(z) = z + b, h3(z) = z/d.

It can be proved that Möbius transformation take circles to circles. Hence, given a circle

in the complex plane C of radius r and center c, denoted by Cr(c), we have its following

mappings [26]: a translation z 7→ z + α, such as the functions f1, f4 and g2 maps Cr(c) to

Cr(c + α); a dilation z 7→ βz, such as the functions g1 and g3, maps Cr(c) to Cβr(βc); for

inversion z 7→ z−1, Cr(c) maps to Cr/|cz|(−1/c).

Let H ∈ H2 be a geodesic of the upper half-plane, which is described uniquely by its

endpoints in ∂H2, there exists a Möbius transformation Mg such that Mg maps H bijectively

to the imaginary axis, i.e., V L(0). If H is the vertical line V L(a), the transformation is the

translation z 7→ Mg(z) = z− a. If H is the semi-circle SCr(a) with endpoints in real axis are

ζ−, ζ+ ∈ R, where ζ− = a− r and ζ+ = a+ r, the map is given by Mg(z) =
z−ζ−
z−ζ+

, such that

Mg(ζ−) = 0, Mg(ζ+) = ∞ and Mg(a+ ir) = i.

The unit-speed geodesic going up vertically, through the point z = i is given by

γ(t) =

(

et/2 0

0 e−t/2

)

· i = iet.
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Because PSL(2,R) acts transitively by isometries of the upper half-plane, this geodesic is

mapped into other geodesics through the action of PSL(2,R). Thus, the general unit-speed

geodesic is given by

γ(t) =

(

a b

c d

)(

et/2 0

0 e−t/2

)

· i = aiet + b

ciet + d
. (11)

2.5 Hyperbolic circles and balls

Let consider an Euclidean circle of center c = (xc, yc) ∈ H2 and radius r in the upper-half

plane, defined as Cr(c) = {z ∈ H2|
√

(xc − a)2 + (yc − b)2 = r}, such that it is contained

in the upper-half plane, i.e., Cr(c) ⊂ H2. The corresponding hyperbolic circle CH2,rh(ch)

{z ∈ H2|distH2(ch, z) = rh} is geometrically equal to Cr(c) but its hyperbolic center and

radius are given by

ch = (xc,
√

y2c − r2); rh = tanh−1

(

r

yc

)

.

We note that the hyperbolic center is always below the Euclidean center. The inverse equa-

tions are

c = (xc = xh, yc = yh cosh rh); r = yh sinh rh. (12)

Naturally, the hyperbolic ball of center ch and radius rh is defined by BH2,rh(ch) {z ∈
H2|distH2(ch, z) ≤ rh}. Let us consider a hyperbolic ball centered at the origin BH2,rh(0, 1),

parameterized its boundary curve ∂B in Euclidean coordinates:

x = r cos θ; y = b+ r sin θ

where using (12), we have b = cosh rh and r = sinh rh. The length of the boundary and area

of this ball are respectively given by [31]:

L (∂B) =

∫ 2π

0

r

b+ r sin θ
dθ = 2π sinh rh, (13)

Area(B) =

∫ ∫

B

dxdy

y2
=

∮

γ

dx

y
= 2π(cosh rh − 1). (14)

Comparing to the values of an Euclidean ball which has area πr2h and length of its boundary

circle 2πrh, and considering the Taylor series sinh rh = rh +
r3h
3! +

r5h
5! + · · · and cosh rh =

1+
r2h
2! +

r4h
4! +· · · , one can note that hyperbolic space is much larger than Euclidean. Curvature

is defined through derivatives of the metric, but the fact that infinitesimally the hyperbolic

ball grows faster than the Euclidean balls can be used a measure of the curvature of the

space at the origin (0, 1) [31]: K = limrh→0
3[2πrh−L(∂B)]

πr3h
= −1. Since there is an isometry

that maps the neighborhood of any point to the neighborhood of the origin, the curvature of

hyperbolic space is identically constant to −1.
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Remark. Minimax center in H2. Finding the smallest circle that contains all of a set of

points x1, x2 · · · , xN in the Euclidean plane is a classical problem in computational geometry,

called the minimum enclosing circle MEC. It is also relevant is statistical estimation since

the unique center of the circle c∞ (called 1-center or minimax center) is defined as the

L∞ center of mass, i.e., for R
2, c∞ = argminx∈R2 max1≤i≤N ‖xi − x‖2. Computing the

smallest enclosing sphere in Euclidean spaces is intractable in high dimensions, but efficient

approximation algorithms have been proposed. The Bădoiu and Clarkson algorithm [8] leads

to a fast and simple approximation (of known precision ǫ after a given number of iterations

⌈ 1
ǫ2
⌉ using the notion of core-set, but independent of dimensionality n). The computation

of the minimax center is particularly relevant in information geometry (smallest enclosing

information disk [24]) and has been considered for hyperbolic models such as the Klein disk,

using a Riemannian extension of Bădoiu and Clarkson algorithm [2], which only requires

a closed-form of the geodesics. Fig. 4 depicts an example of minimax center computation

using Bădoiu and Clarkson algorithm for a set of univariate Gaussian pdfs represented in H2.

We note that, using this property of circle preservation, computation the minimal enclosing

hyperbolic circle of a given set of points Z = {zk}1≤k≤K , zk ∈ H2, denoted MECH2(Z) is

equivalent to computing the corresponding minimal enclosing circle MEC(Z) if and only if

we have MEC(Z) ⊂ H2. This is the case for the example given in Fig. 4.
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Figure 4: (a) Example of minimax center (xh, yh) (red×) of a set of nine points Z = {zk}1≤k≤9

in H2 (original points ∗ in black), the minimal enclosing circle MECH2(Z) of is also depicted

(in red). (b) Corresponding minimax center Gaussian set N(µ =
√
2xh, σ

2 = y2h) of nine

univariate Gaussian pdfs, Nk(µk, σ
2
k), 1 ≤ k ≤ 9.
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3 Fisher information metric and α−order entropy metric of

univariate normal distributions

In information geometry, the Fisher information metric is a particular Riemannian metric

which can be associated to a smooth manifold whose points are probability measures defined

on a common probability space [3, 4]. It can be obtained as the infinitesimal form of the

Kullback–Leibler divergence (relative entropy). An alternative formulation is obtained by

computing the negative of the Hessian of the Shannon entropy.

Given an univariate probability distribution p(x|θ), x ∈ X, it can be view as a point on

a statistical manifold with coordinates given by θ = (θ1, θ2, · · · , θn). The Fisher information

matrix then takes the form:

gkl(θ) =

∫

X

∂ log p(x, θ)

∂θk

∂ log p(x, θ)

∂θl
p(x, θ) dx.

