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Notre Dame Journal of Formal Logic

A Simple Proof That Super-Consistency
Implies Cut Elimination

Gilles Dowek and Olivier Hermant

Abstract We give a simple and direct proof that super-consistency im-
plies the cut elimination property in deduction modulo. This proof can
be seen as a simplification of the proof that super-consistency implies
proof normalization. It also takes ideas from the semantic proofs of cut
elimination that proceed by proving the completeness of the cut-free cal-
culus. As an application, we compare our work with the cut elimination
theorems in higher-order logic that involve V-complexes.

1 Introduction

Deduction modulo is an extension of predicate logic where some axioms may be
replaced by rewrite rules. For instance, the axiom x+ 0 = x may be replaced
by the rewrite rule x + 0 −→ x and the axiom x ⊆ y ⇔ ∀z (z ∈ x ⇒ z ∈ y)
by the rewrite rule x ⊆ y −→ ∀z (z ∈ x⇒ z ∈ y).

In the model theory of Deduction modulo, it is important to distinguish
the fact that some propositions are computationally equivalent, i.e. congruent
(e.g. x ⊆ y and ∀z (z ∈ x⇒ z ∈ y)), in which case they should have the same
value in a model, from the fact that they are provably equivalent, in which case
they may have different values. This has lead, in [4], to the introduction of
a generalization of Heyting algebras called truth values algebras and a notion
of B-valued model, where B is a truth values algebra. We have called super-
consistent the theories that have a B-valued model for all truth values algebras
B and we have given examples of super-consistent theories as well as examples
of consistent theories that are not super-consistent.

In Deduction modulo, there are theories for which there exist proofs that
do not normalize. But, we have proved in [4] that all proofs normalize in
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super-consistent theories. This proof proceeds by observing that reducibil-
ity candidates [9] can be structured in a truth values algebra and thus that
super-consistent theories have reducibility candidate valued models. Then,
the existence of such a model implies proof normalization [8] and hence cut
elimination. As many theories, in particular arithmetic and simple type the-
ory, are super-consistent, we get Gentzen’s and Girard’s theorems as corollar-
ies.

This paper is an attempt to simplify this proof replacing the algebra of
reducibility candidates C by a simpler truth values algebra S. Reducibility
candidates are sets of proofs. We show that we can replace each proof of such
a set by its conclusion, obtaining this way sets of sequents, rather than sets
of proofs, for truth values.

Although the truth values of our model are sets of sequents, our cut elim-
ination proof uses another truth values algebra whose elements are sets of
contexts: the algebra of contexts Ω, that happens to be a Heyting algebra.
From any S-valued model of a theory we build a second-level model, that is
Ω-valued and that we use to show cut-elimination.

This technique gives a proof that uses ideas taken from both methods em-
ployed to prove cut elimination: proof-term normalization and completeness
of the cut-free calculus. From the first, come the ideas of truth values algebra
and neutral proofs and from the second, the idea of building a model such
that sequents valid in this model have cut-free proofs.

This paper is an extended version of a conference paper [7] by the same
authors. Some technical inaccuracies of [7] have been corrected in this version.
In Section 2 we recall the technical material that will be useful to understand
Section 3, that is the core of the paper. At the end of the paper, we provide
an analysis of the proof obtained in the case of higher-order logic and compare
it with other semantic proofs.

2 Super-Consistency

To keep the paper self contained, we recall in this section the definition
of Deduction modulo, truth values algebras, B-valued models and super-
consistency. A more detailed presentation can be found in [4].

2.1 Deduction Modulo Deduction modulo [6; 8] is an extension of predicate
logic (either single-sorted or many-sorted predicate logic) where a theory is
defined by a set of axioms Γ and a congruence ≡, itself defined by a con-
fluent rewrite system rewriting terms to terms and atomic propositions to
propositions.

In this paper we consider natural deduction rules. These rules are modified
to take the congruence ≡ into account. For example, the elimination rule of
the implication is not formulated as usual

Γ ` A⇒ B Γ ` A
Γ ` B

but as
Γ ` C Γ ` A

C ≡ A⇒ B
Γ ` B
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axiom (B ≡ A for some A in Γ)
Γ ` B

Γ, A ` B ⇒i, C ≡ A⇒ B
Γ ` C

Γ ` C Γ ` A ⇒e, C ≡ A⇒ B
Γ ` B

Γ ` A Γ ` B ∧i, C ≡ A ∧B
Γ ` C

Γ ` C ∧e-1, C ≡ A ∧B
Γ ` A

Γ ` C ∧e-2, C ≡ A ∧B
Γ ` B

Γ ` A ∨i-1, C ≡ A ∨B
Γ ` C

Γ ` B ∨i-2, C ≡ A ∨B
Γ ` C

Γ, A ` C Γ, B ` C Γ ` D ∨e, D ≡ A ∨B
Γ ` C

>i, A ≡ >
Γ ` A

Γ ` B ⊥e, B ≡ ⊥
Γ ` A

Γ ` A ∀i, B ≡ ∀xA, with x /∈ FV (Γ)
Γ ` B

Γ ` B ∀e, B ≡ ∀xA and C ≡ (t/x)A
Γ ` C

Γ ` C ∃i, B ≡ ∃xA and C ≡ (t/x)A
Γ ` B

Γ ` C Γ, A ` B ∃e, C ≡ ∃xA, with x /∈ FV (Γ, B)
Γ ` B

Figure 1 Rules of Natural Deduction Modulo

All the deduction rules are modified in a similar way as shown in Figure 1.
Note that the usual proviso that x does not appear freely in the ∀i and ∃e
rules holds, as informally reminded by the side condition. See [8] for a more
thorough presentation.

In Deduction modulo, there are theories for which there exist proofs that
do not normalize. For instance, in the theory formed with the rewrite rule
P −→ (P ⇒ Q), the proposition Q has a proof

axiom
P ` P ⇒ Q

axiom
P ` P

⇒-elim
P ` Q

⇒-intro` P ⇒ Q

axiom
P ` P ⇒ Q

axiom
P ` P

⇒-elim
P ` Q

⇒-intro` P
⇒-elim` Q

that does not normalize. In some other theories, such as the theory formed
with the rewrite rule P −→ (Q⇒ P ), all proofs strongly normalize.

In Deduction modulo, like in predicate logic, closed normal proofs always
end with an introduction rule. Thus, if a theory can be expressed in Deduction
modulo with rewrite rules only, i.e. with no axioms, in such a way that proofs
modulo these rewrite rules strongly normalize, then the theory is consistent,
it has the disjunction property and the witness property, and various proof
search methods for this theory are complete.
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Many theories can be expressed in Deduction modulo with rewrite rules
only, in particular arithmetic and simple type theory, and the notion of cut
of Deduction modulo subsumes the notions of cut defined for each of these
theories. For instance, simple type theory can be defined as follows.

