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Poincaré upper-half plane representation
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Abstract

Mathematical morphology is a nonlinear image processing methodology based on the

application of complete lattice theory to spatial structures. Let us consider an image

model where at each pixel is given a univariate Gaussian distribution. This model is

interesting to represent for each pixel the measured mean intensity as well as the variance

(or uncertainty) for such measurement. The aim of this work is to formulate morpho-

logical operators for these images by embedding Gaussian distribution pixel values on

the Poincaré upper-half plane. More precisely, it is explored how to endow this classical

hyperbolic space with various families of partial orderings which lead to a complete lattice

structure. Properties of order invariance are explored and application to morphological

processing of univariate Gaussian distribution-valued images is illustrated.

Keywords: Ordered Poincaré half-plane, hyperbolic partial ordering, hyperbolic com-

plete lattice, mathematical morphology, Gaussian-distribution valued image, information

geometry image filtering

1 Introduction

This work is motivated by the exploration of a mathematical image model f where, instead

of having a scalar intensity t ∈ R at each pixel p, i.e., f(p) = t, we have a univariate Gaussian

probability distribution of intensities N(µ, σ2) ∈ N , i.e., image f is defined as the function

f :

{
Ω → N
p 7→ N(µ, σ2)
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where Ω is the support space of pixels p (e.g., for 2D images Ω ⊂ Z2) andN denotes the family

of univariate Gaussian probability distribution functions (pdf). Nowadays most of imaging

sensors only produce single scalar values since the CCD (charge-coupled device) cameras

typically integrates the light (arriving photons) during a given exposure time τ . To increase

the signal-to-noise ratio (SNR), exposure time is increased to τ ′ = ατ , α > 1. Let suppose

that α is a positive integer number, this is equivalent to a multiple acquisition of α frames

during τ for each frame (i.e., a kind of temporal oversampling). The standard approach only

considers the sum (or average) of the multiple intensities [28], without taking into account

the variance which is a basic estimator of the noise useful for probabilistic image processing.

Another example of such a representation from a gray scale image consists in considering

that each pixel is described by the mean and the variance of the intensity distribution from

its centered neighboring patch. This model has been for instance recently used in [10] for

computing local estimators which can be interpreted as pseudo-morphological operators.

Let us consider the example of gray scale image parameterized by the mean and the

standard deviation of patches given in Fig. 1. We observe that the underlying geometry of

this space of patches is not Euclidean, e.g., the geodesics are clearly curves. In fact, as we

discuss in the paper, this parametrization corresponds to one of the models of hyperbolic

geometry.

Henceforth, the corresponding image processing operators should be able to deal with

Gaussian distributions-valued pixels. In particular, morphological operators for images f ∈
F(Ω,N ) involve that the space of Gaussian distributions N must be endowed of a partial

ordering leading to a complete lattice structure. In practice, it means that given a set of

Gaussian pdfs, as the example given in Fig. 2, we need to be able to define a Gaussian

pdf which corresponds to the infimum (inf) of the set and another one to the supremum

(sup). Mathematical morphology is a nonlinear image processing methodology based on the

computation of sup/inf-convolution filters (i.e., dilation/erosion operators) in local neigh-

borhoods [31]. Mathematical morphology is theoretically formulated in the framework of

complete lattices and operators defined on them [29, 21]. When only the supremum or the

infimum are well defined, other morphological operators can be formulated in the framework

of complete semilattices [23, 22]. Both cases are considered here for images f ∈ F(Ω,N ).

A possible way to deal with the partial ordering problem ofN can be founded on stochastic

ordering (or stochastic dominance) [30] which is basically defined in terms of majorization of

cumulative distribution functions.

However, we prefer to adopt here an information geometry approach [4], which is based

on considering that the univariate Gaussian pdfs are points in a hyperbolic space [9, 3]. More

generally, Fisher geometry amounts to hyperbolic geometry of constant curvature for other

location-scale families of probability distributions (Cauchy, Laplace, elliptical) p(x;µ, σ) =
1
σf(

x−µ
σ ), where curvature depends on the dimension and the density profile [3, 14, 15]. For

a deep flavor on hyperbolic geometry see [12]. There are several models representing the

hyperbolic space in Rd, d > 1, such as the three following ones: the (Poincaré) upper half-
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(a)

(b)

Figure 1: Parametrization of a gray scale image where each pixel is described by the mean

and the variance of the intensity distribution from its centered neighboring patch of 5 × 5

pixels: (a) Left, original gray scale image; center, image of mean of each patch; right, image of

standard deviation of each patch. (b) Visualization of the patch according to their coordinates

in the space mean/std.dev.

space model Hd, the Poincaré disk model Pd and the Klein disk model Kd.

1. The (Poincaré) upper half-space model is the domainHd = {(x1, · · · , xd) ∈ Rd | xd > 0}
with the Riemannian metric ds2 =

dx2
1+···+dx2

d

x2
d

;

2. The Poincaré disk model is the domain Pd = {(x1, · · · , xd) ∈ Rd | x21 + · · · + x2d < 1}
with the Riemannian metric ds2 = 4

dx2
1+···+dx2

d

(1−x2
1−···−x2

d)
2 ;

3. The Klein disk model is the space Kd = {(x1, · · · , xd) ∈ Rd | x21 + · · · + x2d < 1} with

the Riemannian metric ds2 =
dx2

1+···+dx2
d

1−x2
1−···−x2

d
+ (x1dx1+···+xddxd)

2

(1−x2
1−···−x2

d)
2 .

These models are isomorphic between them in the sense that one-to-one correspondences can

be set up between the points and lines in one model to the points and lines in the other so as

to preserve the relations of incidence, betweenness and congruence. In particular, there exists

an isometric mapping between any pair among these models and analytical transformations

to convert from one to another are well known [12].
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Figure 2: (a) Example of a set of nine univariate Gaussian pdfs, Nk(µk, σ
2
k), 1 ≤ k ≤ 9. (b)

Same set of Gaussian pdfs represented as points of coordinates (xk = µk/
√
2, yk = σk) in the

upper-half plane.

Klein disk model has been considered for instance in computational information geometry

(Voronöı diagrams, clustering, etc.) [26] and Poincaré disk model in information geometric

radar processing [5, 6, 7]. In this paper, we focus on the Poincaré half-plane model, H2, which

is sufficient for our practical purposes of manipulating Gaussian pdfs. Fig. 2(b) illustrates

the example of a set of nine Gaussian pdfs Nk(µk, σ
2
k) represented as points of coordinates

(µk/
√
2, σk) in the upper-half plane as follows:

(µ, σ) 7→ z =
µ√
2
+ iσ.

The rationale behind the scaling factor
√
2 is given in Section 3.

In summary, from a theoretical viewpoint, the aim of this paper is to endow H2 with

partial orderings which lead to useful invariance properties in order to formulate appropriate

morphological operators for images f : Ω → H2. This work is an extension to the conference

paper [1]. The rest of the paper is organized as follows. Section 2 reminds the basics on

the geometry of Poincaré half-plane model. The connection between Poincaré half-plane

model of hyperbolic geometry and Fisher Information geometry of Gaussian distributions is

briefly recalled in Section 3. Then, various partial orderings on H2 are studied in Section 4.

Based on the corresponding complete lattice structure of H2, Section 5 presents definition

of morphological operators for images on F(Ω,H2) and its application to morphological

processing univariate Gaussian distribution-valued images. Section 6 concludes the paper

with the perspectives of the present work.
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2 Geometry of Poincaré upper-half plane H2

In complex analysis, the upper-half plane is the set of complex numbers with positive imagi-

nary part:

H2 = {z = x+ iy ∈ C | y > 0} . (1)

We also use the notation x = ℜ(z) and y = ℑ(z). The boundary of upper-half plane (called

sometimes circle at infinity) is the real axis together with the infinity, i.e., ∂H2 = R ∪∞ =

{z = x+ iy | y = 0, x = ±∞, y = ∞}.

2.1 Riemannian metric, angle and distance

In hyperbolic geometry, the Poincaré upper-half plane model (originated with Beltrami and

also known as Lobachevskii space in Soviet scientific literature) is the space H2 together with

the Poincaré metric

(gkl)k,l=1,2 =

(
1
y2

0

0 1
y2

)
(2)

such that the hyperbolic arc length is given by

ds2 =
∑

k,l=1,2

gkl dx dy =
dx2 + dy2

y2
=

|dz|2

y2
= y−1dz y−1dz∗. (3)

With this metric, the Poincaré upper-half plane is a complete Riemannian manifold of con-

stant sectional curvature K equal to −1. We can consider a continuum of other hyperbolic

spaces by multiplying the hyperbolic arc length (3) by a positive constant k which leads to

a metric of constant Gaussian curvature K = −1/k2. The tangent space to H2 at a point

z is defined as the space of tangent vectors at z. It has the structure of a 2-dimensional

real vector space, TzH2 ≃ R2. The Riemannian metric (3) is induced by the following inner

product on TzH2: for ζ1, ζ2 ∈ TzH2, with ζk = (ξk, ηk), we put

⟨ζ1, ζ2⟩z =
(ζ1, ζ2)

ℑ(z)2
(4)

which is a scalar multiple of the Euclidean inner product (ζ1, ζ2) = ξ1ξ2 + η1η2.