The corresponding positive definite form

ds2(θ) =

n
∑

k,l=1

gkl(θ)dθkdθl

is defined as the Fisher information metric. In the univariate Gaussian distributed case

p(x|θ) ≡ N(µ, σ2), we have in particular θ = (µ, σ) and it can be easily deduced that the

Fisher information matrix is

(gkl(µ, σ)) =

(

1
σ2 0

0 2
σ2

)

(15)

and the corresponding metric is

ds2((µ, σ)) =
dµ2 + 2dσ2

σ2
= 2σ−2

(

dµ2

√
2
+ dσ2

)

. (16)

Therefore, the Fisher information geometry of univariate normal distribution is essentially

the geometry of the Poincaré upper-half plane with the following change of variables:

x = µ/
√
2, y = σ

Hence, given two univariate Gaussian pdfs N(µ1, σ
2
1) and N(µ2, σ

2
2), the Fisher distance

between them, distFisher : N ×N → R+, defined from the Fisher information metric is given

by [9, 13]:

distFisher

(

(µ1, σ
2
1), (µ2, σ

2
2)
)

=
√
2distH2

(

µ1√
2
+ iσ1,

µ2√
2
+ iσ2

)

. (17)

The change of variable involves also that the geodesics in the hyperbolic Fisher space of

normal distributions are half-lines and half-ellipses orthogonal at σ = 0, with eccentricity

1/
√
2.
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The canonic approach can be generalized according to Burbea and Rao geometric frame-

work [9], which is based on replacing the Shannon entropy by the notion of α−order entropy,

whose associated Hessian metric leads to an extended large class of information metric geome-

tries. Focussing on the particular case of univariate normal distributions, p(x|θ) ≡ N(µ, σ2),

we consider again points in the upper half-plane, z = x+ iy ∈ H2 and for a given α > 0 the

α−order entropy metric is given by [9]:

{

x = [A(α)]−1/2 µ, y = σ;

dsα = B(α)y−(α+1)(dx2 + dy2);
(18)

where

A(α) = (α1/2 − α−1/2)2 + 2α−1; B(α) = α−3/2(2π)(1−α)/2A(α); α > 0. (19)

The metric in (18) constitutes a Kähler metric on H2 and when α = 1 reduces the

Poincaré metric (3). Its Gaussian curvature is Kα(z) = −(α+1) [B(α)]−1 yα−1; being always

negative (hyperbolic geometry). In particular, for α = 1 we recover the particular constant

case K1(z) = −2−1.

The geodesics of the Burbea-Rao α−order entropy metric can be written in its parametric

polar form as [9]:

γ(θ) = x(θ) + iy(θ), 0 < θ < π, with (20)
{

x(θ) = a+ r1/βF1/β(θ),

y(θ) = r1/β sin1/β θ,
(21)

where
β = (α+ 1)/2, r > 0, a ∈ R,

Fγ(θ) = −γ
∫ θ
π/2 sin

γ tdt.

Fig. 5 shows examples of the geodesics from the Burbea-Rao α−order entropy metric for

a = 0, r = 1 and α = 0.01, 0.5, 1, 5 and 20.

By integration of the metric, it is obtained the Burbea-Rao α−order entropy geodesic

distance for z1, z2 ∈ H2 [9]:

distH2(z1, z2; α) =
2
√

B(α)

|1− α|

∣

∣

∣

∣

x1 − x2
r

+ y
(1−α)/2
1

√

1− r−2yα+1
1 − y

(1−α)/2
2

√

1− r−2yα+1
2

∣

∣

∣

∣

,

(22)

which unfortunately depends on the value of r. This quantity should be determined by solving

a system of three nonlinear equations for the unknown variables θ1, θ2 and r:











x1 − x2 = r1/β
(

F1/β(θ1)− F1/β(θ2)
)

,

y1 = r1/β sin1/β θ1,

y2 = r1/β sin1/β θ2.
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Figure 5: Examples of the geodesics from the Burbea-Rao α−order entropy metric obtained

using (20) and (21) for a = 0, r = 1 and α = 0.01, 0.5, 1, 5 and 20.

An alternative solution to compute a closed form distance between two univariate normal

distributions N(µ1, σ
2
1) and N(µ2, σ

2
2) according to the Burbea-Rao α-deformed geometry is

based on the α−order Hellinger distance [9]:

distHellinger

(

(µ1, σ
2
1), (µ2, σ

2
2); α

)

=

2(2π)(1−α)/4

α5/4

[

(

σ
(1−α)/2
1 − σ

(1−α)/2
2

)2
+ 2(σ1σ2)

(1−α)/2

(

1−
(

2σ1σ2

σ2
1+σ2

2

)1/2
exp

(

−α(µ1−µ2)2

4(σ2
1+σ2

2)

)

)]1/2

.

(23)

In particular, when α = 1 this formula reduces to

distHellinger

(

(µ1, σ
2
1), (µ2, σ

2
2)
)

= 23/2

(

1−
(

2σ1σ2
σ2
1 + σ2

2

)1/2

exp

(−(µ1 − µ2)
2

4(σ2
1 + σ2

2)

)

)1/2

. (24)

4 Endowing H2 with partial ordering and its complete (inf-

semi)lattice structures

The notion of ordering invariance in the Poincaré upper-half plane was considered in the

Soviet literature [18, 19]. Ordering invariance with respect to simple transitive subgroup T

of the group of motions was studied, i.e., group T consists of transformations t of the form:

z = x+ iy 7→ z′ = (λx+ α) + iλy,

where λ > 0 and α are real numbers. We named T the Guts group. We note that T is just

the composition of a translation and a dilation in H2, and consequently, T is isometric group

(see Section 2.4).
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Nevertheless, up to the best of our knowledge, the formulation of partial orders on

Poincaré upper-half plane has not been widely study. We introduce here partial orders in H2

and study invariance properties to transformations of Guts group or to other subgroups of

SL(2,R) (Möbius transformations).

4.1 Upper half-plane product ordering

A real vector space E on which a partial order ≤ is given (reflexive, transitive, antisymmetric)

is called an ordered vector space if (i) x, y, z ∈ E and x ≤ y implies x+z ≤ y+z; (ii) x, y ∈ E,

0 ≤ λ ∈ R, and x ≤ y implies λx ≤ λy. An element x ∈ E with x ≥ 0 (that means that all

the vector components are positive) is said to be positive. The set E+ = {x ∈ E | x ≥ 0} for

all positive elements is called the cone of positive elements. It turns out that the order of an

ordered vector space is determined by the set of positive elements. Let E be a vector space

and C ⊂ E a cone. Then, x ≤ y if x− y ∈ C defines an order on E such that E is an ordered

vector space with E+ = C. The notion of partially ordered vector space is naturally extended

to partially ordered groups [17]. An ordered vector space E is called a vector lattice (E,≤)

if ∀x, y ∈ E there exist the joint (supremum or least upper bound) x∨ y = sup(x, y) ∈ E and

the meet (infimum or greatest lower bound) x ∧ y = inf(x, y) ∈ E. A vector lattice is also

called a Riesz space.