Definition 2.1 (Simple type theory [2; 5; 3]) The sorts are inductively defined:

• ι and o are sorts,
• if T and U are sorts then T → U is a sort.

The language contains the constants KT,U of sort T → U → T , ST,U,V of sort

(T → U → V )→ (T → U)→ T → V , >̇ of sort o and ⊥̇ of sort o, ⇒̇, ∧̇ and

∨̇ of sort o → o → o, ∀̇T and ∃̇T of sort (T → o) → o, the function symbols
αT,U of rank 〈T → U, T, U〉 and the predicate symbol ε of rank 〈o〉.

The rules are

α(α(α(ST,U,V , x), y), z) −→ α(α(x, z), α(y, z))

α(α(KT,U , x), y) −→ x

ε(>̇) −→ >
ε(⊥̇) −→ ⊥

ε(α(α(⇒̇, x), y)) −→ ε(x)⇒ ε(y)

ε(α(α(∧̇, x), y)) −→ ε(x) ∧ ε(y)

ε(α(α(∨̇, x), y)) −→ ε(x) ∨ ε(y)

ε(α(∀̇T , x)) −→ ∀y ε(α(x, y))

ε(α(∃̇T , x)) −→ ∃y ε(α(x, y))

2.2 Truth Values Algebras

Definition 2.2 (Truth values algebra) Let B be a set, whose elements are
called truth values, B+ be a subset of B, whose elements are called positive
truth values, A and E be subsets of ℘(B), >̃ and ⊥̃ be elements of B, ⇒̃, ∧̃,

and ∨̃ be functions from B×B to B, ∀̃ be a function from A to B and ∃̃ be a
function from E to B. The structure B = 〈B,B+,A, E , >̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉 is
said to be a truth values algebra if the set B+ is closed under the intuitionistic
deduction rules i.e. if for all a, b, c in B, A in A and E in E ,

1. if a ⇒̃ b ∈ B+ and a ∈ B+ then b ∈ B+,
2. a ⇒̃ b ⇒̃ a ∈ B+,
3. (a ⇒̃ b ⇒̃ c) ⇒̃ (a ⇒̃ b) ⇒̃ a ⇒̃ c ∈ B+,

4. >̃ ∈ B+,
5. ⊥̃ ⇒̃ a ∈ B+,
6. a ⇒̃ b ⇒̃ (a ∧̃ b) ∈ B+,
7. (a ∧̃ b) ⇒̃ a ∈ B+,
8. (a ∧̃ b) ⇒̃ b ∈ B+,
9. a ⇒̃ (a ∨̃ b) ∈ B+,

10. b ⇒̃ (a ∨̃ b) ∈ B+,
11. (a ∨̃ b) ⇒̃ (a ⇒̃ c) ⇒̃ (b ⇒̃ c) ⇒̃ c ∈ B+,
12. the set a ⇒̃ A = {a ⇒̃ e | e ∈ A} is in A and

the set E ⇒̃ a = {e ⇒̃ a | e ∈ E} is in A,

13. if all elements of A are in B+ then ∀̃ A ∈ B+,
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14. ∀̃ (a ⇒̃ A) ⇒̃ a ⇒̃ (∀̃ A) ∈ B+,

15. if a ∈ A, then (∀̃ A) ⇒̃ a ∈ B+,

16. if a ∈ E, then a ⇒̃ (∃̃ E) ∈ B+,

17. (∃̃ E) ⇒̃ ∀̃ (E ⇒̃ a) ⇒̃ a ∈ B+.

Proposition 2.3 Any Heyting algebra is a truth values algebra. The operations
>̃, ∧̃, ∀̃ are greatest lower bounds, the operations ⊥̃, ∨̃, ∃̃ are least upper
bounds, the operation ⇒̃ is the arrow of the Heyting algebra, and B+ = {>̃}.

Proof See [4].

Definition 2.4 (Fullness) A truth values algebra is said to be full if

A = E = ℘(B), i.e. if ∀̃ A and ∃̃ A exist for all subsets A of B.

Definition 2.5 (Ordered truth values algebra) An ordered truth values algebra
is a truth values algebra together with a relation v on B such that

• v is an order relation, i.e. a reflexive, antisymmetric and transitive
relation,
• B+ is upward closed,
• >̃ and ⊥̃ are maximal and minimal elements,
• ∧̃, ∨̃, ∀̃ and ∃̃ are monotone, ⇒̃ is left anti-monotone and right mono-

tone.

Definition 2.6 (Complete ordered truth values algebra) An ordered truth val-
ues algebra is said to be complete if every subset of B has a greatest lower
bound for v.

2.3 Models

Definition 2.7 (B-structure) Let L = 〈fi, Pj〉 be a language for predicate

logic and B be a truth values algebra. A B-structure M = 〈M,B, f̂i, P̂j〉, for

the language L, is a structure such that f̂i is a function from Mn to M where
n is the arity of the symbol fi and P̂j is a function from Mn to B where n is
the arity of the symbol Pj .

This definition extends trivially to many-sorted languages.

Definition 2.8 (Denotation) Let B be a truth values algebra, M be a B-
structure and ϕ be an assignment. The denotation of propositions and terms
in M is defined inductively as follows:

• JxKϕ = ϕ(x),

• Jf(t1, ..., tn)Kϕ = f̂(Jt1Kϕ, ..., JtnKϕ),

• JP (t1, ..., tn)Kϕ = P̂ (Jt1Kϕ, ..., JtnKϕ),

• J>Kϕ = >̃,

• J⊥Kϕ = ⊥̃,
• JA⇒ BKϕ = JAKϕ ⇒̃ JBKϕ,
• JA ∧BKϕ = JAKϕ ∧̃ JBKϕ,
• JA ∨BKϕ = JAKϕ ∨̃ JBKϕ,

• J∀x AKϕ = ∀̃ {JAKϕ+(d/x) | d ∈M},
• J∃x AKϕ = ∃̃ {JAKϕ+(d/x) | d ∈M}.
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Notice that the denotation of a proposition containing quantifiers may be
undefined, but it is always defined if the truth values algebra is full.

Definition 2.9 (Denotation of a context and of a sequent) The denotation
JA1, ..., AnKϕ of a context A1, ..., An is that of the proposition A1 ∧ ... ∧ An.
The denotation JA1, ..., An ` BKϕ of the sequent A1, ..., An ` B is that of the
proposition (A1 ∧ ... ∧An)⇒ B.