The angle θ between two geodesics in H2 at their intersection point z is defined as the

angle between their tangent vectors in TzH2, i.e.,

cosθ =
⟨ζ1, ζ2⟩z

∥ζ1∥z∥ζ2∥z
=

(ζ1, ζ2)√
(ζ1, ζ1)

√
(ζ2, ζ2)

. (5)

We see that this notion of angle measure coincides with the Euclidean angle measure. Con-

sequently, the Poincaré upper-half plane is a conformal model.
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The distance between two points z1 = x1 + iy1 and z2 = x2 + iy2 in
(
H2, ds2

)
is the

function

distH2(z1, z2) = cosh−1

(
1 +

(x1 − x2)
2 + (y1 − y2)

2

2y1y2

)
(6)

Distance (6) is derived from the logarithm of the cross-ratio between these two points and the

points at the infinity, i.e., distH2(z1, z2) = logD(z∞1 , z1, z2, z
∞
2 ) where D(z∞1 , z1, z2, z

∞
2 ) =

z1−z∞2
z1−z∞1

z2−z∞1
z2−z∞2

. To obtain their equivalence, we remind that cosh−1(x) = log(x +
√
x2 − 1).

From this formulation it is easy to check that for two points with x1 = x2 the distance is

distH2(z1, z2) =
∣∣∣log (y1

y2

)∣∣∣.
To see that distH2(z1, z2) is a metric distance in H2, we first notice the argument of cosh−1

always lies in [1,∞) and cosh(x) = ex+e−x

2 , so cosh is increasing and concave on [0,∞). Thus

cosh−1(1) = 0 and cosh−1 is increasing and concave down on [1,∞), growing logarithmically.

The properties required to be a metric (non-negativity, symmetry and triangle inequality)

are proven using the cross-ratio formulation of the distance.

We note that the distance from any point z ∈ H2 to ∂H2 is infinity.

2.2 Geodesics

The geodesics of H2 are the vertical lines, V L(a) = {z ∈ H2 | ℜ(z) = a}, and the semi-circles

in H2 which meet the horizontal axis ℜ(z) = 0 orthogonally, SCr(a) = {z ∈ H2 | |z − z′| =
r; ℜ(z′) = a and ℑ(z′) = 0}; see Fig 3(a). Thus given any pair z1, z2 ∈ H2, there is a unique

geodesic connecting them, parameterized for instance in polar coordinates by the angle, i.e.,

γ(t) = a+ reit = (a+ r cos t) + i(r sin t), θ1 ≤ t ≤ θ2 (7)

where z1 = a+ reiθ1 and z2 = a+ reiθ2 .

A more useful expression of the geodesics involves explicitly the cartesian coordinates of

the pair of points. First, given the pair z1, z2 ∈ H2, x1 ̸= x2, the semi-circle orthogonal to x-

axis connecting them has a center c = (a1⌢2, 0) and a radius r1⌢2 , (z1, z2) 7→ SCr1⌢2(a1⌢2),

where

a1⌢2 =
x22 − x21 + y22 − y21

2(x2 − x1)
; r1⌢2 =

√
(x1 − a1⌢2)2 + y21 =

√
(x2 − a1⌢2)2 + y22. (8)

Then, the unique geodesic parameterized by the length, t 7→ γ(z1, z2; t), γ : [0, 1] → H2 joining

two points z1 = x1 + iy1 and z2 = x2 + iy2 such as γ(z1, z2; 0) = z1 and γ(z1, z2; 1) = z2 is

given by

γ(z1, z2; t) =

{
x1 + ieξt+t0 if x1 = x2

[r tanh(ξt+ t0) + a] + i
[

r
cosh(ξt+t0)

]
if x1 ̸= x2

(9)

with a and r given in (8) and where for x1 = x2, t0 = log(y1), ξ = log y2
y1

and for x1 ̸= x2

t0 = cosh−1

(
r

y1

)
= sinh−1

(
x1 − a

y1

)
, ξ = log

(
y1
y2

r +
√

r2 − y22
r +

√
r2 − y21

)
.
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(a) (b)

Figure 3: (a) Geodesics of H2: z1 and z2 are connected by a unique semi-circle; the geodesic

between z2 and z3 is a segment of vertical line. (b) Hyperbolic polar coordinates.

If we take the parameterized smooth curve γ(t) = x(t) + iy(t), where x(t) and y(t) are

continuously differentiable for b ≤ t ≤ c, then the hyperbolic length along the curve is

determined by integrating the metric (3) as:

L(γ) =

∫
γ
ds =

∫ b

a
|γ̇(t)|γdt =

∫ b

a

√
ẋ(t)2 + ẏ(t)2

y(t)
dt =

∫ b

a

|ż(t)|
y(t)

dt.

Note that this expression is independent from the parameter choice. Hence, using the polar

angle parametrization (7), we obtain an alternative expression of the geodesic distance given

distH2(z1, z2) = inf
γ
L(γ) =

∫ θ2

θ1

r

r sin t
dt =

∣∣∣∣log(cot θ22
)
− log

(
cot

θ1
2

)∣∣∣∣
which is independent of r and consequently, as described below, dilation is an isometry.

Remark. Interpolation between two univariate normal distributions. Using the closed-

form expression of geodesics t 7→ γ(z1, z2; t), given in (9), it is possible to compute the average

univariate Gaussian pdf between N(µ1, σ
2
1) and N(µ2, σ

2
2), with (µk =

√
2xk, σk = yk), by

taking t = 0.5. More generally, we can interpolate a series of distributions between them by

discretizing t between 0 and 1. An example of such a method is given in Fig. 4. We note

in particular that the average Gaussian pdf can have a variance bigger than σ2
1 and σ2

2. We

note also that, due to the “logarithmic scale” of imaginary axis, equally spaces points in t do

not have equal Euclidean arc-length in the semi-circle.

2.3 Hyperbolic polar coordinates

The position of point z = x+ iy in H2 can be given either in terms of Cartesian coordinates

(x, y) or by means of polar hyperbolic coordinates (η, ϕ), where η represents the distance of

7
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Figure 4: (a) Example of interpolation of 5 points in H2 between points z1 = −6.3 + i2.6

(in red) and z2 = 3.5 + i0.95 (in blue) using their geodesic t 7→ γ(z1, z2; t), with t = 0.2, 0.4,

0.5, 0.6, 0.8. The average point (in green) just corresponds to γ(z1, z2; 0.5) = 0.89+ i4.6. (b)

Original (in red and blue) univariate Gaussian pdfs and corresponding interpolated ones.

the point from the origin OH2 = (0, 1) and ϕ represents the slope of the tangent in OH2 to

the geodesic (i.e., semi-circle) joining the point (x, y) with the origin. The formulas which

relate the hyperbolic coordinates (η, ϕ) to the Cartesian ones (x, y) are [11]{
x = sinh η cosϕ

cosh η−sinh η sinϕ , η > 0

y = 1
cosh η−sinh η sinϕ , −π

2 < ϕ < π
2

{
η = distH2(OH2 , z)

ϕ = arctan x2+y2−1
2x

(10)

We notice that the center of the geodesic passing through (x, y) from OH2 has Cartesian

coordinates given by (tanϕ, 0); see Fig 3(b).

2.4 Invariance and isometric symmetry

Let the projective special linear group defined by PSL(2,R) = SL(2,R)/ {±I} where the

special linear group SL(2,R) consists of 2 × 2 matrices with real entries which determinant

equals +1, i.e.,

g ∈ SL(2,R) : g =

(
a b

c d

)
, ad− bc = 1;

and I denotes the identity matrix. This defines the group of Möbius transformations Mg :

H2 → H2 by setting for each g ∈ SL(2,R),

z 7→ Mg(z) =

(
a b

c d

)
· z =

az + b

cz + d
=

ac|z|2 + bd+ (ad+ bc)ℜ(z) + iℑ(z)
|cz + d|2

,

8



such that ℑ (Mg(z)) = (y(ad− bc)) /
(
(cx+ d)2 + (cy)2

)
> 0. The inverse map is easily

computed, i.e., z 7→ M−1
g (z) = (dz − b)/(−cz + a). Since Möbius transformations are well

defined in H2 and map H2 to H2 homeomorphically.

The Lie group PSL(2,R) acts on the upper half-plane by preserving the hyperbolic dis-

tance, i.e.,

distH2(Mg(z1),Mg(z2)) = distH2(z1, z2), ∀g ∈ SL(2,R), ∀z1, z2 ∈ H2.

This includes three basic types of transformations: (1) translations z 7→ z + α, α ∈ R; (2)
scaling z 7→ βz, β ∈ R \ 0; (3) inversion z 7→ z−1. More precisely, any generic Möbius

transformation Mg(z), c ̸= 0, can be decomposed into the following four maps: f1 = z+ d/c,

f2 = −1/z, f3 = z(ad − bc)/c2, f4 = z + a/c such that Mg(z) = (f1 ◦ f2 ◦ f3 ◦ f4)(z). If

c = 0, we have Mg(z) = (h1 ◦ h2 ◦ h3)(z) where h1(z) = az, h2(z) = z + b, h3(z) = z/d.

It can be proved that Möbius transformations take circles to circles. Hence, given a circle

in the complex plane C of radius r and center c, denoted by Cr(c), we have its following

mappings [27]: a translation z 7→ z + α, such as the functions f1, f4 and h2 maps Cr(c) to

Cr(c+ α); a scaling z 7→ βz, such as the functions f3, h1 and h3, maps Cr(c) to Cβr(βc); for

inversion z 7→ z−1, Cr(c) maps to Cr/|cz|(−1/c).