Thus, we can introduce a similar order structure in H2 as a product order of R×R+. To

achieve this goal, we need to define, on the one hand, the equivalent of ordering preserving

linear combination. More precisely, given tree points z1, z2, z3 ∈ H2 and a scalar positive

number 0 ≤ λ ∈ R we say that

z1 ≤H2 z2 implies λ � z1 ⊞ z3 ≤H2 λ � z2 ⊞ z3,

where we have introduced the following pair of operations in H2:

λ � z = λx+ iyλ and z1 ⊞ z2 = (x1 + x2) + i(y1y2).

On the other hand, the corresponding partial ordering ≤H2 will be determined by the positive

cone in H2 defined by H2
+ = {z ∈ H2 | x ≥ 0 and y ≥ 1}, i.e.,

z1 ≤H2 z2 ⇔ z2 ⊟ z1 ∈ H2
+, (25)

with z2 ⊟ z1 = (x2 − x1) + i(y−1
2 y1). According to this partial ordering the corresponding

supremum and infimum for any pair of points z1 and z2 in H2 are naturally defined as follows

z1 ∨H2 z2 = (x1 ∨ x2) + i exp (log(y1) ∨ log(y2)) , (26)

z1 ∧H2 z2 = (x1 ∧ x2) + i exp (log(y1) ∧ log(y2)) . (27)

Therefore H2 endowed with partial ordering (25) is a complete lattice, but it is not bounded

since the the greatest (or top) and least (or bottom) elements are in the boundary ∂H2. We
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also have a duality between supremum and infimum, i.e.,

z1 ∨H2 z2 = ∁
(

∁z1 ∧H2 ∁z2
)

; z1 ∧H2 z2 = ∁
(

∁z1 ∨H2 ∁z2
)

,

with respect to the following involution

z 7→ ∁z = (−1) � z = −x+ iy−1. (28)

We easily note that, in fact, exp (log(y1) ∨ log(y2)) = y1 ∨ y2 and similarly for the infimum,

since the logarithm is an isotone mapping (i.e., monotone increasing) and therefore order-

preserving. Therefore, the partial ordering ≤H2 does not involve any particular structure for

H2 and does not take into account the Riemannian nature of the upper half plane. According

to that, we note also that the partial ordering≤H2 is invariant to the Guts group of transforms,

i.e.,

z1 ≤H2 z2 ⇔ T (z1) ≤H2 T (z2).

4.2 Upper half-plane symmetric ordering

Let us consider a symmetrization of the product ordering with respect to the origin in the

upper half-plane. Given any pair points z1, z2 ∈ H2, we define the upper half-plane symmetric

ordering as

z1 �H2 z2 ⇔



















0 ≤ x1 ≤ x2 and 0 ≤ log(y1) ≤ log(y2) or

x2 ≤ x1 ≤ 0 and 0 ≤ log(y1) ≤ log(y2) or

x2 ≤ x1 ≤ 0 and log(y2) ≤ log(y1) ≤ 0 or

0 ≤ x1 ≤ x2 and log(y2) ≤ log(y1) ≤ 0

(29)

The four conditions of this partial ordering entails that only points belonging the same

quadrant ofH2 can be ordered, where the four quadrants {H2
++,H2

−+,H2
−−,H2

+−} are defined
with respect to the origin OH2 = (0, 1) which corresponds to the pure imaginary complex

z0 = i. In other words, we can summarize the partial ordering (29) by saying that if z1 and

z2 belongs to the same O-quadrant of H2 we have z1 �H2 z2 ⇔ |x1| ≤ |x2| and | log(x1)| ≤
| log(x2)|. Endowed with the partial ordering (29), H2 becomes a partially ordered set (poset)

where the bottom element is z0, but we notice that there is not top element. In addition, for

any pair of point z1 and z2 the infimum fH2 is given by

z1 fH2 z2 ⇔



























(x1 ∧ x2) + i(y1 ∧ y2) if z1, z2 ∈ H2
++

(x1 ∨ x2) + i(y1 ∧ y2) if z1, z2 ∈ H2
−+

(x1 ∨ x2) + i(y1 ∨ y2) if z1, z2 ∈ H2
−−

(x1 ∧ x2) + i(y1 ∨ y2) if z1, z2 ∈ H2
+−

z0 otherwise

(30)

The infimum (30) extends naturally to any finite set of points in H2, Z = {zk}1≤k≤K , and will

be denoted by
c

H2 Z. However, the supremum z1 gH2 z2 is not defined; or more precisely, it
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is defined if and only if z1 and z2 belongs to the same quadrant, i.e., similarly to (30) mutatis

mutandis ∧ by ∨ with the “otherwise” case as “non existent”. Consequently, the poset

(H2,�H2) is only a complete inf-semilattice. The fundamental property of such infimum (30)

if its self-duality with respect to involution (28), i.e.,

z1 fH2 z2 = ∁
(

∁z1 fH2 ∁z2
)

. (31)

Due to the strong dependency of partial ordering �H2 with respect to OH2 , it is easy to

see that such ordering is only invariant to transformations that does not move points from

one quadrant to another one. This is the case typically for mappings as z 7→ λ � z, λ > 0.

4.3 Upper half-plane polar ordering

Previous order �H2 is only a partial ordering, and consequently given any pair of points z1
and z2 can be different from z1 and z2. In addition, the supremum is not always defined. Let

us introduce a total ordering in H based on hyperbolic polar coordinates, which takes into

account also an ordering relationship with respect to OH2 . Thus, given two points ∀z1, z2 ∈ H
the upper half-plane polar ordering states

z1 ≤pol
H2 z2 ⇔

{

η1 < η2 or

η1 = η2 and tanφ1 ≤ tanφ2
(32)

The polar supremum z1∨pol
H2 z2 and infimum z1∧pol

H2 z2 are naturally defined from the order (32)

for any subset of points Z, denoted by
∨pol

H2 Z and
∧pol

H2 Z. Total order ≤pol
H2 leads to a complete

lattice, bounded from the bottom (i.e., the origin OH2) but not from the top. Furthermore,

as ≤pol
H2 is a total ordering, the supremum and the infimum will be either z1 or z2.

Polar total order is invariant to any Möbius transformation Mg which preserves the dis-

tance to the origin (isometry group) and more generally to isotone maps in distance, i.e.,

η(z1) ≤ η(z2) ⇔ η(Mg(z1)) ≤ η(Mg(z2)) but which also preserves the orientation order, i.e.,

order on the polar angle. This is for instance the case of orientation group SO(2) and the

scaling maps z 7→ Mg(z) = λz, 0 < λ ∈ R.

We note also that instead of considering as origin OH2 , the polar hyperbolic coordinates

can be defined with respect to a different origin z
′

0 and consequently, the total order is adapted

to the new origin (i.e., bottom element is just z
′

0).