Definition 2.10 (Model) A proposition A is said to be valid in a B-structure
M, and the B-structure M is said to be a model of A if for all assignments
ϕ, JAKϕ is defined and is a positive truth value.

Consider a theory in Deduction modulo defined by a set of axioms Γ and a
congruence ≡. The B-structure M is said to be a model of the theory Γ,≡ if
all axioms of Γ are valid inM and for all terms or propositions A and B such
that A ≡ B and assignments ϕ, JAKϕ and JBKϕ are defined and JAKϕ = JBKϕ.

Deduction modulo is sound and complete with respect to this notion of model.

Proposition 2.11 (Soundness and completeness) The proposition A is provable
in the theory formed with the axioms Γ and the congruence ≡ if and only if it
is valid in all the models of Γ,≡ where the truth values algebra is full, ordered
and complete.

Proof See [4].

2.4 Super-Consistency

Definition 2.12 (Super-consistent) A theory in Deduction modulo formed
with the axioms Γ and the congruence ≡ is super-consistent if it has a B-
valued model for all full, ordered and complete truth values algebras B.

Proposition 2.13 Simple type theory is super-consistent.

Proof Let B be a full truth values algebra. We build the model M as
follows. The domain Mι is any non empty set, for instance the singleton
{0}, the domain Mo is B and the domain MT→U is the set MMT

U of func-
tions from MT to MU . The interpretation of the symbols of the language is
ŜT,U,V = a 7→ (b 7→ (c 7→ a(c)(b(c)))), K̂T,U = a 7→ (b 7→ a), α̂(a, b) = a(b),

ε̂(a) = a,
ˆ̇> = >̃,

ˆ̇⊥ = ⊥̃, ˆ̇⇒= ⇒̃, ˆ̇∧ = ∧̃, ˆ̇∨ = ∨̃,
ˆ̇∀T = a 7→ ∀̃(Range(a)),

ˆ̇∃T = a 7→ ∃̃(Range(a)) where Range(a) is the range of the function a. The
model M is a B-valued model of simple type theory.

3 Cut Elimination

3.1 The Algebra Of Sequents

Definition 3.1 (Neutral proof) A proof is said to be neutral if its last rule is
the axiom rule or an elimination rule, but not an introduction rule.

We now define the notion of cut-free proof. Instead of giving a syntactic
definition (absence of cut) we give a positive inductive definition.

Definition 3.2 (Cut-free proofs) Cut-free proofs are defined inductively as
follows:
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• a proof that ends with the axiom rule is cut-free,
• a proof that ends with an introduction rule and where the premises of

the last rule are proved with cut-free proofs is cut-free,
• a proof that ends with an elimination rule and where the major premise

of the last rule is proved with a neutral cut-free proof and the other
premises with cut-free proofs is cut-free.

Definition 3.3 (The algebra of sequents)

• >̃ is the set of sequents Γ ` C that have a neutral cut-free proof or
such that C ≡ >.
• ⊥̃ is the set of sequents Γ ` C that have a neutral cut-free proof.
• a ∧̃ b is the set of sequents Γ ` C that have a neutral cut-free proof or

such that C ≡ (A ∧B) with (Γ ` A) ∈ a and (Γ ` B) ∈ b.
• a ∨̃ b is the set of sequents Γ ` C that have a neutral cut-free proof or

such that C ≡ (A ∨B) with (Γ ` A) ∈ a or (Γ ` B) ∈ b.
• a ⇒̃ b is the set of sequents Γ ` C that have a neutral cut-free proof or

such that C ≡ (A⇒ B) and for all contexts Σ such that (Γ,Σ ` A) ∈ a,
we have (Γ,Σ ` B) ∈ b.
• ∀̃ S is the set of sequents Γ ` C that have a neutral cut-free proof

or such that C ≡ (∀x A) and for every term t and every a in S,
(Γ ` (t/x)A) ∈ a.

• ∃̃ S is the set of sequents Γ ` C that have a neutral cut-free proof
or such that C ≡ (∃x A) and for some term t and some a in S,
(Γ ` (t/x)A) ∈ a.

Let S be the smallest set of sets of sequents closed under >̃, ⊥̃, ∧̃, ∨̃, ⇒̃,
∀̃, ∃̃ and by arbitrary intersections.

Proposition 3.4 The structure S = 〈S, S, ℘(S), ℘(S), >̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃,⊆〉 is
a full, ordered and complete truth values algebra.

Proof As all truth values are positive, the conditions of Definition 2.2 are
obviously met. Thus S is a truth values algebra. As the domains of ∀̃ and
∃̃ are defined as ℘(S), this algebra is full. As it is closed under arbitrary
intersections, all subsets of S have a greatest lower bound, thus all subsets of
S have a least upper bound and the algebra is complete.

Remark. The algebra S is not a Heyting algebra. In particular >̃ ∧̃ >̃ and >̃
are different: the first set contains the sequent ` > ∧ >, but not the second.

Proposition 3.5 For all elements a of S, contexts Γ, and propositions A and
B

• (Γ, A ` A) ∈ a,
• if (Γ ` B) ∈ a then (Γ, A ` B) ∈ a,
• if (Γ, A,A ` B) ∈ a then (Γ, A ` B) ∈ a,
• if (Γ ` A) ∈ a and B ≡ A then (Γ ` B) ∈ a,
• if (Γ ` A) ∈ a then Γ ` A has a cut free proof.

Proof The first proposition is proved by noticing that the sequent Γ, A ` A
has a neutral cut-free proof. The others are proved by a simple induction on
the construction of a. For instance, if a = c ∧̃ d, then:
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• if Γ ` B has a neutral cut-free proof, so has Γ, A ` B. Otherwise
B ≡ (C ∧D), (Γ ` C) ∈ c and (Γ ` D) ∈ d. By induction hypothesis,
(Γ, A ` C) ∈ c and (Γ, A ` D) ∈ d so by definition Γ, A ` B ∈ c ∧̃ d.
• if Γ, A,A ` B has a neutral cut-free proof, so has Γ, A ` B. Otherwise
B ≡ (C ∧ D), (Γ, A,A ` C) ∈ c and (Γ, A,A ` D) ∈ d. By induc-
tion hypothesis, (Γ, A ` C) ∈ c and (Γ, A ` D) ∈ d so by definition
Γ, A ` B ∈ c ∧̃ d.
• if Γ ` A has a neutral cut-free proof, so has Γ ` B. Otherwise
A ≡ (C ∧ D) ≡ B, (Γ ` C) ∈ c and (Γ ` D) ∈ d so by definition
Γ ` B ∈ c ∧̃ d.
• if Γ ` A has a neutral cut-free proof there is nothing to show. Otherwise
A ≡ (C ∧D), (Γ ` C) ∈ c and (Γ ` D) ∈ d. By induction hypothesis
Γ ` C and Γ ` D have cut-free proofs and we can add a ∧-intro rule
to obtain a cut-free proof of Γ ` A.