Let H ∈ H2 be a geodesic of the upper half-plane, which is described uniquely by its

endpoints in ∂H2, there exists a Möbius transformation Mg such that Mg maps H bijectively

to the imaginary axis, i.e., V L(0). If H is the vertical line V L(a), the transformation is the

translation z 7→ Mg(z) = z − a. If H is the semi-circle SCr(a) with endpoints in real axis

being ζ−, ζ+ ∈ R, where ζ− = a− r and ζ+ = a+ r, the map is given by Mg(z) =
z−ζ−
z−ζ+

, such

that Mg(ζ−) = 0, Mg(ζ+) = ∞ and Mg(a+ ir) = i.

The unit-speed geodesic going up vertically, through the point z = i is given by

γ(t) =

(
et/2 0

0 e−t/2

)
· i = iet.

Because PSL(2,R) acts transitively by isometries of the upper half-plane, this geodesic is

mapped into other geodesics through the action of PSL(2,R). Thus, the general unit-speed

geodesic is given by

γ(t) =

(
a b

c d

)(
et/2 0

0 e−t/2

)
· i = aiet + b

ciet + d
. (11)

2.5 Hyperbolic circles and balls

Let consider an Euclidean circle of center c = (xc, yc) ∈ H2 and radius r in the upper-half

plane, defined as Cr(c) = {z ∈ H2|
√

(xc − a)2 + (yc − b)2 = r}, such that it is contained

in the upper-half plane, i.e., Cr(c) ⊂ H2. The corresponding hyperbolic circle CH2,rh(ch)

9



{z ∈ H2|distH2(ch, z) = rh} is geometrically equal to Cr(c) but its hyperbolic center and

radius are given by

ch = (xc,
√

y2c − r2); rh = tanh−1

(
r

yc

)
.

We note that the hyperbolic center is always below the Euclidean center. The inverse equa-

tions are

c = (xc = xh, yc = yh cosh rh); r = yh sinh rh. (12)

Naturally, the hyperbolic ball of center ch and radius rh is defined by BH2,rh(ch) {z ∈
H2|distH2(ch, z) ≤ rh}. Let us consider a hyperbolic ball centered at the origin BH2,rh(0, 1),

parameterized by its boundary curve ∂B in Euclidean coordinates:

x = r cos θ; y = b+ r sin θ

where using (12), we have b = cosh rh and r = sinh rh. The length of the boundary and area

of this ball are respectively given by [32]:

L (∂B) =

∫ 2π

0

r

b+ r sin θ
dθ = 2π sinh rh, (13)

Area(B) =

∫ ∫
B

dxdy

y2
=

∮
γ

dx

y
= 2π(cosh rh − 1). (14)

Comparing the values of an Euclidean ball which has area πr2h and length of its boundary

circle 2πrh, and considering the Taylor series sinh rh = rh +
r3h
3! +

r5h
5! + · · · and cosh rh =

1 +
r2h
2! +

r4h
4! + · · · , one can note that the hyperbolic space is much larger than Euclidean

one. Curvature is defined through derivatives of the metric, but the fact that infinitesimally

the hyperbolic ball grows faster than the Euclidean balls, a measure of the curvature of the

space at the origin (0, 1) can be used [32]: K = limrh→0
3[2πrh−L(∂B)]

πr3h
= −1. Since there is

an isometry that maps the neighborhood of any point to the neighborhood of the origin, the

curvature of hyperbolic space is identically constant to −1.

Remark. Minimax center in H2. Finding the smallest circle that contains the whole

set of points x1, x2 · · · , xN in the Euclidean plane is a classical problem in computational

geometry, called the minimum enclosing circle MEC. It is also relevant its statistical esti-

mation since the unique center of the circle c∞ (called 1-center or minimax center) is defined

as the L∞ center of mass, i.e., for R2, c∞ = argminx∈R2 max1≤i≤N ∥xi−x∥2. Computing the

smallest enclosing sphere in Euclidean spaces is intractable in high dimensions, but efficient

approximation algorithms have been proposed. The Bădoiu and Clarkson algorithm [8] leads

to a fast and simple approximation (of known precision ϵ after a given number of iterations

⌈ 1
ϵ2
⌉ using the notion of core-set, but independent from dimensionality n). The computation

of the minimax center is particularly relevant in information geometry (smallest enclosing

information disk [25]) and has been considered for hyperbolic models such as the Klein disk,

10



using a Riemannian extension of Bădoiu and Clarkson algorithm [2], which only requires a

closed-form of the geodesics. Fig. 5 depicts an example of minimax center computation using

Bădoiu and Clarkson algorithm for a set of univariate Gaussian pdfs represented in H2. We

note that, using this property of circle preservation, the computation of the minimal enclosing

hyperbolic circle of a given set of points Z = {zk}1≤k≤K , zk ∈ H2, denoted MECH2(Z) is

equivalent to computing the corresponding minimal enclosing circle MEC(Z) if and only if

we have MEC(Z) ⊂ H2. This is the case for the example given in Fig. 5.
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Figure 5: (a) Example of minimax center (xh, yh) (red×) of a set of nine points Z = {zk}1≤k≤9

in H2 (original points ∗ in black), the minimal enclosing circle MECH2(Z) is also depicted

(in red). (b) Corresponding minimax center Gaussian set N(µ =
√
2xh, σ

2 = y2h) of nine

univariate Gaussian pdfs, Nk(µk, σ
2
k), 1 ≤ k ≤ 9.

3 Fisher information metric and α−order entropy metric of

univariate normal distributions

In information geometry, the Fisher information metric is a particular Riemannian metric

which can be associated to a smooth manifold whose points are probability measures defined

on a common probability space [3, 4]. It can be obtained as the infinitesimal form of the

Kullback–Leibler divergence (relative entropy). An alternative formulation is obtained by

computing the negative of the Hessian of the Shannon entropy.

Given an univariate probability distribution p(x|θ), x ∈ X, it can be viewed as a point on

a statistical manifold with coordinates given by θ = (θ1, θ2, · · · , θn). The Fisher information
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matrix then takes the form:

gkl(θ)k,l=1,2 =

∫
X

∂ log p(x, θ)

∂θk

∂ log p(x, θ)

∂θl
p(x, θ) dx.

The corresponding positive definite form

ds2(θ) =

n∑
k,l=1

gkl(θ)dθkdθl

is defined as the Fisher information metric. In the univariate Gaussian distributed case

p(x|θ) ≡ N(µ, σ2), we have in particular θ = (µ, σ) and it can be easily deduced that the

Fisher information matrix is

(gkl(µ, σ)) =

(
1
σ2 0

0 2
σ2

)
(15)

and the corresponding metric is

ds2((µ, σ)) =
dµ2 + 2dσ2

σ2
= 2σ−2

(
dµ2

√
2
+ dσ2

)
. (16)

Therefore, the Fisher information geometry of univariate normal distribution is essentially

the geometry of the Poincaré upper-half plane with the following change of variables:

x = µ/
√
2, y = σ

Hence, given two univariate Gaussian pdfs N(µ1, σ
2
1) and N(µ2, σ

2
2), the Fisher distance

between them, distFisher : N ×N → R+, defined from the Fisher information metric is given

by [9, 14]:

distFisher

(
(µ1, σ

2
1), (µ2, σ

2
2)
)
=

√
2distH2

(
µ1√
2
+ iσ1,

µ2√
2
+ iσ2

)
. (17)

The change of variable also involves that the geodesics in the hyperbolic Fisher space of

normal distributions are half-lines and half-ellipses orthogonal at σ = 0, with eccentricity

1/
√
2.

The canonic approach can be generalized according to Burbea and Rao geometric frame-

work [9], which is based on replacing the Shannon entropy by the notion of α−order entropy,

which associated Hessian metric leads to an extended large class of information metric geome-

tries. Focussing on the particular case of univariate normal distributions, p(x|θ) ≡ N(µ, σ2),

we consider again points in the upper half-plane, z = x+ iy ∈ H2 and for a given α > 0 the

α−order entropy metric is given by [9]:{
x = [A(α)]−1/2 µ, y = σ;

dsα = B(α)y−(α+1)(dx2 + dy2);
(18)
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Figure 6: Examples of the geodesics from the Burbea-Rao α−order entropy metric obtained

using (20) and (21) for a = 0, r = 1 and α = 0.01, 0.5, 1, 5 and 20.

where

A(α) = (α1/2 − α−1/2)2 + 2α−1; B(α) = α−3/2(2π)(1−α)/2A(α); α > 0. (19)

The metric in (18) constitutes a Kähler metric on H2 and when α = 1 reduces to the

Poincaré metric (3). Its Gaussian curvature is Kα(z) = −(α+1) [B(α)]−1 yα−1; being always

negative (hyperbolic geometry). In particular, for α = 1 we recover the particular constant

case K1(z) = −1.

The geodesics of the Burbea-Rao α−order entropy metric can be written in its parametric

polar form as [9]:

γ(θ) = x(θ) + iy(θ), 0 < θ < π, with (20){
x(θ) = a+ r1/βF1/β(θ),

y(θ) = r1/β sin1/β θ,
(21)

where
β = (α+ 1)/2, r > 0, a ∈ R,
Fγ(θ) = −γ

∫ θ
π/2 sin

γ tdt.

Fig. 6 shows examples of the geodesics from the Burbea-Rao α−order entropy metric for

a = 0, r = 1 and α = 0.01, 0.5, 1, 5 and 20.