One can replace in the polar ordering the distance distH2(OH2 , z) by the α-order Hellinger

distance to obtain now the total ordering ≤α−pol
H2 parametrized by α:

z1 ≤α−pol
H2 z2 ⇔

{

distHellinger (OH2 , z1; α) < distHellinger (OH2 , z2; α) or

distHellinger (OH2 , z1; α) = distHellinger (OH2 , z2; α) and tanφ1 ≤ tanφ2

(33)

As we illustrate in Section 5, the “deformation” of the distance driven by α can signifi-

cantly change the supremum and infimum from a set of points Z. Obviously, the properties

of invariance of ≤α−pol
H2 are related to the isometries of the α-order Hellinger distance.
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4.4 Upper half-plane geodesic ordering

As discussed above, there is a unique hyperbolic geodesic joining any pair of points. Given

two points z1, z2 ∈ H2 such that x1 6= x2, let SCr1⌢2(a1⌢2) be the semi-circle defining their

geodesic, where the center a1⌢2 and the radius r1⌢2 are given by Eqs. (10). Lets denote by

z1⌢2 the point of SCr1⌢2(a1⌢2) having maximal imaginary part, i.e., its imaginary part is

equal to the radius: z1⌢2 = a1⌢2 + ir1⌢2.

The upper half-plane geodesic ordering �geo
H2 defines an order for points being in the same

half of their geodesic semi-circle as follows,

z1 �geo
H2 z2 ⇔

{

a1⌢2 ≤ x1 < x2 or

x2 < x1 ≤ a1⌢2
(34)

Property of transitivity of this partial ordering, i.e., z1 �geo
H2 z2, z2 �geo

H2 z3 ⇒ z1 �geo
H2 z3,

holds for points belonging to the same geodesic. For two points in a geodesic vertical line,

x1 = x2, we have z1 �geo
H2 z2 ⇔ y2 ≤ y1. We note that considering the duality with respect to

the involution (28) one has

z1 �geo
H2 z2 ⇔ ∁z1 �geo

H2 ∁z2.

According to this partial ordering, we define the geodesic infimum, denoted by f
geo
H2 , as the

point on the geodesic joining z1 and z2 with maximal imaginary part, i.e., for any z1, z2 ∈ H2,

with x1 6= x2, we have

z1 f
geo
H2 z2 ⇔











(x1 ∨ x2) + i(y1 ∨ y2) if x1, x2 ≤ a1⌢2

(x1 ∧ x2) + i(y1 ∨ y2) if x1, x2 ≥ a1⌢2

z1⌢2 otherwise

(35)

If x1 = x2, we have that z1f
geo
H2 z2 = x1+i(y1∨y2). In any case, we have that distH2(z1, z2) =

distH2(z1, z1f
geo
H2 z2)+ distH2(z1f

geo
H2 z2, z2). Intuitively, we notice that the geodesic infimum

is the point of the geodesic farthest from the real line.

We observe that if one attempts to define the geodesic supremum from the partial ordering

�geo
H2 , it results that the supremum is not defined for any pair of points, i.e., supremum between

z1 and z2 is defined if and only if both points are in the same half of its semi-circle. To tackle

this limitation, we propose to define the geodesic supremum z1g
geo
H2 z2 by duality with respect

to the involution ∁z, i.e.,

z1 g
geo
H2 z2 = ∁

(

∁z1 f
geo
H2 ∁z2

)

⇔











(x1 ∧ x2) + i(y1 ∧ y2) if x1, x2 ≤ a1⌢2

(x1 ∨ x2) + i(y1 ∧ y2) if x1, x2 ≥ a1⌢2

∁z∁1⌢∁2 otherwise

(36)

where ∁z∁1⌢∁2 is the dual point associated to the semi-circle defined by dual points ∁z1 and

∁z2.
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Nevertheless, in order to have a structure of complete lattice for (H2,�geo
H2 ), it is required

that the infimum and the supremum of any set of points Z = {zk}1≤k≤K with K ≥ 2, are well

defined. Namely, according to (35), the geodesic infimum of Z, denoted
∧geo

H2 Z, corresponds

to the point zinf with maximal imaginary part on all possible geodesics joining any pair of

points zn, zm ∈ Z. In geometric terms, that means that between all these geodesics, there

exists one which gives zinf . Instead of computing all the geodesics, we propose to define the

infimum
∧geo

H2 Z as the point zinf = ainf + irinf , where ainf is the center of the smallest semi-

circle in H2 of radius rinf which encloses all the points in the set Z. We have the following

property
geo
∧

H2

Z = zinf �geo
H2 zk, 1 ≤ k ≤ K,

which geometrically means that the geodesic connecting zinf to any point zk of Z lies always

in one of the half part of the semi-circle defined by zinf and zk.

In practice, the minimal enclosing semi-circle defining zinf can be easily computed by

means of the following algorithm based on the minimum enclosing Euclidean circle MEC of

a set of points: (1) Working on R
2, define a set of points given, on the one hand, by Z and,

on the other hand, by Z∗ which corresponds to the reflected points with respect to x-axis

(complex conjugate), i.e., points Z = {(xk, yk)} and points Z∗ = {(xk,−yk)}, 1 ≤ k ≤ K; (2)

Compute the MEC(Z ∪Z∗) 7→ Cr(c), in such a way that, by symmetric point configuration,

we necessarily have the center on the x-axis, i.e., c = (xc, 0); (3) The infimum
∧geo

H2 Z = zinf
is given by zinf = xc + ir. Fig. 6(a)-(b) gives an example of computation of the geodesic

infimum from a set of points in H2.

As for the case of two points, the geodesic supremum of Z is defined by duality with

respect to involution (28), i.e.,

zsup =

geo
∨

H2

Z = ∁

(

geo
∧

H2

∁Z

)

= asup + irsup, (37)

with asup = −xdualc and rsup = 1/rdual, where SCrdual(x
dual
c ) is the minimal enclosing semi-

circle from dual set of points ∁Z. An example of computing the geodesic supremum zsup is

also given in Fig. 6(a)-(b). It is easy to see that geodesic infimum and supremum have the

following properties for any Z ⊂ H2:

1. zinf �geo
H2 zsup;

2. ℑ(zinf) ≥ ℑ(zk) and ℑ(zsup) ≤ ℑ(zk), ∀zk ∈ Z;

3.
∨

1≤k≤K ℜ(zk) < {ℜ(zinf),ℜ(zsup)} <
∧

1≤k≤K ℜ(zk).

The proofs are straightforward from the notion of minimal enclosing semi-circle and the fact

zsup lies inside the semi-circle defined by zinf .
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Geodesic infimum and supremum being defined by minimal enclosing semi-circles, their

invariance properties are related to translation and dilations of points in set Z as defined in

Section 2.4, but not to inversion. This invariance domain corresponds just to the Guts group

of transformations, i.e.,

geo
∧

H2

{T (zk)}1≤k≤K = T

(

geo
∧

H2

{zk}1≤k≤K

)

.