Consider a super-consistent theory Γ,≡. By definition, it has a S-model
M. In the rest of the paper, M refers to this model. Its domain is written
M .

Proposition 3.6 (Substitution) Let A be a proposition, ϕ an assignment, x a
variable and t, u terms. Let ϕ′ = ϕ + (JtKϕ/x). Then J(t/x)uKϕ = JuKϕ′ and

J(t/x)AKϕ = JAKϕ′ .

Proof By structural induction.

3.2 The Algebra Of Contexts

Definition 3.7 (Fiber) Let b be a set of sequents, A be a proposition, σ be
a substitution and f be a function mapping propositions to sets of sequents.
We define the parametrized fiber over A in b, b Cfσ A, as the set of contexts
Γ = A1, · · · , An such that for any ∆ such that (∆ ` σAi) ∈ f(Ai) for any i,
we have (∆ ` σA) ∈ b.

Definition 3.8 (Γ-adapted context) Let Γ = A1, ..., An be a set of proposi-
tions, ϕ be an assignment σ be a substitution. Let ∆ be a set of propositions.
We say that ∆ is Γ-adapted for ϕ, σ (in short: ∆ is Γ-adapted) if, for any i,
(∆ ` σAi) ∈ JAiKϕ.

Proposition 3.9 (Composition of adapted contexts) Let Γ1,Γ2 be two sets
of propositions. Let ϕ be an assignment, σ be a substitution and ∆1,∆2 be
Γ1-adapted (resp. Γ2-adapted) contexts for ϕ, σ. Then,

• ∆1,∆2 is Γ1,Γ2-adapted for ϕ, σ.
• if ∆1 = ∆, B,B then ∆, B is Γ1-adapted for ϕ, σ.

Proof Let A be a member of Γ1 and A′ be a member of Γ2. (∆1 ` σA) ∈ JAKϕ
and (∆2 ` σA′) ∈ JA′Kϕ by definition. Then,

• (∆1,∆2 ` σA) ∈ JAKϕ and (∆1,∆2 ` σA′) ∈ JA′Kϕ by the second
point of Proposition 3.5.
• if ∆1 matches the hypothesis, then (∆, B ` σA) ∈ JAKϕ by the third

point of Proposition 3.5.
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Definition 3.10 (Outer value) Let A be a proposition, we define the set of
contexts [A] as the set of contexts Γ = A1, · · · , An such that for any assign-
ment ϕ, any substitution σ, and any context ∆, whenever (∆ ` σAi) ∈ JAiKϕ
for any i (in other words, ∆ is Γ-adapted), then (∆ ` σA) ∈ JAKϕ. Note that

[A] is precisely JAK CJ K
σ A.

Proposition 3.11 For any context Γ, any propositions A and B,

• (Γ, A) ∈ [A],
• if Γ ∈ [B] then (Γ, A) ∈ [B],
• if (Γ, A,A) ∈ [B] then (Γ, A) ∈ [B],
• if Γ ∈ [A] and B ≡ A then Γ ∈ [B],
• if Γ ∈ [A] then Γ ` A has a cut-free proof.

Proof This follows directly from the definitions and Proposition 3.5. For
the first point, consider some ϕ, σ and a ∆ that is (Γ, A)-adapted for ϕ, σ. In
particular, by Definition 3.10, (∆ ` σA) ∈ JAKϕ, which was to be proved. The

second point restricts the sets of contexts: if ∆ is (Γ, A)-adapted then it is ob-
viously Γ-adapted and the conditions of Definition 3.10 are fulfilled. Similarly,
for the third point, if ∆ is (Γ, A,A)-adapted then it is (Γ, A)-adapted. The
fourth point follows from Proposition 3.5, since JAKϕ = JBKϕ by definition of
the model M. The last point is a consequence of Proposition 3.5.

Definition 3.12 (The algebra of contexts) Let Ω be the smallest set of sets
of contexts containing all the [A] for some proposition A and closed under
arbitrary intersections.

Remark 3.13 Notice that an element c of Ω can always be written in the
form

c =
⋂
i∈Λc

[Ai]

Proposition 3.14 The set Ω ordered by inclusion is a complete Heyting alge-
bra.

Proof As Ω is ordered by inclusion and closed under arbitrary intersections,
the greatest lower bound of any subset of Ω can be defined as the intersection
of all its elements and it always exists. Thus, all its subsets also have least
upper bounds, namely the greatest lower bound of its majorizers.

The operations >̌, ∧̌ and ∀̌ are defined as nullary, binary and infinitary
greatest lower bounds and the operations ⊥̌, ∨̌ and ∃̌ are defined as nullary,
binary and infinitary least upper bounds. Finally, the arrow ⇒̌ of two elements
a and b is the least upper bound of all the c in Ω such that a ∩ c ≤ b

a ⇒̌ b = ∃̌ {c ∈ Ω | a ∩ c ≤ b}
To prove that Ω is a Heyting algebra, ⇒̌ must have some specific properties

[17]. The following condition is necessary and sufficient:

a ≤ b ⇒̌ c iff a ∩ b ≤ c
The reverse implication holds by elementary lattice theory from the very def-
inition of ⇒̌, but the direct one requires some work. Let Γ = A1, · · · , An and
assume it belongs to a ∩ b, our aim is to show that Γ ∈ c =

⋂
[Ci]. Let C be

one of the Ci, we show that Γ ∈ [C].
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Unfolding the assumption, we know that a ≤ ∃̌D, with D = {d | b∩ d ≤ c},
or, unfolding a step further (see (2)):

a ≤
⋂{

[E] |
⋃

D ⊆ [E]
}

(1)

We first show that
⋃

D ⊆ [Γ⇒ C], where Γ⇒ C denotes A1 ⇒ · · ·An ⇒ C,
and later take advantage of this in (1).

Let d ∈ D, and ∆ ∈ d. We have (∆,Γ) ∈ d and (∆,Γ) ∈ a ∩ b ⊆ b by
Proposition 3.11. So, (∆,Γ) ∈ b ∩ d, and since d ∈ D, (∆,Γ) ∈ c ⊆ [C].