By integration of the metric, it is obtained the Burbea-Rao α−order entropy geodesic

distance for z1, z2 ∈ H2 [9]:

distH2(z1, z2; α) =
2
√

B(α)

|1− α|

∣∣∣∣x1 − x2
r

+ y
(1−α)/2
1

√
1− r−2yα+1

1 − y
(1−α)/2
2

√
1− r−2yα+1

2

∣∣∣∣ ,
(22)
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which unfortunately depends on the value of r. This quantity should be determined by solving

a system of three nonlinear equations for the unknown variables θ1, θ2 and r:
x1 − x2 = r1/β

(
F1/β(θ1)− F1/β(θ2)

)
,

y1 = r1/β sin1/β θ1,

y2 = r1/β sin1/β θ2.

An alternative solution to compute a closed form distance between two univariate normal

distributions N(µ1, σ
2
1) and N(µ2, σ

2
2) according to the Burbea-Rao α-deformed geometry is

based on the α−order Hellinger distance [9]:

distHellinger

(
(µ1, σ

2
1), (µ2, σ

2
2); α

)
=

2(2π)(1−α)/4

α5/4

[(
σ
(1−α)/2
1 − σ

(1−α)/2
2

)2
+ 2(σ1σ2)

(1−α)/2

(
1−

(
2σ1σ2

σ2
1+σ2

2

)1/2
exp

(
−α(µ1−µ2)2

4(σ2
1+σ2

2)

))]1/2
.

(23)

In particular, when α = 1 this formula reduces to

distHellinger

(
(µ1, σ

2
1), (µ2, σ

2
2)
)
= 23/2

(
1−

(
2σ1σ2
σ2
1 + σ2

2

)1/2

exp

(
−(µ1 − µ2)

2

4(σ2
1 + σ2

2)

))1/2

. (24)

4 Endowing H2 with partial ordering and its complete (inf-

semi)lattice structures

The notion of ordering invariance in the Poincaré upper-half plane was considered in the

Soviet literature [19, 20]. Ordering invariance with respect to simple transitive subgroup T

of the group of motions was studied, i.e., group T consists of transformations t of the form:

z = x+ iy 7→ z′ = (λx+ α) + iλy,

where λ > 0 and α are real numbers. We named T the Guts group. We note that T is just

the composition of a translation and a scaling in H2, and consequently, T is an isometric

group (see Section 2.4).

Nevertheless, up to the best of our knowledge, the formulation of partial orders on

Poincaré upper-half plane has not been widely studied. We introduce here partial orders in

H2 and study invariance properties to transformations of Guts group or to other subgroups

of SL(2,R) (Möbius transformations).

4.1 Upper half-plane product ordering

A real vector space E on which a partial order ≤ is given (reflexive, transitive, antisymmetric)

is called an ordered vector space if (i) x, y, z ∈ E and x ≤ y implies x+z ≤ y+z; (ii) x, y ∈ E,

0 ≤ λ ∈ R, and x ≤ y implies λx ≤ λy. Let us consider that the partial order ≤ is the product
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order. An element x ∈ E with x ≥ 0 (it means that all the vector components are positive) is

said to be positive. The set E+ = {x ∈ E | x ≥ 0} for all positive elements is called the cone

of positive elements. It turns out that the order of an ordered vector space is determined by

the set of positive elements. Let E be a vector space and C ⊂ E a cone. Then, x ≤ y if

x− y ∈ C defines an order on E such that E is an ordered vector space with E+ = C. The

notion of partially ordered vector space is naturally extended to partially ordered groups [18].

An ordered vector space E is called a vector lattice (E,≤) if ∀x, y ∈ E there exists the joint

(supremum or least upper bound) x ∨ y = sup(x, y) ∈ E and the meet (infimum or greatest

lower bound) x ∧ y = inf(x, y) ∈ E. A vector lattice is also called a Riesz space.

Thus, we can introduce a similar order structure in H2 as a product order of R×R+. To

achieve this goal, we need to define, on the one hand, the equivalent of ordering preserving

linear combination. More precisely, given three points z1, z2, z3 ∈ H2 and a scalar positive

number 0 ≤ λ ∈ R we say that

z1 ≤H2 z2 implies λ � z1 � z3 ≤H2 λ � z2 � z3,

where we have introduced the following pair of operations in H2:

λ � z = λx+ iyλ and z1 � z2 = (x1 + x2) + i(y1y2).

On the other hand, the corresponding partial ordering ≤H2 will be determined by the positive

cone in H2 defined by H2
+ = {z ∈ H2 | x ≥ 0 and y ≥ 1}, i.e.,

z1 ≤H2 z2 ⇔ z2 � z1 ∈ H2
+, (25)

with z2 � z1 = (x2 − x1) + i(y−1
2 y1). According to this partial ordering the corresponding

supremum and infimum for any pair of points z1 and z2 in H2 are formulated as follows

z1 ∨H2 z2 = (x1 ∨ x2) + i exp (log(y1) ∨ log(y2)) , (26)

z1 ∧H2 z2 = (x1 ∧ x2) + i exp (log(y1) ∧ log(y2)) . (27)

Therefore H2 endowed with partial ordering (25) is a complete lattice, but it is not bounded

since the greatest (or top) and least (or bottom) elements are in the boundary ∂H2. We also

have a duality between supremum and infimum, i.e.,

z1 ∨H2 z2 = {
(
{z1 ∧H2 {z2

)
; z1 ∧H2 z2 = {

(
{z1 ∨H2 {z2

)
,

with respect to the following involution

z 7→ {z = (−1) � z = −x+ iy−1. (28)

We easily note that, in fact, exp (log(y1) ∨ log(y2)) = y1 ∨ y2 and similarly for the infimum,

since the logarithm is an isotone mapping (i.e., monotone increasing) and therefore order-

preserving. Therefore, the partial ordering ≤H2 does not involve any particular structure for
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H2 and does not take into account the Riemannian nature of the upper half plane. According

to that, we note also that the partial ordering≤H2 is invariant to the Guts group of transforms,

i.e.,

z1 ≤H2 z2 ⇔ T (z1) ≤H2 T (z2).

4.2 Upper half-plane symmetric ordering

Let us consider a symmetrization of the product ordering with respect to the origin in the

upper half-plane. Given any pair of points z1, z2 ∈ H2, we define the upper half-plane

symmetric ordering as

z1 ≼H2 z2 ⇔


0 ≤ x1 ≤ x2 and 0 ≤ log(y1) ≤ log(y2) or

x2 ≤ x1 ≤ 0 and 0 ≤ log(y1) ≤ log(y2) or

x2 ≤ x1 ≤ 0 and log(y2) ≤ log(y1) ≤ 0 or

0 ≤ x1 ≤ x2 and log(y2) ≤ log(y1) ≤ 0

(29)

The four conditions of this partial ordering entails that only points belonging to the same

quadrant ofH2 can be ordered, where the four quadrants {H2
++,H2

−+,H2
−−,H2

+−} are defined
with respect to the origin OH2 = (0, 1) which corresponds to the pure imaginary complex

z0 = i. In other words, we can summarize the partial ordering (29) by saying that if z1 and

z2 belong to the same O-quadrant of H2 we have z1 ≼H2 z2 ⇔ |x1| ≤ |x2| and | log(x1)| ≤
| log(x2)|. Endowed with the partial ordering (29), H2 becomes a partially ordered set (poset)

where the bottom element is z0, but we notice that there is no top element. In addition, for

any pair of point z1 and z2, the infimum fH2 is given by

z1 fH2 z2 ⇔



(x1 ∧ x2) + i(y1 ∧ y2) if z1, z2 ∈ H2
++

(x1 ∨ x2) + i(y1 ∧ y2) if z1, z2 ∈ H2
−+

(x1 ∨ x2) + i(y1 ∨ y2) if z1, z2 ∈ H2
−−

(x1 ∧ x2) + i(y1 ∨ y2) if z1, z2 ∈ H2
+−

z0 otherwise

(30)

The infimum (30) extends naturally to any finite set of points in H2, Z = {zk}1≤k≤K , and will

be denoted by
c

H2 Z. However, the supremum z1 gH2 z2 is not defined; or more precisely, it

is defined if and only if z1 and z2 belong to the same quadrant, i.e., similarly to (30) mutatis

mutandis ∧ by ∨ with the “otherwise” case as “non existent”. Consequently, the poset

(H2,≼H2) is only a complete inf-semilattice. The fundamental property of such infimum (30)

is its self-duality with respect to involution (28), i.e.,

z1 fH2 z2 = {
(
{z1 fH2 {z2

)
. (31)

Due to the strong dependency of partial ordering ≼H2 with respect to OH2 , it is easy to

see that such ordering is only invariant to transformations that does not move points from

one quadrant to another one. This is the case typically for mappings as z 7→ λ � z, λ > 0.
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4.3 Upper half-plane polar ordering

Previous order ≼H2 is only a partial ordering, and consequently given any pair of points z1
and z2, the infimum z1 fH2 z2 can be different from z1 and z2. In addition, the supremum

is not always defined. Let us introduce a total ordering in H based on hyperbolic polar

coordinates, which also takes into account an ordering relationship with respect to OH2 .

Thus, given two points ∀z1, z2 ∈ H the upper half-plane polar ordering states

z1 ≤pol
H2 z2 ⇔

{
η1 < η2 or

η1 = η2 and tanϕ1 ≤ tanϕ2
(32)

where (η, ϕ) are defined in Eq. (10). The polar supremum z1 ∨pol
H2 z2 and infimum z1 ∧pol

H2 z2

are naturally obtained from the order (32) for any subset of points Z, denoted by
∨pol

H2 Z

and
∧pol

H2 Z. Total order ≤pol
H2 leads to a complete lattice, bounded from the bottom (i.e., the

origin OH2) but not from the top. Furthermore, as ≤pol
H2 is a total ordering, the supremum

and the infimum will be either z1 or z2.