As we have discussed in Section 3, we do not have an explicit algorithm to compute the

Burbea-Rao α-order entropy geodesic and consequently, our framework based on computing

the minimum enclosing geodesic to define the infimum cannot be extended to this general

case. We can nevertheless consider the example depicted in Fig. 7, where we have computed

such smallest Burbea-Rao α-order geodesic enclosing the set of points Z. Indeed, the example

is useful to identify the limit cases with respect to α. In fact, we note that if α → 0, the

corresponding α-geodesic infimum will correspond to the zk having the largest imaginary

part, and dually for the supremum, i.e., zk having the smallest imaginary part. In the case

of large α, we note that the real part of both, the α-geodesic infimum and supremum equals

(∨1≤k≤Kℜ(zk)− ∧1≤k≤Kℜ(zk)) /2, and the imaginary part of the infimum goes to +∞ and

of the supremum to 0 when α → +∞.

4.5 Upper half-plane asymmetric geodesic infimum/supremum

According to the properties of geodesic infimum zinf and supremum zsup discussed above, we

note that their real parts ℜ(zinf) and ℜ(zsup) belong to the interval bounded by the real parts

of points of set Z. Moreover, ℜ(zinf) and ℜ(zsup) are not ordered between them. Therefore,

the real part of supremum can be smaller than that of the infimum. For instance, in the

extreme case of a set Z where all the imaginary parts are equal, the real part of its geodesic

infimum and supremum are both equal to the average of the real parts of points, i.e., given

Z = {zk}1≤k≤K , if yk = y, 1 ≤ k ≤ K, then ℜ(zinf) = ℜ(zsup) = 1/K
∑K

k=1 xk. From the

viewpoint of morphological image filtering, it can be potentially interesting to impose an

asymmetric behavior for the infimum and supremum such that ℜ(z−→+
inf ) ≤ zk ≤ ℜ(z−→+

sup ),

1 ≤ k ≤ K. Note that the proposed notation − → + indicates a partially ordered set on

x-axis. In order to fulfil these requirements, we can geometrically consider the rectangle

bounding the minimal enclosing semi-circle, which is just of dimensions 2rinf × rinf , and

use it to define the asymmetric infimum z−→+
inf as the upper-left corner of the rectangle.

The asymmetric supremum z−→+
sup is similarly defined from the bounding rectangle of the

dual minimal enclosing semi-circle. Mathematically, given the geodesic infimum zinf and

supremum zsup, we have the following definitions for the asymmetric geodesic infimum and

supremum:
{

z−→+
inf =

∨−→+
H2 Z = (ainf − rinf) + irinf ;

z−→+
sup =

∧−→+
H2 Z = −(xdualc − rdual) + i 1

rdual
.

(38)
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Remark. Geodesic infimum and supremum of Gaussian distributions. Let us consider

their interpretation as infimum and supremum of a set of univariate Gaussian pdfs, see exam-

ple depicted in Fig. 6. Given a set of K Gaussian pdfs Nk(µ =
√
2xk, σ

2 = y2k), 1 ≤ k ≤ K, we

observe that the Gaussian pdf associated to the geodesic infimum Ninf(µ =
√
2xinf , σ

2 = y2inf)

has a variance larger than any Gaussian of the set and its mean is a kind of barycenter

between the Gaussian pdfs having larger variance. The supremum Gaussian pdf Nsup(µ =√
2xsup, σ

2 = y2sup) has smaller variance than the K Gaussian pdfs and its mean is between

the ones of small variance. In terms of the corresponding cumulative distribution functions,

we observe that geodesic supremum/infimum do not have a natural interpretation. In the

case of the asymmetric Gaussian geodesic infimum N−→+
inf (µ =

√
2x−→+

inf , σ2 = (y−→+
inf )2) and

Gaussian supremum N−→+
sup (µ =

√
2x−→+

sup , σ2 = (y−→+
sup )2), we observe how the means are

ordered with respect to the K others, which involves also that the corresponding cdfs are

ordered. The latter is related to the notion of stochastic dominance [29] and will be explored

in detail in ongoing research.
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Figure 6: (a) Set of nine points in H2, Z = {zk}1≤k≤9. (b) Computation of infimum
∧geo

H2 Z =

zinf (blue “×”) and supremum
∨geo

H2 Z = zsup (red “×”). Black “∗” are the original points

and green “∗” the corresponding dual ones. (c) In black, set of Gaussian pdfs associated to

Z, i.e., Nk(µ =
√
2xk, σ

2 = y2k); in blue, infimum Gaussian pdf Ninf(µ =
√
2xinf , σ

2 = y2inf);

in red, supremum Gaussian pdf Nsup(µ =
√
2xsup, σ

2 = y2sup). (d) Cumulative distribution

functions of Gaussian pdfs from (c).
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Figure 7: (a) Set of nine points in H2, Z = {zk}1≤k≤9. (b) Computation of the smallest

Burbea-Rao α-order geodesic enclosing the set Z, for α = 0.01 (in green), α = 1 (in red),

α = 5 (in magenta), α = 20 (in blue).
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Figure 8: (a) Infimum and supremum Gaussian pdfs (in green and red respectively) from

asymmetric geodesic infimum z−→+
inf and z−→+

sup from set of Fig. 6. (b) Cumulative distribution

functions of Gaussian pdfs from (a).
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5 Morphological operators on F(Ω,H2) for processing univari-

ate Gaussian distribution-valued images

Let consider that H2 has been endowed with one of the partial orderings discussed above,

denoted generally by ≤. Hence (H2,≤) is a poset, which has also a structure of complete

lattice since we consider that the infimum
∧

and supremum
∨

are defined for any set of

points in H2.

5.1 Adjunction on complete lattice (H2
,≤)

The operators ε : H2 → H2 and δ : H2 → H2 are an erosion and a dilation if they commute

respectively with the infimum and the supremum: ε (
∧

k zk) =
∧

k ε(zk) and δ (
∨

k zk) =
∨

k δ(zk), for every set {zk}1≤k≤K . Erosion and dilation are increasing operators, i.e., ∀z, z′ ∈
H2, if z ≤ z′ then ε(z) ≤ ε(z′) and δ(z) ≤ δ(z′). Erosion and dilation are related by the

notion of adjunction [28, 20], i.e.,

δ(z) ≤ z′ ⇔ z ≤ ε(z′); ∀z, z′ ∈ H2. (39)

Adjunction law (39) is of fundamental importance in mathematical morphology since it allows

to define a unique dilation δ associated to a given erosion ε, i.e., δ(z′) =
∧{z ∈ H2 : z′ ≤ ε(z)},

z′ ∈ H2. Similarly one can define a unique erosion from a given dilation: ε(z) =
∨{z′ ∈ H2 :

δ(z′) ≤ z}, z ∈ H2. Given an adjunction (ε, δ), we also have the guarantee that their product

operators, γ(z) = δ (ε(z)) and ϕ(z) = ε (δ(z)) are respectively an opening and a closing,

which are the basic morphological filters having very useful properties [28, 20]: idempotency

γγ(z) = γ(z), anti-extensivity γ(z) ≤ z and extensivity z ≤ ϕ(z), and increaseness. Another

relevant result is the fact, given an erosion ε, the opening and closing by adjunction are

exclusively defined in terms of the erosion [20] as γ(z) =
∧
{

z′ ∈ H2 : ε(z) ≤ ε(z′)
}

, ϕ(z) =
∧
{

ε(z′) : z′ ∈ H2 , z ≤ ε(z′)
}

, ∀z ∈ H2.