We now prove by induction on n (the cardinality of Γ) that if (∆,Γ) ∈ [C]
then ∆ ∈ [Γ ⇒ C]. This is immediate if n = 0. Otherwise, we apply
induction hypothesis, and we get that (∆, A1) ∈ [Γ1 ⇒ C]. Let ϕ be an
assignment, σ be a substitution and Σ∆ be a ∆-adapted context. We must
show that (Σ∆ ` σΓ ⇒ σC) = (Σ∆ ` σA1 ⇒ σΓ1 ⇒ σC) belongs to
JΓ⇒ CKϕ = JA1Kϕ⇒̃JΓ1 ⇒ CKϕ.

Let ΣA1
such that ΣA1

` σA1 ∈ JA1Kϕ. ΣA1
is A1-adapted and from Propo-

sition 3.9 Σ∆,ΣA1
is ∆, A1-adapted. So, Σ∆,ΣA1

` σΓ1 ⇒ σA ∈ JΓ1 ⇒ CKϕ.
This exactly means that Σ∆ ∈ JA1Kϕ⇒̃JΓ1 ⇒ CKϕ, from Definition 3.3 of ⇒̃.

Therefore, by the very Definition 3.10, ∆ ∈ [A1 ⇒ Γ1 ⇒ C].

So [Γ⇒ C] is an upper bound of D and, by (1), of a. By hypothesis on Γ,
Γ ∈ a ∩ b ⊆ a ⊆ [Γ⇒ C].

Let us call Γi the context Ai+1, ..., An. Γi is a suffix of Γ and we show, by
induction on i ≤ n, that Γ ∈ [Γi ⇒ C]. The base case has just been proved
above.

For the inductive step, we assume that Γ ∈ [Γi ⇒ C] = [Ai+1 ⇒ Γi+1 ⇒ C].
Let ϕ be an assignment, σ be a substitution and ∆Γ be a Γ-adapted context.
We show that (∆Γ ` σΓi+1 ⇒ σC) ∈ JΓi+1 ⇒ CKϕ. This will allow to

conclude that Γ ∈ [Γi+1 ⇒ C].
(∆Γ ` σAi+1 ⇒ σΓi+1 ⇒ σC) ∈ JAi+1 ⇒ Γi+1 ⇒ CKϕ by the induction

hypothesis, so

(∆Γ ` σAi+1 ⇒ σΓi+1 ⇒ σC) ∈ JAi+1Kϕ⇒̃JΓi+1 ⇒ CKϕ

If the sequent ∆Γ ` σAi+1 ⇒ σΓi+1 ⇒ σC has a neutral cut-free proof,
we add an elimination rule with a cut-free proof of ∆Γ ` σAi+1 (obtained by
Proposition 3.5 since (∆Γ ` σAi+1) ∈ JAi+1Kϕ). This gives a neutral cut-free
proof of the sequent ∆Γ ` σΓi+1 ⇒ σC and this sequent therefore belongs by
Definition 3.3 to JΓi+1 ⇒ CKϕ.

Otherwise, following Definition 3.3 of ⇒̃, since ∆Γ ` σAi+1 ∈ JAi+1Kϕ ,

we conclude directly that ∆Γ ` σΓi+1 ⇒ σC ∈ JΓi+1 ⇒ CKϕ.

Consider now the nth case of the previous statement. It states Γ ∈ [C],
which was to be proved. This holds for any of the Ci such that c =

⋂
i∈Λc

[Ci],
so Γ belongs to their intersection c, and finally a ∩ b ⊆ c is proved.
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The binary least upper bound, a ∨̌ b, of a and b is the intersection of all
the elements of Ω that contain a ∪ b. From Definition 3.12

a ∨̌ b =
⋂

(a∪b)⊆c

c =
⋂

(a∪b)⊆
⋂

[Ai]

(
⋂

[Ai]) =
⋂

(a∪b)⊆[A]

[A]

The infinitary least upper bound ∃̌ E of the elements of a set E is the inter-
section of all the elements of Ω that contain the union of the elements of E.
For the same reason as above

∃̌ E =
⋂

(
⋃
E) ⊆ c c =

⋂
(
⋃
E) ⊆ [A][A] (2)

Notice that the nullary least upper bound ⊥̌ is
⋂
{a | d ≤ a, for any d ∈ ∅}

i.e. the intersection of all the elements of Ω. Also, the nullary greatest lower
bound >̌ is the set of all contexts, we show in Proposition 3.15 below that it
is equal to [>] ∈ Ω and hence, that this construction is well-defined.

Finally, notice that Ω might be a non trivial Heyting algebra, although
the quotient Heyting algebra S/S+ is always trivial because S+ = S. The
construction of Definition 3.12 does then not boil down to this quotient and
produces a more informative structure.

The next proposition, the Key lemma of our proof, shows that the outer
values of compound propositions can be obtained from the outer values of
their components using the corresponding operation of the Heyting algebra
Ω. Notice that, unlike most semantic cut elimination proofs [12; 3; 10], we
directly prove equalities in this lemma, and not just inclusions, although the
cut elimination proof is not completed yet.

Proposition 3.15 (Key lemma) For all propositions A and B

• [>] = >̌,
• [⊥] = ⊥̌,
• [A ∧B] = [A] ∧̌ [B],
• [A ∨B] = [A] ∨̌ [B],
• [A⇒ B] = [A] ⇒̌ [B],
• [∀xA] = ∀̌ {[(t/x)A] | t ∈ T },
• [∃xA] = ∃̌ {[(t/x)A] | t ∈ T }.

where T is the set of open terms in the language of the theory.

Proof

• Let Γ be a context, and ∆ be a Γ-adapted context. By Definition 3.3,
(∆ ` >) ∈ >̃ = J>K. Thus Γ ∈ [>], and [>] = >̌.

• The set ⊥̌ is the intersection of all [C]. In particular, ⊥̌ ⊆ [⊥]. Con-
versely, let Γ ∈ [⊥], let ϕ be an assignment, σ be a substitution and ∆
be Γ-adapted. Consider an arbitrary C. By Definition 3.3, ∆ ` ⊥ has
a neutral cut-free proof. So does ∆ ` σC and this sequent belongs to
JCKϕ, thus Γ ∈ [C]. Hence Γ is an element of all [C] and therefore of

their intersection ⊥̌.
• Let Γ ∈ [A] ∧̌ [B] = [A] ∩ [B]. Let ϕ be an assignment, σ be a

substitution and ∆ be Γ-adapted. We have Γ ∈ [A] and Γ ∈ [B] and
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thus (∆ ` σA) ∈ JAKϕ and (∆ ` σB) ∈ JBKϕ. From Definition 3.3, we

get (∆ ` σ(A ∧B)) ∈ JA ∧BKϕ. Hence Γ ∈ [A ∧B].