Polar total order is invariant to any Möbius transformation Mg which preserves the dis-

tance to the origin (isometry group) and more generally to isotone maps in distance, i.e.,

η(z1) ≤ η(z2) ⇔ η(Mg(z1)) ≤ η(Mg(z2)) but which also preserves the orientation order, i.e.,

order on the polar angle. This is for instance the case of orientation group SO(2) and the

scaling maps z 7→ Mg(z) = λz, 0 < λ ∈ R.
We note also that instead of considering OH2 as the origin, the polar hyperbolic coordi-

nates can be defined with respect to a different origin z
′
0 and consequently, the total order is

adapted to the new origin (i.e., bottom element is just z
′
0).

One can replace in the polar ordering the distance distH2(OH2 , z) by the α-order Hellinger

distance to obtain now the total ordering ≤α−pol
H2 parametrized by α:

z1 ≤α−pol
H2 z2 ⇔

{
distHellinger (OH2 , z1; α) < distHellinger (OH2 , z2; α) or

distHellinger (OH2 , z1; α) = distHellinger (OH2 , z2; α) and tanϕ1 ≤ tanϕ2

(33)

As we illustrate in Section 5, the “deformation” of the distance driven by α can signifi-

cantly change the supremum and infimum from a set of points Z. Obviously, the properties

of invariance of ≤α−pol
H2 are related to the isometries of the α-order Hellinger distance.

4.4 Upper half-plane geodesic ordering

As discussed above, there is a unique hyperbolic geodesic joining any pair of points. Given

two points z1, z2 ∈ H2 such that x1 ̸= x2, let SCr1⌢2(a1⌢2) be the semi-circle defining their

geodesic, where the center a1⌢2 and the radius r1⌢2 are given by Eqs. (8). Let us denote by

z1⌢2 the point of SCr1⌢2(a1⌢2) having the maximal imaginary part, i.e., its imaginary part

is equal to the radius: z1⌢2 = a1⌢2 + ir1⌢2.
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The upper half-plane geodesic ordering ≼geo
H2 defines an order for points being in the same

half of their geodesic semi-circle as follows,

z1 ≼geo
H2 z2 ⇔

{
a1⌢2 ≤ x1 < x2 or

x2 < x1 ≤ a1⌢2
(34)

The property of transitivity of this partial ordering, i.e., z1 ≼geo
H2 z2, z2 ≼geo

H2 z3 ⇒ z1 ≼geo
H2 z3,

holds for points belonging to the same geodesic. For two points in a geodesic vertical line,

x1 = x2, we have z1 ≼geo
H2 z2 ⇔ y2 ≤ y1. We note that considering the duality with respect to

the involution (28), one has

z1 ≼geo
H2 z2 ⇔ {z1 ≽geo

H2 {z2.

According to this partial ordering, we define the geodesic infimum, denoted by fgeo
H2 , as the

point on the geodesic joining z1 and z2 with maximal imaginary part, i.e., for any z1, z2 ∈ H2,

with x1 ̸= x2, we have

z1 fgeo
H2 z2 ⇔


(x1 ∨ x2) + i(y1 ∨ y2) if x1, x2 ≤ a1⌢2

(x1 ∧ x2) + i(y1 ∨ y2) if x1, x2 ≥ a1⌢2

z1⌢2 otherwise

(35)

If x1 = x2, we have that z1fgeo
H2 z2 = x1+i(y1∨y2). In any case, we have that distH2(z1, z2) =

distH2(z1, z1fgeo
H2 z2)+ distH2(z1fgeo

H2 z2, z2). Intuitively, we notice that the geodesic infimum

is the point of the geodesic farthest from the real line.

We observe that if one attempts to define the geodesic supremum from the partial ordering

≼geo
H2 , it results that the supremum is not defined for any pair of points, i.e., supremum between

z1 and z2 is defined if and only if both points are in the same half of its semi-circle. To tackle

this limitation, we propose to define the geodesic supremum z1ggeo
H2 z2 by duality with respect

to the involution {z, i.e.,

z1 ggeo
H2 z2 = {

(
{z1 fgeo

H2 {z2
)
⇔


(x1 ∧ x2) + i(y1 ∧ y2) if x1, x2 ≤ a1⌢2

(x1 ∨ x2) + i(y1 ∧ y2) if x1, x2 ≥ a1⌢2

{z{1⌢{2 otherwise

(36)

where {z{1⌢{2 is the dual point associated to the semi-circle defined by dual points {z1 and

{z2.
Nevertheless, in order to have a structure of complete lattice for (H2,≼geo

H2 ), it is required

that the infimum and the supremum of any set of points Z = {zk}1≤k≤K with K ≥ 2, are well

defined. Namely, according to (35), the geodesic infimum of Z, denoted
∧geo

H2 Z, corresponds

to the point zinf with the maximal imaginary part on all possible geodesics joining any pair of

points zn, zm ∈ Z. In geometric terms, it means that between all these geodesics, there exists

one which gives zinf . Instead of computing all the geodesics, we propose to define the infimum
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∧geo
H2 Z as the point zinf = ainf + irinf , where ainf is the center of the smallest semi-circle in

H2 of radius rinf which encloses all the points in the set Z. We have the following property

geo∧
H2

Z = zinf ≼geo
H2 zk, 1 ≤ k ≤ K,

which geometrically means that the geodesic connecting zinf to any point zk of Z lies always

in one of the half part of the semi-circle defined by zinf and zk.

In practice, the minimal enclosing semi-circle defining zinf can be easily computed by

means of the following algorithm based on the minimum enclosing Euclidean circle MEC of

a set of points: (1) Working on R2, define a set of points given, on the one hand, by Z and,

on the other hand, by Z∗ which corresponds to the reflected points with respect to x-axis

(complex conjugate), i.e., points Z = {(xk, yk)} and points Z∗ = {(xk,−yk)}, 1 ≤ k ≤ K; (2)

Compute the MEC(Z∪Z∗) 7→ Cr(c), in such a way that, by a symmetric point configuration,

we necessarily have the center on x-axis, i.e., c = (xc, 0); (3) The infimum
∧geo

H2 Z = zinf is

given by zinf = xc+ir. Fig. 7(a)-(b) gives an example of computation of the geodesic infimum

from a set of points in H2.

As for the case of two points, the geodesic supremum of Z is defined by duality with

respect to involution (28), i.e.,

zsup =

geo∨
H2

Z = {
(

geo∧
H2

{Z
)

= asup + irsup, (37)

with asup = −xdualc and rsup = 1/rdual, where SCrdual(x
dual
c ) is the minimal enclosing semi-

circle from dual set of points {Z. An example of computing the geodesic supremum zsup is

also given in Fig. 7(a)-(b). It is easy to see that geodesic infimum and supremum have the

following properties for any Z ⊂ H2:

1. zinf ≼geo
H2 zsup;

2. ℑ(zinf) ≥ ℑ(zk) and ℑ(zsup) ≤ ℑ(zk), ∀zk ∈ Z;

3.
∨

1≤k≤K ℜ(zk) < {ℜ(zinf),ℜ(zsup)} <
∧

1≤k≤K ℜ(zk).

The proofs are straightforward from the notion of minimal enclosing semi-circle and the fact

that zsup lies inside the semi-circle defined by zinf .

Geodesic infimum and supremum being defined by minimal enclosing semi-circles, their

invariance properties are related to translation and scaling of points in set Z as defined in

Section 2.4, but not to inversion. This invariance domain just corresponds to the Guts group

of transformations, i.e.,

geo∧
H2

{T (zk)}1≤k≤K = T

(
geo∧
H2

{zk}1≤k≤K

)
.
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As we discussed in Section 3, we do not have an explicit algorithm to compute the Burbea-

Rao α-order entropy geodesic and consequently, our framework based on computing the

minimum enclosing geodesic to define the infimum cannot be extended to this general case.

We can nevertheless consider the example depicted in Fig. 8, where we have computed such

smallest Burbea-Rao α-order geodesic enclosing the set of points Z. Indeed, the example

is useful to identify the limit cases with respect to α. In fact, we note that if α → 0, the

corresponding α-geodesic infimum will correspond to the zk having the largest imaginary

part, and dually for the supremum, i.e., zk having the smallest imaginary part. In the case

of large α, we note that the real part of both, the α-geodesic infimum and supremum equals

(∨1≤k≤Kℜ(zk)− ∧1≤k≤Kℜ(zk)) /2, and the imaginary part of the infimum goes to +∞ and

of the supremum to 0 when α → +∞.