In the case of complete inf-semilattice (H2,≤), where the infimum
∧

is defined but

the supremum
∨

is not necessarily so, have the following particular results [22, 21]: (a)

it is always possible to associate an opening γ to a given erosion ε by means of γ(z) =
∧
{

z′ ∈ H2 : ε(z) ≤ ε(z′)
}

, (b) even though the adjoint dilation δ is not well-defined in H2,

it is always well-defined for elements on the image of H2 by ε, and (c) γ = δε. The closing

defined by ϕ = εδ is only partially defined.

5.2 Erosion and dilation in F(Ω,H2)

If (H2,≤) is a complete lattice, the set of images F(Ω,H2) is also a complete lattice defined

as follows: for all f, g ∈ F(Ω,H2), (i) f ≤ g ⇔ f(p) ≤ g(p), ∀p ∈ Ω; (ii) (f ∧ g)(p) =

f(p) ∧ g(p), ∀p ∈ Ω; (iii) (f ∨ g)(p) = f(p) ∨ g(p), ∀p ∈ Ω , where ∧ and ∨ are the infimum

and supremum in H2. One can now define the following adjoint pair of flat erosion εB(f)
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and flat dilation δB(f) of each pixel p of the image f [28, 20]:

εB(f)(p) =
∧

q∈B(p)

f(p+ q), (40)

δB(f)(p) =
∨

q∈B(p)

f(p− q), (41)

such that

δB(f)(p) ≤ g(p) ⇔ f(p) ≤ εB(g)(p); ∀f, g ∈ F(Ω,H2). (42)

where the set B is called the structuring element, which defines the set of points in Ω when

it is centered at point p, denoted B(p) [30]. These operators, which are translation invariant,

can be seen as constant-weight (this the reason why they are called flat) inf/sup-convolutions,

where the structuring element B works as a moving window.

The above erosion (resp. dilation) moves object edges within image in such a way that

expands image structures with values in H2 close to the bottom element (resp. close to the

top) of the lattice F(Ω,H2) and shrinks object with values close to the top element (resp.

close to the bottom).

Lets consider now the various cases of supremum and infimum that we have introduced

above. Everything works perfectly for the supremum and infimum in the upper half-plane

product ordering
∨

H2 and
∧

H2 , which consequently can be used to construct dilation and

erosion operators in F(Ω,H2). Similarly, the ones for the upper half-plane polar ordering
∨pol

H2 and
∧pol

H2 , based on a total partial ordering, lead also respectively to dilation and erosion

operators. We note that for the symmetric ordering �H2 one only has an inf-semilattice

structure associated to
c

H2 . However, in the case of the upper half-plane geodesic ordering,

the pair of operators (40) and (41) associated to our supremum
∨geo

H2 and infimum
∧geo

H2 will

not verify the adjunction (42). Same limitation also holds for the upper half-plane asymmetric

geodesic supremum and infimum. Hence, the geodesic supremum and infimum do not strictly

involve a pair of dilation and erosion in the mathematical morphology sense. Nevertheless, we

can compute both operators and use them to filter out images in F(Ω,H2) without problem.

5.3 Opening and closing in F(Ω,H2)

Given the adjoint image operators (εB, δB), the opening and closing by adjunction of image

f , according to structuring element B, are defined as the composition operators [28, 20]:

γB(f) = δB (εB(f)) , (43)

ϕB(f) = εB (δB(f)) . (44)

Openings and closings are referred to as morphological filters, which remove objects of image

f that do not comply with a criterion related, on the one hand, to the invariance of the object
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support to the structuring element B and, on the other hand, to the values of the object on

H2 which are far from (in the case of the opening) or near to (in the case of the closing) to

the bottom element of H2 according to the given partial ordering ≤.

Once the pairs of dual operators (εB, δB) and (γB, ϕB) are defined, the other morpholog-

ical filters and transformation can be naturally defined [30] for images in F(Ω,H2). We limit

here the the illustrative examples with the basic ones.

Following our analysis on the particular cases of ordering and supremum/infimum in H2,

we can conclude that opening and closing in F(Ω,H2) are well formulated for the upper

half-plane product ordering and the upper half-plane polar ordering. In the case of the

upper half-plane symmetric ordering, the opening is always defined and the closing cannot

be computed. Again, we should insist on the fact that for the upper half-plane geodesic

ordering the composition operators obtained by the supremum
∨geo

H2 and infimum
∧geo

H2 will not

produce opening and closing stricto sensu. Notwithstanding, the corresponding composition

operators yield a regularization effect of F(Ω,H2)-images which can be of interest for practical

applications.

5.4 Application to morphological processing univariate Gaussian distribu-

tion valued images

Example 1. A first example of morphological processing for images in F(Ω,H2) is given in

Fig. 9-10. The starting point is a standard gray-level image g ∈ F(Ω,R), which is mapped to

the image f(p) = fx(p)+ ify(p) by the following transformations: (1) the image is normalized

to have zero mean and unit variance; (2) the real and imaginary components of f(p) are

obtained by computing respectively the mean and standard deviation over a patch centered

at p of radius W pixels (in the example W = 4); i.e.,

g(p) 7→ ĝ(p) =
g(p)−Mean(g)
√

Var(g)
7→ f(p) = MeanW (ĝ)(p) + i

√

VarW (ĝ)(p).

Fig. 9-10 gives a comparison of morphological erosions εB(f)(p) and openings γB(f)(p) on

this image f using the five complete (inf-semi)lattice of H2 considered in the paper. We have

included also the pseudo-erosions and pseudo-openings associated to the geodesic supremum

and infimum and the asymmetric geodesic ones. The same structuring element B, a square

of 5 × 5 pixels, has been used for all the examples. First of all, we remind that working

on the product complete lattice (H2,≤H2) is equivalent to a marginal processing of real and

imaginary components. As expected, the symmetric ordering-based inf-semilattice (H2,�H2

) and polar ordering-based lattice (H2,≤pol
H2) produce rather similar results for openings.