Conversely, let Γ ∈ [A ∧ B], let ϕ be an assignment, σ be
a substitution and consider a Γ-adapted context ∆. We have
(∆ ` σ(A∧B)) ∈ (JAKϕ ∧̃ JBKϕ). If ∆ ` σ(A∧B) has a neutral and cut
free proof, then so do ∆ ` σA and ∆ ` σB by the ∧-elim rules and this
shows that (∆ ` σA) ∈ JAKϕ and (∆ ` σB) ∈ JBKϕ. Otherwise, those
last two statements follow directly from Definition 3.3. We conclude
that Γ ∈ [A] and Γ ∈ [B], hence that Γ ∈ [A] ∩ [B] = Γ ∈ [A] ∧̌ [B].
• To show [A] ∨̌ [B] ⊆ [A ∨ B] it is sufficient to prove that [A ∨ B]

is an upper bound of [A] and [B]. Let Γ ∈ [A], let ϕ be an
assignment, σ be a substitution and ∆ be Γ-adapted. By hy-
pothesis, (∆ ` σA) ∈ JAKϕ and by Definition 3.3 this means that

(∆ ` σ(A ∨B)) ∈ (JAKϕ ∨̃ JBKϕ) = JA ∨BKϕ. Thus Γ ∈ [A ∨B]. In a

similar way, [B] ⊆ [A ∨B].
Conversely, let Γ ∈ [A∨B]. Let C such that [A]∪ [B] ⊆ [C], let ϕ be

an assignment, σ be a substitution and ∆ be Γ-adapted. By hypothesis,
(∆ ` σ(A ∨ B)) ∈ (JAKϕ ∨̃ JBKϕ). Let us consider the three cases of

Definition 3.3 for ∨̃. First, if ∆ ` σ(A∨B) has a neutral cut-free proof.
σA is A-adapted for ϕ, σ by the first point of Proposition 3.9, so by
Proposition 3.9 (∆, σA) is (Γ, A)-adapted. Since (Γ, A) ∈ [A] ⊆ [C]
by Proposition 3.11, the sequent ∆, σA ` σC has a cut-free proof by
Proposition 3.11. By similar arguments, the sequent ∆, σB ` σC has
a cut-free proof. Hence, we can apply the ∨-elim rule on those three
premises and obtain a neutral cut-free proof of the sequent ∆ ` σC,
which belongs to JCKϕ. Second, if (∆ ` σA) ∈ JAKϕ. By Definition 3.8,

∆ is A-adapted, and since by Proposition 3.11, A ∈ [A] ⊆ [C], we must
have ∆ ` σC ∈ JCKϕ. The third and last case (∆ ` σB) ∈ JBKϕ is

similar. In all three cases we have ∆ ` σC ∈ JCKϕ. Hence Γ ⊆ [C] for

any [C] upper bound of [A], [B] and it is an element of their intersection
i.e. of [A] ∨̌ [B].

• Let us show [A⇒ B] ⊆ [A] ⇒̌ [B], which is by definition equivalent to
[A]∩[A⇒ B] ⊆ [B]. Let Γ ∈ [A]∩[A⇒ B], and ∆ be Γ-adapted. Then
(∆ ` σA) ∈ JAKϕ and (∆ ` σA ⇒ σB) ∈ JA⇒ BKϕ = JAKϕ⇒̃JBKϕ.
If ∆ ` σA ⇒ σB has a neutral cut-free proof, since ∆ ` σA has a
cut-free proof, ∆ ` σB has a neutral cut-free proof, and it belongs to
JBKϕ. Otherwise (∆ ` σA) ∈ JAKϕ and we apply Definition 3.3 of ⇒̃
with an empty context Σ to get (∆ ` σB) ∈ JBKϕ. Therefore, Γ ∈ [B].

Conversely let us show [A] ⇒̌ [B] ⊆ [A ⇒ B]. We have to prove
that [A ⇒ B] is an upper bound of the set of all the c ∈ Ω such
that c ∩ [A] ⊆ [B]. Let such a c, let Γ ∈ c, let ϕ be an assignment,
σ be a substitution and ∆ be a Γ-adapted context. We must show
(∆ ` σA⇒ σB) ∈ JA⇒ BKϕ = JAKϕ⇒̃JBKϕ.

For this, let Σ such that (∆,Σ ` σA) ∈ JAKϕ. By Definition

3.8, (∆,Σ) is A-adapted, and by Proposition 3.9 (∆,Σ) is (Γ, A)-
adapted. From Proposition 3.11, [A] and c (by definition equal to
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some
⋂
i∈Λc

[Ci]) admit weakening, so Γ, A ∈ c ∩ [A] ⊆ [B]. Therefore,

by Definition 3.10 of [B], ∆,Σ ` σB ∈ JBKϕ, and the claim follows
directly from Definition 3.3 of ⇒̃.
• Let Γ ∈

⋂
{[(t/x)A], t ∈ T }. Let ϕ be an assignment and σ be a

substitution. Let ∆ be Γ-adapted, we show that ∆ ` σ∀xA ∈ J∀xAKϕ.
We assume without loss of generality that x does not appear in
∆, nor in Γ, nor in σ. Let t ∈ T and d ∈ M . By freshness of
x, ∆ is also Γ-adapted for ϕ + (d/x), σ + (t/x). Also, we have
(t/x)σA = (σ + (t/x))A and by hypothesis, Γ ∈ [(x/x)A] = [A].
It means that (∆ ` (σ + (t/x))A) ∈ J(x/x)AKϕ+(d/x). Hence, by

Definition 3.3, (∆ ` ∀x(σA)) ∈ ∀̃{JAKϕ+(d/x) | d ∈M}.
Conversely, let Γ ∈ [∀xA]. Let t ∈ T , ϕ be an assignment, σ be a

substitution and let ∆ be Γ-adapted. Assume without loss of generality
that x does not appear in ∆, nor in Γ, ϕ, σ.

By hypothesis (∆ ` σ∀xA) ∈ J∀xAKϕ. If ∆ ` σ∀xA has a neu-

tral cut-free proof then so does the sequent ∆ ` (σt/x)σA). Since
σ(t/x)A = (σt/x)σA, we have (∆ ` σ((t/x)A)) ∈ JAKϕ+(JtKϕ/x), which

is equal to J(t/x)AKϕ by Proposition 3.6.

Otherwise, Definition 3.3 ensures that for any d, including JtKϕ,

(∆ ` σ((t/x)A)) ∈ JAKϕ+(d/x). Thus (∆ ` σ((t/x)A)) ∈ J(t/x)AKϕ.

So Γ ∈ [(t/x)A] for any t and it is then an element of the intersection.
• We first show that [∃xA] is an upper bound of the set {[(t/x)A] | t ∈ T }.