4.5 Upper half-plane asymmetric geodesic infimum/supremum

According to the properties of geodesic infimum zinf and supremum zsup discussed above, we

note that their real parts ℜ(zinf) and ℜ(zsup) belong to the interval bounded by the real parts

of points of set Z. Moreover, ℜ(zinf) and ℜ(zsup) are not ordered between them. Therefore,

the real part of supremum can be smaller than that of the infimum one. For instance, in the

extreme case of a set Z where all the imaginary parts are equal, the real part of its geodesic

infimum and supremum are both equal to the average of the real parts of points, i.e., given

Z = {zk}1≤k≤K , if yk = y, 1 ≤ k ≤ K, then ℜ(zinf) = ℜ(zsup) = 1/K
∑K

k=1 xk. From the

viewpoint of morphological image filtering, it can be potentially interesting to impose an

asymmetric behavior for the infimum and supremum such that ℜ(z−→+
inf ) ≤ zk ≤ ℜ(z−→+

sup ),

1 ≤ k ≤ K. Note that the proposed notation − → + indicates a partially ordered set on

x-axis. In order to fulfil these requirements, we can geometrically consider the rectangle

bounding the minimal enclosing semi-circle, which is just of dimensions 2rinf × rinf , and

use it to define the asymmetric infimum z−→+
inf as the upper-left corner of the rectangle.

The asymmetric supremum z−→+
sup is similarly defined from the bounding rectangle of the

dual minimal enclosing semi-circle. Mathematically, given the geodesic infimum zinf and

supremum zsup, we have the following definitions for the asymmetric geodesic infimum and

supremum: {
z−→+
inf =

∨−→+
H2 Z = (ainf − rinf) + irinf ;

z−→+
sup =

∧−→+
H2 Z = −(xdualc − rdual) + i 1

rdual
.

(38)

Remark. Geodesic infimum and supremum of Gaussian distributions. Let us consider

their interpretation as infimum and supremum of a set of univariate Gaussian pdfs, see

example depicted in Fig. 7. Given a set of K Gaussian pdfs Nk(µ =
√
2xk, σ

2 = y2k),

1 ≤ k ≤ K, we observe that the Gaussian pdf associated to the geodesic infimum Ninf(µ =√
2xinf , σ

2 = y2inf) has a variance larger than any Gaussian of the set and its mean is a

kind of barycenter between the Gaussian pdfs having a larger variance. The supremum
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Gaussian pdf Nsup(µ =
√
2xsup, σ

2 = y2sup) has a smaller variance than the K Gaussian

pdfs and its mean is between the ones of small variance. In terms of the corresponding

cumulative distribution functions, we observe that geodesic supremum/infimum do not have a

natural interpretation. In the case of the asymmetric Gaussian geodesic infimum N−→+
inf (µ =√

2x−→+
inf , σ2 = (y−→+

inf )2) and Gaussian supremum N−→+
sup (µ =

√
2x−→+

sup , σ2 = (y−→+
sup )2),

we observe how the means are ordered with respect to the K others, which also involves

that the corresponding cdfs are ordered. The latter is related to the notion of stochastic

dominance [30] and will be explored in detail in ongoing research.
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Figure 7: (a) Set of nine points in H2, Z = {zk}1≤k≤9. (b) Computation of infimum
∧geo

H2 Z =

zinf (blue “×”) and supremum
∨geo

H2 Z = zsup (red “×”). Black “∗” are the original points

and green “∗” the corresponding dual ones. (c) In black, set of Gaussian pdfs associated to

Z, i.e., Nk(µ =
√
2xk, σ

2 = y2k); in blue, infimum Gaussian pdf Ninf(µ =
√
2xinf , σ

2 = y2inf);

in red, supremum Gaussian pdf Nsup(µ =
√
2xsup, σ

2 = y2sup). (d) Cumulative distribution

functions of Gaussian pdfs from (c).
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Figure 8: (a) Set of nine points in H2, Z = {zk}1≤k≤9. (b) Computation of the smallest

Burbea-Rao α-order geodesic enclosing the set Z, for α = 0.01 (in green), α = 1 (in red),

α = 5 (in magenta), α = 20 (in blue).
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Figure 9: (a) Infimum and supremum Gaussian pdfs (in green and red respectively) from

asymmetric geodesic infimum z−→+
inf and z−→+

sup from set of Fig. 7. (b) Cumulative distribution

functions of Gaussian pdfs from (a).
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5 Morphological operators on F(Ω,H2) for processing univari-

ate Gaussian distribution-valued images

Let consider that H2 has been endowed with one of the partial orderings discussed above,

generally denoted by ≤. Hence (H2,≤) is a poset, which has also a structure of complete

lattice since we consider that infimum
∧

and supremum
∨

are defined for any set of points

in H2.

5.1 Adjunction on complete lattice (H2,≤)

The operators ε : H2 → H2 and δ : H2 → H2 are an erosion and a dilation if they commute

respectively with the infimum and the supremum: ε (
∧

k zk) =
∧

k ε(zk) and δ (
∨

k zk) =∨
k δ(zk), for every set {zk}1≤k≤K . Erosion and dilation are increasing operators, i.e., ∀z, z′ ∈

H2, if z ≤ z′ then ε(z) ≤ ε(z′) and δ(z) ≤ δ(z′). Erosion and dilation are related by the

notion of adjunction [29, 21], i.e.,

δ(z) ≤ z′ ⇔ z ≤ ε(z′); ∀z, z′ ∈ H2. (39)

Adjunction law (39) is of fundamental importance in mathematical morphology since it allows

to define a unique dilation δ associated to a given erosion ε, i.e., δ(z′) =
∧
{z ∈ H2 : z′ ≤

ε(z)}, z′ ∈ H2. Similarly one can define a unique erosion from a given dilation: ε(z) =∨
{z′ ∈ H2 : δ(z′) ≤ z}, z ∈ H2. Given an adjunction (ε, δ), their composition product

operators, γ(z) = δ (ε(z)) and φ(z) = ε (δ(z)) are respectively an opening and a closing,

which are the basic morphological filters having very useful properties [29, 21]: idempotency

γγ(z) = γ(z), anti-extensivity γ(z) ≤ z and extensivity z ≤ φ(z), and increaseness. Another

relevant result is the fact, given an erosion ε, the opening and closing by adjunction are

exclusively defined in terms of the erosion [21] as γ(z) =
∧{

z′ ∈ H2 : ε(z) ≤ ε(z′)
}
, φ(z) =∧{

ε(z′) : z′ ∈ H2 , z ≤ ε(z′)
}
, ∀z ∈ H2.

In the case of complete inf-semilattice (H2,≤), where infimum
∧

is defined but supremum∨
is not necessarily, we have the following particular results [23, 22]: (a) it is always possible

to associate an opening γ to a given erosion ε by means of γ(z) =
∧{

z′ ∈ H2 : ε(z) ≤ ε(z′)
}
,

(b) even though the adjoint dilation δ is not well-defined in H2, it is always well-defined for

elements on the image of H2 by ε, and (c) γ = δε. The closing defined by φ = εδ is only

partially defined. Obviously, in the case of inf-semilattice, it is still possible to define δ such

that
∨

δ(zk) = δ
∨
(zk) for families for which supremum

∨
exist.

5.2 Erosion and dilation in F(Ω,H2)

If (H2,≤) is a complete lattice, the set of images F(Ω,H2) is also a complete lattice defined

as follows: for all f, g ∈ F(Ω,H2), (i) f ≤ g ⇔ f(p) ≤ g(p), ∀p ∈ Ω; (ii) (f ∧ g)(p) =

f(p) ∧ g(p), ∀p ∈ Ω; (iii) (f ∨ g)(p) = f(p) ∨ g(p), ∀p ∈ Ω , where ∧ and ∨ are the infimum

24



(a) (b)

Figure 10: Supremum and infimum of a set of 25 patches parameterized by their mean

and standard deviation: (a) in red the region where the overlapped patches are taken; (b)

embedding into the space H2 according to the coordinates µ/
√
2 and σ and corresponding

sup and inf for the different ordering strategies.

and supremum in H2. One can now define the following adjoint pair of flat erosion εB(f)

and flat dilation δB(f) of each pixel p of image f [29, 21]:

εB(f)(p) =
∧

q∈B(p)

f(p+ q), (40)

δB(f)(p) =
∨

q∈B(p)

f(p− q), (41)

such that

δB(f)(p) ≤ g(p) ⇔ f(p) ≤ εB(g)(p); ∀f, g ∈ F(Ω,H2). (42)

where set B is called the structuring element, which defines the set of points in Ω when it is

centered at point p, denoted B(p) [31]. These operators, which are translation invariant, can

be seen as constant-weight (this is the reason why they are called flat) inf/sup-convolutions,

where the structuring element B works as a moving window.

The above erosion (resp. dilation) moves object edges within the image in such a way

that it expands image structures with values in H2 close to the bottom element (resp. close

to the top) of the lattice F(Ω,H2) and shrinks objects with values close to the top element

(resp. close to the bottom).

Let us consider now the various cases of supremum and infimum introduced above. In

order to support the discussion, we have included an example in Fig. 10. In fact, we have
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taken all the patches of size 5× 5 pixels surrounding one of the pixels from image of Fig. 1.

The 25 patches are then embedded into the space H2 according to the coordinates µ/
√
2 and

σ. Finally, the supremum and infimum of this set of points are computed for the different

cases. It just corresponds to the way to obtain respectively the dilation and erosion for the

current pixel center of the red region in image Fig. 10(a).

Everything works perfectly for the supremum and infimum in the upper half-plane product

ordering
∨

H2 and
∧

H2 , which consequently can be used to construct dilation and erosion

operators in F(Ω,H2). In fact, this is exactly equivalent to the classical operators applied on

the real and imaginary parts separately.