We observe that in both cases the opening produces a symmetric filtering effect between

bright/dark intensity in the mean and standard deviation component. But it is important to

remark that the processing effects depend on how image components are valued with respect
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to the origin z0 = (0, 1). This is the reason why it is proposed to always normalize by

mean/variance the image.

The results of the pseudo-openings produced by working on geodesic lattice (H2,
∨geo

H2 ,
∧geo

H2 )

and asymmetric geodesic lattice (H2,
∧−→+

H2 ,
∨−→+

H2 ) involves a processing which is mainly

driven by the values of the standard deviation. Hence, the filtering effects are potentially

more interesting for applications requiring to deal with pixel uncertainty, either in a symmet-

ric processing of both bright/dark mean values with (H2,
∨geo

H2 ,
∧geo

H2 ) or in a more classical

morphological asymmetrization with (H2,
∧−→+

H2 ,
∨−→+

H2 ).

Example 2. Fig. 11 illustrates a comparative example of erosions εB(f)(p) on a very noisy

image g(p). We note that g(p) is mean centered. The “noise” is related to an acquisition at the

limit of exposure time/spatial resolution. We consider an image model f(p) = fx(p)+ ify(p),

where fx(p) = g(x) and fy(p) is the standard deviation of intensities in a patch of radius

equal to 4 pixels. In fact, it is compared the results of erosion obtained by the product and

symmetric partial orderings, with respect to the ones obtained by polar ordering and more

generally by the α-polar ordering with four values of α. We observe, on the one hand, polar

orderings are more relevant than the product or symmetric ones. As expected, the α-polar

erosion with α = 1 is almost equivalent to the hyperbolic polar ordering. We note, on the

other hand, the interest of the limit cases of α-polar erosion. The erosion for small α produces

a strongly regularized image where the bright/dark objects with respect to the background

has been nicely enhanced. In the case of large α, the background (i.e., pixels values close to

the origin in H2) is enhanced, which involves removing all the image structures smaller than

the structuring element B.

Example 3. In Fig. 12 is depicted a limited comparison for the case of dilation δB(f)(p).

The image f(p) = fx(p) + ify(p) is obtained similarly to the case of Example 1. We can

compare the supremum by product ordering with those obtained by the polar supremum and

the α-polar supremum, with α = 0.01.

Example 4. Fig. 13 involves again the noisy retinal image, and it shows a comparison

of results from (pseudo-)opening γB(f)(p) and (pseudo-)closing ϕB(f)(p) obtained for the

product ordering, the geodesic lattice (H2,
∨geo

H2 ,
∧geo

H2 ) and the asymmetric geodesic lattice

(H2,
∧−→+

H2 ,
∨−→+

H2 ). The structuring element B is a square of 5×5 pixels. In order to be able

to compare their enhancement effects with a non morphological operator, it is also given the

result of filtering by computing the minimax center in a square of 5× 5 pixels [8, 2]. We note

that operators associated to the asymmetric geodesic supremum and infimum yield mean

images relatively similar to the standard ones underlaying the supremum and infimum in the

product lattice. However, by including the information given the local standard deviation,

the contrast of the structures is better in the asymmetric geodesic supremum and infimum.

Nevertheless, we observe that the operators by geodesic supremum and infimum produce also

in this example a significant regularization of the image. By the way, we note that the cor-

responding geodesic pseudo-opening and pseudo-closing give rather similar mean images but

different standard deviation images, as expected by the formulation of the geodesic supremum
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and infimum.

Example 5. The example given in Fig. 14 corresponds to an image f(p) = fx(p) + ify(p)

obtained by multiple acquisition of a sequence of 100frames, where fx(p) represents the mean

intensity at each pixel and fy(p) the standard deviation of intensity along the sequence. The

goal of the example is to show how to extract image objects of large intensity and support size

smaller than the structuring element (here a square of 7×7 pixels) using the residue between

the original image f(p) and its filtered image by opening γB(f). In the case of images on

F(Ω,H2), the residue is defined as the pixelwise hyperbolic distance between them. In this

case study, results on processing on polar ordering-based lattice versus asymmetric geodesic

lattice are compared.
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(a) g(p) (b) fx(p) (c) fy(p)

(d-1) εB(f)(p), (H2,≤H2) (e-1) γB(f)(p), (H2,≤H2)

(d-2) εB(f)(p), (H2,�H2) (e-2) γB(f)(p), (H2,�H2)

(d-3) εB(f)(p), (H2,≤pol

H2) (e-3) γB(f)(p), (H2,≤pol

H2)

Figure 9: Comparative of morphological erosions and openings of an image f ∈ F(Ω,H2):

(a) Original real-valued image g(p) ∈ F(Ω,R) used to simulate (see the text) the image

f(p) = fx(p)+ify(p), where (b) and (c) gives respectively the real and imaginary components.

(d-) and (e-) depict respectively the erosion εB(f)(p) and opening γB(f)(p) of image f(p)

for five orderings on the upper half-plane. The structuring element B is a window of 5 × 5

pixels. Continued in next figure.

28



(d-4) εB(f)(p), (H2,
∨geo

H2 ,
∧geo

H2 ) (e-4) γB(f)(p), (H2,
∨geo

H2 ,
∧geo

H2 )

(d-5) εB(f)(p), (H2,
∧−→+

H2 ,
∨−→+

H2 ) (e-5) γB(f)(p), (H2,
∧−→+

H2 ,
∨−→+

H2 )

Figure 10: Continuation from previous figure.
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(a) f(p) (c) εB(f)(p),

(H2,≤H2 )

(c) εB(f)(p),

(H2,�H2 )

(d) εB(f)(p),

(H2,≤pol

H2
)

(e) εB(f)(p),

(H2,≤α−pol

H2
), α = 0.01

(f) εB(f)(p),

(H2,≤α−pol

H2
), α = 1

(g) εB(f)(p),

(H2,≤α−pol

H2
), α = 0.20

(h) εB(f)(p),

(H2,≤α−pol

H2
), α = 200

Figure 11: Comparative of erosion of Gaussian distribution-valued noisy image εB(f)(p): (a)

Original image f ∈ F(Ω,H2), showing both the real and the imaginary components; (b)

upper half-plane product ordering (equivalent to standard processing); (c) upper half-space

symmetric ordering; (d) upper half-plane polar ordering; (e)-(h) upper half-plane α-polar

ordering, with four values of α. In all the cases the structuring element B is also a square of

5× 5 pixels.