Consider some term t, and a context Γ ∈ [(t/x)A]. Let ϕ be
an assignment, σ be a substitution and ∆ a Γ-adapted context.
Assume without loss of generality that x does not appear in ∆
nor in σ. Since σ(t/x)A = (σt/x)σA, we have by hypothesis
(∆ ` (σt/x)(σA)) ∈ J(t/x)AKϕ, which is equal to JAKϕ+(JtKϕ/x) by

Proposition 3.6. This shows that (∆ ` σ∃xA) ∈ ∃̃{JAKϕ+(d/x), d ∈M}
by Definition 3.3. Hence Γ ∈ [∃xA]. So ∃̌ {[(t/x)A] | t ∈ T } ⊆ [∃xA].

Conversely, let Γ ∈ [∃xA]. Let c =
⋂

[Ci] be an upper bound of
{[(t/x)A] | t ∈ T }. We can choose c = [C], since we need the intersec-
tion of the upper bounds.

Let ϕ be an assignment and σ be a substitution, let ∆ be Γ-adapted
and assume, without loss of generality, that x does not appear in C,
nor in ∆ nor in σ. Finally, notice that A ∈ [(x/x)A] ⊆ [C] and that by
hypothesis on Γ, (∆ ` σ∃xA) ∈ J∃xAKϕ.

Assume ∆ ` σ∃xA has a neutral cut-free proof. Then, since σA is
A-adapted, we have (σA ` σC) ∈ JCKϕ. In particular, by Proposition
3.5, this sequent has a cut-free proof. Since x does not appear in C
nor in σ, we can apply an ∃-elimination rule between a proof of this
sequent and the neutral cut-free proof of ∆ ` ∃xσA, yielding a neutral
cut-free proof of ∆ ` σC. Hence (∆ ` σC) ∈ JCKϕ.

Otherwise, by Definition 3.3, ∆ ` ∃xσA is such that for some term
t and element d, (∆ ` σ′A) ∈ JAKϕ′ , calling σ′ = σ + (t/x) and

ϕ′ = ϕ + (d/x). So, ∆ is A-adapted for ϕ′, σ′. Since A ∈ [C], this
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implies that (∆ ` σ′C) ∈ JCKϕ′ , but since x does not appear in C, this

is the same as (∆ ` σC) ∈ JCKϕ.

Therefore, Γ ∈ [C]. This is valid for any [C] upper bound
of {[(t/x)A] | t ∈ T }. So, Γ is in their intersection, that is

∃̃{[(t/x)A], t ∈ T }.

Proposition 3.16 Γ ∈ [Γ]

Proof Let Γ = A1, ..., An. By Definition 2.9 and Proposition 3.15,
[Γ] = [A1 ∧ ... ∧ An] = [A1] ∧̌ ... ∧̌ [An]. Using Proposition 3.11, we
have Γ ∈ [A1] , ..., Γ ∈ [An], thus Γ ∈ ([A1] ∧̌ ... ∧̌ [An]).

Definition 3.17 (The model D) Let T be the set of classes of open terms
modulo ≡. Let ϕ be a substitution with values in T . For each function
symbol fi and each predicate symbol Pj of the language we let:

• f̂i : t1, · · · , tn 7→ fi(t1, · · · , tn)

• P̂j : t1, · · · , tn 7→ [Pj(t1, · · · , tn)]

Let D = 〈T ,Ω, f̂i, P̂j〉
Proposition 3.18 (The model D)

• D is an Ω-structure in the sense of Definition 2.7.

• the denotation J KD is such that for any assignment (i.e. substitution)
ϕ, any term t and any proposition A:

JtKDϕ = ϕt and JAKDϕ = [ϕA]

• D is a model for ≡ in the sense of Definition 2.10.

Proof The first point is immediate by Definition 2.7. The proof of JtKDϕ = ϕt

is a straightforward structural induction on t. So is the proof of JAKDϕ = [ϕA]:

the base case follows from the definition of P̂j and the inductive cases from
Proposition 3.15. Let us consider, for instance, the ∃ case. First assume
that x does not appear in ϕ, otherwise rename it. Then, by definition

J∃xAKDϕ = ∃̌{JAKDϕ+(t/x), t ∈ T }. By induction hypothesis, this is equal to

∃̌{[(ϕ + (t/x))A], t ∈ T } = ∃̌{[(t/x)(ϕA)], t ∈ T }. By Proposition 3.15, this
is equal to [∃x(ϕA)] = [ϕ(∃xA)].

The last point is a direct consequence of Proposition 3.11 and of the
second point: if A ≡ B then, for any substitution ϕ, ϕA ≡ ϕB and

JAKDϕ = [ϕA] = [ϕB] = JBKDϕ .

3.3 Cut Elimination First, with the help of the model D we conclude di-
rectly that the cut-free calculus is complete:

Proposition 3.19 (Completeness of the cut-free calculus) If the sequent Γ ` B
is valid in the model D (i.e. >̌ ⊆ JΓ ` BK or equivalently JΓK ⊆ JBK), then it
has a cut-free proof.

Proof Let ϕ be the identity assignment. By Proposition 3.16 and by hypoth-
esis:

Γ ∈ [Γ] = JΓKϕ ⊆ JBKϕ = [B]

By Proposition 3.11, the sequent Γ ` B has a cut-free proof.
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Theorem 3.20 (Cut elimination) If the sequent Γ ` B is provable, then it has
a cut-free proof.

Proof From the soundness theorem (Proposition 2.11) and Proposition 2.3,
if Γ ` B is provable, then it is valid in all Heyting algebra-valued models of
the congruence, in particular D. Hence, by Proposition 3.19, it has a cut-free
proof.

Remark 3.21 In the previous proof, the induction is performed by the sound-
ness theorem, while the inductive cases are performed by Proposition 3.15,
that ensures that [ ] is a model interpretation. So, we observe a split of the
cut-elimination theorem in two parts. This has to be compared to proofs of
cut elimination via normalization, that, given a proof of Γ ` A, would show
directly [Γ] ⊆ [A] or something similar (Theorem 3.1 of [8] for instance). This
split is essentially made possible by Definition 3.10.

4 Application To Simple Type Theory

As a particular case, we get a cut elimination proof for simple type theory.
Let us inspect the model construction in more details in this case. Based

on the language of simple type theory, we first build the truth values algebra
of sequents S of Definition 3.3. Then using the super-consistency of simple
type theory, we build the model M as in Proposition 2.13. In particular
Mι = {0}, Mo = S (see Definition 3.3), and MT→U = MMT

U . Then, we build
the model D as in Proposition 3.18 and we let DT = TT , where TT is the set
of equivalence classes modulo ≡ of terms of sort T . In particular, we have
Dι = Tι and Do = To.