Similarly, the ones for the upper half-plane polar ordering
∨pol

H2 and
∧pol

H2 , based on a

total partial ordering, also lead respectively to dilation and erosion operators. The erosion

produces a point which corresponds here to the patch closer to the origin. That means a patch

of intermediate mean and standard deviation intensity since the image intensity is normalized,

see Section 5.4. On the contrary, the dilation gives a point associated to the farthest patch

from the origin. In this example, an homogenous bright patch. Note that patches of great

distance correspond to the most “contrasted” ones on the image: either homogeneous patches

of dark or bright intensity or patches with a strong variation in intensity (edge patches).

We note that for the symmetric ordering ≼H2 one only has an inf-semilattice structure

associated to
c

H2 . However, in the case of the upper half-plane geodesic ordering, the pair

of operators (40) and (41) associated to our supremum
∨geo

H2 and infimum
∧geo

H2 will not verify

the adjunction (42). Same limitation also holds for the upper half-plane asymmetric geodesic

supremum and infimum. Hence, the geodesic supremum and infimum do not strictly involve

a pair of dilation and erosion in the mathematical morphology sense. Nevertheless, we can

compute both operators and use them to filter out images in F(Ω,H2) without problem.

From the example of Fig. 10 we observe that the geodesic infimum gives a point with a

standard deviation equal or larger than any of the patches and a mean intermediate between

the patches of high standard deviation. The supremum involves a point of standard deviation

smaller than (or equal to) the others, and the mean is obtained by averaging around the mean

of the ones with a small standard deviation. Consequently the erosion involves a nonlinear

filtering which enhances the image zones of high standard deviation, typically the contours.

The dilation enhances the homogenous zones. The asymmetrization produces operators where

the dilation and erosion have the same interpretation for the mean as the classical ones but

the filtering effects are driven by the zones of low or high standard deviation.

5.3 Opening and closing in F(Ω,H2)

Given the adjoint image operators (εB, δB), the opening and closing by adjunction of image

f , according to structuring element B, are defined as the composition operators [29, 21]:

γB(f) = δB (εB(f)) , (43)

φB(f) = εB (δB(f)) . (44)
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Openings and closings are referred to as morphological filters, which remove objects of image

f that do not comply with a criterion related, on the one hand, to the invariance of the object

support to the structuring element B and, on the other hand, to the values of the object on

H2 which are far from (in the case of the opening) or near to (in the case of the closing) the

bottom element of H2 according to the given partial ordering ≤.

Once the pairs of dual operators (εB, δB) and (γB, φB) are defined, the other morpholog-

ical filters and transformation can be naturally defined [31] for images in F(Ω,H2). We limit

here the illustrative examples to the basic ones.

Following our analysis on the particular cases of ordering and supremum/infimum in H2,

we can conclude that opening and closing in F(Ω,H2) are well formulated for the upper

half-plane product ordering and the upper half-plane polar ordering. In the case of the

upper half-plane symmetric ordering, the opening is always defined and the closing cannot

be computed. Again, we should insist on the fact that for the upper half-plane geodesic

ordering, the composition operators obtained by supremum
∨geo

H2 and infimum
∧geo

H2 will not

produce opening and closing stricto sensu. Notwithstanding, the corresponding composition

operators yield a regularization effect of F(Ω,H2)-images which can be of interest for practical

applications.

5.4 Application to morphological processing univariate Gaussian distribu-

tion valued images

Example 1. A first example of morphological processing for images in F(Ω,H2) is given in

Fig. 11-12. The starting point is a standard gray-level image g ∈ F(Ω,R), which is mapped to

the image f(p) = fx(p)+ ify(p) by the following transformations: (1) the image is normalized

to have zero mean and a unit variance; (2) the real and imaginary components of f(p) are

obtained by computing respectively the mean and standard deviation over a patch centered

at p of radius W pixels (in the example W = 4); i.e.,

g(p) 7→ ĝ(p) =
g(p)−Mean(g)√

Var(g)
7→ f(p) = MeanW (ĝ)(p) + i

√
VarW (ĝ)(p).

We note that definition of our representation space fy(p) > 0. It means that the variance of

each patch should always be bigger than zero and obviously this is not the case in constant

patches. In order to cope with this problem, we propose to add a ϵ to the value of the

standard deviation.

Fig. 11-12 gives a comparison of morphological erosions εB(f)(p) and openings γB(f)(p)

on this image f using the five complete (inf-semi)lattice of H2 considered in the paper.

We have included also the pseudo-erosions and pseudo-openings associated to the geodesic

supremum and infimum and the asymmetric geodesic ones. The same structuring element

B, a square of 5 × 5 pixels, has been used for all the examples. First of all, we remind
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again that working on the product complete lattice (H2,≤H2) is equivalent to a marginal

processing of real and imaginary components. As expected, the symmetric ordering-based

inf-semilattice (H2,≼H2) and polar ordering-based lattice (H2,≤pol
H2) produce rather similar

results for openings. We observe that in both cases the opening produces a symmetric filtering

effect between bright/dark intensity in the mean and standard deviation component. But

it is important to remark that the processing effects depend on how image components are

valued with respect to the origin z0 = (0, 1). This is the reason why it is proposed to always

normalize by mean/variance the image.

The results of the pseudo-openings produced by working on geodesic lattice (H2,
∨geo

H2 ,
∧geo

H2 )

and asymmetric geodesic lattice (H2,
∧−→+

H2 ,
∨−→+

H2 ) involves a processing which is mainly

driven by the values of the standard deviation. Hence, the filtering effects are potentially

more interesting for applications requiring to deal with pixel uncertainty, either in a symmet-

ric processing of both bright/dark mean values with (H2,
∨geo

H2 ,
∧geo

H2 ) or in a more classical

morphological asymmetrization with (H2,
∧−→+

H2 ,
∨−→+

H2 ).

Example 2. Fig. 13 illustrates a comparative example of erosions εB(f)(p) on a very noisy

image g(p). We note that g(p) is mean centered. The “noise” is related to an acquisition at the

limit of exposure time/spatial resolution. We consider an image model f(p) = fx(p)+ ify(p),

where fx(p) = g(x) and fy(p) is the standard deviation of intensities in a patch of radius

equal to 4 pixels. In fact, the results of erosion obtained by the product and symmetric

partial orderings are compared to the ones obtained by polar ordering and more generally

by the α-polar ordering with four values of α. We observe, on the one hand, polar orderings

are more relevant than the product or symmetric ones. As expected, the α-polar erosion

with α = 1 is almost equivalent to the hyperbolic polar ordering. We note, on the other

hand, the interest of the limit cases of α-polar erosion. The erosion for small α produces a

strongly regularized image where the bright/dark objects with respect to the background has

been nicely enhanced. In the case of large α, the background (i.e., pixels values close to the

origin in H2) is enhanced, which involves removing all the image structures smaller than the

structuring element B.

Example 3. In Fig. 14 a limited comparison for the case of dilation δB(f)(p) is depicted.

The image f(p) = fx(p) + ify(p) is obtained similarly to the case of Example 1. We can

compare the supremum by product ordering with those obtained by the polar supremum and

the α-polar supremum, with α = 0.01. The analysis is similar to the previous case.

Example 4. Fig. 15 involves again the noisy retinal image, and it shows a comparison

of results from (pseudo-)opening γB(f)(p) and (pseudo-)closing φB(f)(p) obtained for the

product ordering, the geodesic lattice (H2,
∨geo

H2 ,
∧geo

H2 ) and the asymmetric geodesic lattice

(H2,
∧−→+

H2 ,
∨−→+

H2 ). The structuring element B is a square of 5 × 5 pixels. In order to

be able to compare their enhancement effects with an averaging operator, it is also given

the result of filtering by computing the minimax center in a square of 5 × 5 pixels [8, 2],

see Remark in Section 2.5. We note that operators associated to the asymmetric geodesic

supremum and infimum yield mean images relatively similar to the standard ones underlaying
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the supremum and infimum in the product lattice. However, including the information given

by the local standard deviation, the contrast of the structures is better in the asymmetric

geodesic supremum and infimum. Nevertheless, we observe that the operators by geodesic

supremum and infimum also produce in this example a significant regularization of the image.

By the way, we note that the corresponding geodesic pseudo-opening and pseudo-closing give

rather similar mean images but different standard deviation images, as expected by the

formulation of the geodesic supremum and infimum.

Example 5. The example given in Fig. 16 corresponds to an image f(p) = fx(p) + ify(p)

obtained by multiple acquisition of a sequence of 100 frames, where fx(p) represents the mean

intensity at each pixel and fy(p) the standard deviation of intensity along the sequence. The

100 frames have been taken from a stationary camera.

The goal of the example is to show how to extract image objects of large intensity and

support size smaller than the structuring element (here a square of 7 × 7 pixels) using the

residue between the original image f(p) and its filtered image by opening γB(f). In the case of

images on F(Ω,H2), the residue is defined as the pixelwise hyperbolic distance between them.

In this case study, results on processing on polar ordering-based lattice versus asymmetric

geodesic lattice are compared.

5.5 Conclusions on morphological operators for F(Ω,H2) images

Based on the discussion given in Section 5.2 as well as on the examples from Section 5.4, we

can draw some conclusions on the experimental part of this chapter.

• First of all, we note that the examples considered here are only a preliminary explo-

ration on the potential applications of morphological processing univariate Gaussian

distribution-valued images.

• We have two main case studies. First, standard images which are embedded into the

Poincaré upper-half plane representation by parameterization of each local patch by its

mean and standard deviation. Second, images which naturally involves a distribution of

values at each pixel. Note that in the first case, the information of standard deviation is

mainly associated to discriminate between homogenous zones and inhomogeneous ones

(textures or contours). In the second case, the standard deviation involves relevant

information on the nature of the noise during the acquisition.