30



(a) f(p) (b) δB(f)(p), (H2,≤H2)

(c) δB(f)(p), (H2,≤polar

H2 ) (d) δB(f)(p), (H2,≤α−pol

H2 ), α = 0.01

Figure 12: Comparative of dilation of Gaussian distribution-valued image δB(f)(p): (a)

Original image f ∈ F(Ω,H2), showing both the real and the imaginary components; (b)

upper half-plane product ordering (equivalent to standard processing); (c) upper half-plane

polar ordering; (e) half-plane α-polar ordering, with α = 0.01. In all the cases the structuring

element B is also a square of 5× 5 pixels.
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(a) f(p) (b) Minimax

center 5× 5

(c) γB(f)(p),

(H2,≤H2 )

(d) ϕB(f)(p),

(H2,≤H2 )

(g) γB(f)(p),

(H2,
∨geo

H2
,
∧geo

H2
)

(h) γB(f)(p),

(H2,
∧

−→+
H2

,
∨

−→+
H2

)

(g) ϕB(f)(p),

(H2,
∨geo

H2
,
∧geo

H2
)

(h) ϕB(f)(p),

(H2,
∧

−→+
H2

,
∨

−→+
H2

)

Figure 13: Morphological processing of Gaussian distribution-valued noisy image: (a) Orig-

inal image f ∈ F(Ω,H2), showing both the real and the imaginary components; (b) filtered

image by computing the minimax center in a square of 5× 5 pixels; (c) morphological open-

ing working on the product lattice; (d) morphological closing working on the product lattice;

(e) morphological pseudo-opening working on the geodesic lattice; (f) morphological pseudo-

opening on the asymmetric geodesic lattice; (g) morphological pseudo-closing working on the

geodesic lattice; (h) morphological pseudo-closing on the asymmetric geodesic lattice. In all

the cases the structuring element B is also a square of 5× 5 pixels.
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(a) f(p)

(b) f̂(p) = γB(f)(p), (H2,≤pol

H2) (c) distH2

(

f(p), f̂(p)
)

(d) f̌(p) = γB(f)(p), (H2,
∧−→+

H2 ,
∨−→+

H2 ) (e) distH2

(

f(p), f̌(p)
)

Figure 14: Morphological detail extraction of multiple acquisition image modeled as a Gaus-

sian distribution-valued: (a) Original image f ∈ F(Ω,H2), showing both the real and the

imaginary components; (b) morphological opening γB(f) working on polar ordering-based lat-

tice; (c) corresponding residue (pixelwise hyperbolic difference) between the original and the

opened image; (d) morphological pseudo-opening γB(f) working on the asymmetric geodesic

lattice; (e) corresponding residue. In both cases the structuring element B is also a square

of 7× 7 pixels.
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6 Perspectives

Levelings are a powerful family self-dual morphological operators which have been also formu-

lated in vector spaces [23], using geometric notions as minimum enclosing balls and half-planes

intersection. We intend to explore the formulation of levelings in the upper half-plane in a

future work.

The complete lattice structures for the Poincaré upper-half plane introduced in this work,

and corresponding morphological operators, can be applied to process other hyperbolic-valued

images. For instance, on the one hand, it was proved in [12] that the structure tensor for

2D images, i.e., at each pixel is given a 2 × 2 symmetric positive definite matrix whose

determinant is equal to 1, are isomorphic to the Poincaré unit disk model. On the other

hand, polarimetric images [16] where at each pixel is given a partially polarized state can be

embedded in the Poincaré unit disk model. In both cases, we only need the mapping from

the Poincaré disk model to the Poincaré half-plane, i.e.,

z 7→ −i
z + 1

z − 1
.

We have considered here the case of Gaussian distribution-valued images. It should be

potentially interesting for practical applications to consider that the distribution of intensity

at a given pixel belongs to a more general distributions than the Gaussian one. In particu-

lar, the case of the Gamma distribution seems an appropriate framework. The information

geometry of the gamma manifold has been studied in the past [15] and the some of the ideas

developed in this work can be revisited for the case of Gamma-distribution valued images by

endowing the gamma manifold of complete lattice structure.

Previous extension only concerns the generalization of ordering structure for univariate

distributions. In the case of multivariate Gaussian distributions, we can consider to replace

the Poincaré upper-half plane by the Siegel upper-half space [7].
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Bhatia, Eds.) Matrix Information Geometry, Springer, pp. 199–255, 2013.
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Pythagorean Compass. Journal of Statistical Physics, Vol. 130, No. 3, 455–482, 2008.

[11] J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry. Hyperbolic Geometry. Flavors of

Geometry, MSRI Publications, Vol. 31, 1997.

[12] P. Chossat, O. Faugeras. Hyperbolic Planforms in Relation to Visual Edges and Textures

Perception. PLoS Computational Biology, Vol. 5, Issue 12, p1, 2009.

[13] S.I.R. Costa, S.A. Santos, J.E. Strapasson. Fisher information matrix and hyperbolic

geometry. In Proc. of IEEE ISOC ITW2005 on Coding and Complexity, pp. 34–36,

2005.

[14] S.I.R. Costa, S.A. Santos, J.E. Strapasson. Fisher information distance: a geometrical

reading, arXiv:1210:2354v1, 15 p., 2012.

[15] C.T.J Dodson, H. Matsuzoe. An affine embedding of the gamma manifold. Appl. Sci.,

5(1): 7–12, 2003.

[16] J. Frontera-Pons, J. Angulo. Morphological Operators for Images Valued on the Sphere.

In Proc. of IEEE ICIP’12 (2012 IEEE International Conference on Image Processing),

pp. 113–116, Orlando (Florida), USA, October 2012.

35



[17] L. Fuchs. Partially ordered algebraic systems. Pergamon, 1963.

[18] A.K. Guts. Mappings of families of oricycles in Lobachevsky space. Math. USSR-Sb.,

Vol. 19, 131–138, 1973.

[19] A.K. Guts. Mappings of an ordered Lobachevsky space. Siberian Math. J., Vol. 27, No.

3, 347–361, 1986.

[20] H.J.A.M. Heijmans. Morphological image operators. Academic Press, Boston, 1994.

[21] H.J.A.M. Heijmans, R. Keshet. Inf-semilattice approach to self-dual morphology. Journal

of Mathematical Imaging and Vision, Vol. 17, No. 1, 55–80, 2002.

[22] R. Keshet. Mathematical Morphology on Complete Semilattices and its Applications to

Image Processing. Fundamenta Informaticæ, Vol. 41, 33–56, 2000.

[23] F. Meyer. Vectorial Levelings and Flattenings. In Mathematical Morphology and its Ap-

plications to Image and Signal Processing (Proc. of ISMM’02), Kluwer, pp. 51–60, 2000.

[24] F. Nielsen, R. Nock. On the smallest enclosing information disk. Information Processing

Letters, Vol. 105, 93–97, 2008.

[25] F. Nielsen, R. Nock. Hyperbolic Voronoi diagrams made easy. In Proc. of the 2010 IEEE

International Conference on Computational Science and Its Applications, pp. 74–80,

2010.

[26] Z. Sachs. Classification of the Isometries of the upper half-plane. University of Chicago

VIGRE REU, 14 p., 2011.
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