• For any of these two cases, we should remark that different alternatives of ordering and

derived operators considered in the paper will produce nonlinear processing: its main

property is that filtering effects are strongly driven by the standard deviation.

• Upper half-plane product ordering is nothing more than standard processing of mean

and standard deviation separately. The symmetric ordering leading to an inf-semilattice

has a limited interest since similar effects are obtained by the polar ordering.
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• Upper half-plane polar ordering using standard hyperbolic polar coordinates or the α-

order Hellinger distance produces morphological operators appropriate for image reg-

ularization and enhancement. We remind that points close to the origin (selected by

the erosion) correspond in the case of the patches to those of intermediate mean and

standard deviation intensity after normalization. On the contrary, patches far from

the origin correspond to the “contrasted” ones: either homogeneous patches of dark or

bright intensity or patches with a strong variation in intensity (edge patches).

We note that with respect to filters based on averaging, the half-plane polar dila-

tion/erosion as well as their product operators, produces strong simplified images where

the edges and the main objects are enhanced without any blurring effect.

From our viewpoint this is useful for both cases of images. Then, the choice of a high

or low value for α will depend on the particular nature of the features to be enhanced.

In any case, this parameter can be optimized.

• Upper half-plane geodesic ordering involves a nonlinear filtering framework which takes

into account the intrinsic geometry of H2. It is mainly based on the notion of minimal

enclosing geodesic which covers the set of points.

In practice, the geodesic infimum gives a point with a standard deviation equal to or

larger than any of the point and a mean which can be seen as intermediate between the

mean values of high standard deviation. The supremum produces a point of standard

deviation equal to or smaller than the others, and the mean is obtained by averaging

around the mean of the ones having a small standard deviation.

Consequently the erosion involves a nonlinear filtering which enhances the image zones

of high standard deviation, typically the contours. The dilation enhances the homoge-

nous zones. We should note that the processed mean images by the composition of

these two operators (i.e., openings and closings) are strongly enhanced by increasing

their bright/dark contrast. Therefore, it should be considered as an appropriate tool

for contrast structure enhancement on irregular backgrounds.

The asymmetric version of the geodesic ordering involves that dilation and erosion

have the same interpretation for the mean as the classical ones but the filtering ef-

fects are driven by the zones of low or high standard deviation. These operators are

potentially useful for object extraction by residue between the original image and the

opening/closing. In comparison with classical residues, the new ones produce sharper

extracted objects.
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(a) g(p) (b) fx(p) (c) fy(p)

(d-1) εB(f)(p), (H2,≤H2) (e-1) γB(f)(p), (H2,≤H2)

(d-2) εB(f)(p), (H2,≼H2) (e-2) γB(f)(p), (H2,≼H2)

(d-3) εB(f)(p), (H2,≤pol
H2) (e-3) γB(f)(p), (H2,≤pol

H2)

Figure 11: Comparison of morphological erosions and openings of an image f ∈ F(Ω,H2):

(a) Original real-valued image g(p) ∈ F(Ω,R) used to simulate (see the text) the image

f(p) = fx(p)+ify(p), where (b) and (c) gives respectively the real and imaginary components.

(d-) and (e-) depict respectively the erosion εB(f)(p) and opening γB(f)(p) of image f(p)

for five orderings on the upper half-plane. The structuring element B is a window of 5 × 5

pixels. Continued in next figure.
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(d-4) εB(f)(p), (H2,
∨geo

H2 ,
∧geo

H2 ) (e-4) γB(f)(p), (H2,
∨geo

H2 ,
∧geo

H2 )

(d-5) εB(f)(p), (H2,
∧−→+

H2 ,
∨−→+

H2 ) (e-5) γB(f)(p), (H2,
∧−→+

H2 ,
∨−→+

H2 )

Figure 12: Continuation from previous figure.
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(a) f(p) (c) εB(f)(p),

(H2,≤H2 )

(c) εB(f)(p),

(H2,≼H2 )

(d) εB(f)(p),

(H2,≤pol

H2 )

(e) εB(f)(p),

(H2,≤α−pol

H2 ), α = 0.01

(f) εB(f)(p),

(H2,≤α−pol

H2 ), α = 1

(g) εB(f)(p),

(H2,≤α−pol

H2 ), α = 20

(h) εB(f)(p),

(H2,≤α−pol

H2 ), α = 200

Figure 13: Comparison of erosion of Gaussian distribution-valued noisy image εB(f)(p): (a)

Original image f ∈ F(Ω,H2), showing both the real and the imaginary components; (b)

upper half-plane product ordering (equivalent to standard processing); (c) upper half-space

symmetric ordering; (d) upper half-plane polar ordering; (e)-(h) upper half-plane α-polar

ordering, with four values of α. In all the cases the structuring element B is also a square of

5× 5 pixels.
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(a) f(p) (b) δB(f)(p), (H2,≤H2)

(c) δB(f)(p), (H2,≤polar
H2 ) (d) δB(f)(p), (H2,≤α−pol

H2 ), α = 0.01

Figure 14: Comparison of dilation of Gaussian distribution-valued image δB(f)(p): (a) Orig-

inal image f ∈ F(Ω,H2), showing both the real and the imaginary components; (b) upper

half-plane product ordering (equivalent to standard processing); (c) upper half-plane polar

ordering; (e) half-plane α-polar ordering, with α = 0.01. In all the cases the structuring

element B is also a square of 5× 5 pixels.
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(a) f(p) (b) Minimax

center 5× 5

(c) γB(f)(p),

(H2,≤H2 )

(d) φB(f)(p),

(H2,≤H2 )

(g) γB(f)(p),

(H2,
∨geo

H2 ,
∧geo

H2 )

(h) γB(f)(p),

(H2,
∧−→+

H2 ,
∨−→+

H2 )

(g) φB(f)(p),

(H2,
∨geo

H2 ,
∧geo

H2 )

(h) φB(f)(p),

(H2,
∧−→+

H2 ,
∨−→+

H2 )

Figure 15: Morphological processing of Gaussian distribution-valued noisy image: (a) Orig-

inal image f ∈ F(Ω,H2), showing both the real and the imaginary components; (b) filtered

image by computing the minimax center in a square of 5× 5 pixels; (c) morphological open-

ing working on the product lattice; (d) morphological closing working on the product lattice;

(e) morphological pseudo-opening working on the geodesic lattice; (f) morphological pseudo-

opening on the asymmetric geodesic lattice; (g) morphological pseudo-closing working on the

geodesic lattice; (h) morphological pseudo-closing on the asymmetric geodesic lattice. In all

the cases the structuring element B is also a square of 5× 5 pixels.
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(a) f(p)

(b) f̂(p) = γB(f)(p), (H2,≤pol
H2) (c) distH2

(
f(p), f̂(p)

)

(d) f̌(p) = γB(f)(p), (H2,
∧−→+

H2 ,
∨−→+

H2 ) (e) distH2

(
f(p), f̌(p)

)
Figure 16: Morphological detail extraction of multiple acquisition image modeled as a Gaus-

sian distribution-valued: (a) Original image f ∈ F(Ω,H2), showing both the real and the

imaginary components; (b) morphological opening γB(f) working on polar ordering-based lat-

tice; (c) corresponding residue (pixelwise hyperbolic difference) between the original and the

opened image; (d) morphological pseudo-opening γB(f) working on the asymmetric geodesic

lattice; (e) corresponding residue. In both cases the structuring element B is also a square

of 7× 7 pixels.
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6 Perspectives

Levelings are a powerful family self-dual morphological operators which have been also formu-

lated in vector spaces [24], using geometric notions as minimum enclosing balls and half-planes

intersection. We intend to explore the formulation of levelings in the upper half-plane in a

future work.

The complete lattice structures for the Poincaré upper-half plane introduced in this work,

and corresponding morphological operators, can be applied to process other hyperbolic-valued

images. For instance, on the one hand, it was proven in [13] that the structure tensor for 2D

images, i.e., at each pixel is given a 2×2 symmetric positive definite matrix which determinant

is equal to 1, are isomorphic to the Poincaré unit disk model. On the other hand, polarimetric

images [17] where at each pixel is given a partially polarized state can be embedded in the

Poincaré unit disk model. In both cases, we only need the mapping from the Poincaré disk

model to the Poincaré half-plane, i.e.,

z 7→ −i
z + 1

z − 1
.

We have considered here the case of Gaussian distribution-valued images. It should be

potentially interesting for practical applications to consider that the distribution of intensity

at a given pixel belongs to a more general distributions compared to the Gaussian one.

In particular, the case of the Gamma distribution seems an appropriate framework. The

information geometry of the gamma manifold has been studied in the past [16] and some of

the ideas developed in this work can be revisited for the case of Gamma-distribution valued

images by endowing the gamma manifold of complete lattice structure.

Previous extension only concerns the generalization of ordering structure for univariate

distributions. In the case of multivariate Gaussian distributions, we can consider to replace

the Poincaré upper-half plane by the Siegel upper-half space [7].
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[8] M. Bădoiu, K.L. Clarkson. Smaller core-sets for balls. In Proc. of the fourteenth annual

ACM-SIAM symposium on Discrete algorithms (SIAM), pp. 801–802, 2003.

[9] J. Burbea, C.R. Rao. Entropy differential metric, distance and divergence measures in

probability spaces: A unified approach. Journal of Multivariate Analysis, Vol. 12, No. 4,

575–596, 1982.
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