This construction differs from that of the V -complexes of [13; 16; 1; 3; 11;
10] used to prove cut admissibility in higher-order logic. Let us analyze this
further.

4.1 Principles Of The Proof with V -Complexes We here give a sketch of a
proof with V -complexes in the simpler case of classical logic, as given in [1]
for instance or, in a modern and intuitionistic version, in [3]. Notice that,
in contrast with the presentation of Definition 2.1, the ε symbol is absent so
that the logical connectors merge with the associated “dotted” constant. For
instance, in this section we shall consider that ∧̇ is the same as ∧.

Let Γ ` ∆ be a sequent that has no proof in the cut-free sequent calculus.
We assume given a semi-valuation V [14] compatible with this sequent i.e.
a partial interpretation function from the propositions into {0, 1} such that
V (Γ) = 1 and V (∆) = 0. Such a semi-valuation can be obtained by an
(infinite) tableau procedure or as an abstract consistency property, see [1; 3].
It is weaker than a model interpretation, in the sense that it is partial, and
consequently consistency conditions are weaker: if we know the truth value of
a proposition A, enough must be known on the truth value of its immediate
sub-propositions. For instance, V (A ∧B) = 0 implies V (A) = 0 or V (B) = 0
and the other value might be left undefined.

The goal, and the difficulty in the Simple Type Theory case - or higher-
order logic - as identified by Schütte [14], resides in the extension of V into a
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model interpretation. The answer, given independently by Takahashi [16] and
Prawitz [13], is to construct a new interpretation domain, called V -complexes,
as follows.

First, for every type T , the interpretation domain of the model is built by
glueing together a syntactic and a semantic part:

VT = TT ×MT

where TT is the set of terms of type T that are in normal form, Mι = {ι},
Mo = {0, 1} and MA→B is the function space V VA

B , i.e. it is composed of
functions of TA×MA → TB ×MB that verify the following criterion. A pair
〈t, f〉 belongs to VT if and only if t is in normal form and of type T , and:

• when T is ι, f is equal to ι
• when T is o and V (t) is defined, f is equal to V (t) (this way we enforce

the adequacy with the semi-valuation V ). Otherwise f can be either
0 or 1, and indeed both V -complexes 〈t, 0〉 and 〈t, 1〉 belong to the
domain Vo.
• when T is a function type A → B, f ∈ MA→B can be decom-

posed in a function f1 from TA ×MA to TB and a function f2 from
TA×MA toMB . Given any V -complex 〈t′, a〉 ∈ MA, we require that
f1(〈t′, a〉) = nf(t t′) and 〈nf(t t′), f2(〈t′, a〉)〉 ∈ VB , where nf(t t′) is
the normal form of t t′.

V -complexes were introduced to deal with two main problems of higher-
order logic: impredicativity and intensionality. Tait’s method [15] solves the
first problem by performing an induction on the type, this way avoiding an
impossible induction on term size. This has to be improved to handle inten-
sionality: logically speaking > and > ∧ > must have the same denotation,
while we must still be able to do a semantic distinction between the denota-
tions of P (>) and P (>∧>) since the first propositions are equiprovable while
the second are not. Moreover, the interpretation 〈P, f〉 of P must be such
that the logical denotation (the second component of the interpretation) of
P (>) and P (> ∧ >) are different. This is possible only if f2 uses both sides
of its argument, in particular we must have:

f2(〈>∧>, J>∧>K〉) 6= f2(〈>, J>K〉)
although J>∧>K = J>K = 1.

This is achieved by introducing a syntactical component into the semantic
denotation of the terms. It then becomes possible to have different values and
behaviors, depending on this syntactical component. This is reflected by the
behavior of the function f2: it crucially depends on both components.

As a consequence, we separate the logical denotation of terms, (that equal-
izes > and > ∧ > in any Boolean algebra or Heyting algebra), from their
interpretation in the model (that does not and that is more related to the
meaning of the proposition that to its denotation) lying at a lower level, the
level of V -complexes.

On the basis of V -complexes, we define an interpretation for any term t by
induction on its structure. Let us see some key cases:
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• if t is not a logical symbol, we interpret it by a default V -complex
associated to t, of shape 〈t, d〉 (of course, a lemma states that it exists).

• if t is the logical symbol ∀̇T we construct the V -complex 〈∀̇T , f〉 where
f is the following function: to any V -complex 〈t, g〉 of type T → o it

associates the V -complex of type o 〈∀̇T t, v〉 where v is equal to 1 if and
only if for any V -complex d of type T , g(d) is a V -complex that has 1
as second component. So that we quantify over all the V -complexes of
type T .

• the interpretation of the application symbol α applies a V -complex
〈t, f〉 to another one 〈u, g〉 as f(〈u, g〉). Notice that its first member is,
by the conditions on f , the normal form of (t u).

It is a matter of technique to check that this construction really produces
V -complexes. The last step is to consider a generalized notion of model, since
now terms of type o have a denotation in T × {0, 1} which is not a Boolean
algebra. Then we can state that the interpretation we built is compatible with
V , and the propositions of Γ are interpreted by 1 (as a second component)
while those of ∆ are interpreted by 0. Therefore the sequent Γ ` ∆ is not
valid if it has no cut-free proof. This yields a proof of a strong version of the
completeness theorem from which we derive the cut-elimination theorem.

4.2 Comparison In contrast, in our construction, we have two separate
models, the term model D, that corresponds to the left-hand side of a V -
complex, and the model M that corresponds to the right-hand part.

The novelty is thatMA→B is justMA →MB and not TA ×MA →MB .
This is possible because when we buildM, instead of takingMo = {0, 1}, we
have taken Mo = S that is a truth value algebra but not a Heyting algebra.
Thus J>̇∧̇>̇KM and J>̇KM need not be equal, the truth values containing more

information, and we do not need to glue an extra syntactical argument >̇∧̇>̇
or >̇ to have f2(J>̇∧̇>̇K) 6= f2(J>̇K).

The same phenomenon arises in D since we choose a syntactic model:
following Proposition 3.18 J>̇∧̇>̇KM and J>̇KM are respectively equal to

>̇∧̇>̇ and >̇. In a similar way JP (>̇)K
D

= JP (>̇)K
M

C P (>̇) = [P (>̇)], and

from Proposition 3.11 JP (>̇)K
D

contains P (>̇) , while JP (>̇∧̇>̇)K
D

contains

P (>̇∧̇>̇). None of those interpretations, in the general case, contains the
other proposition, therefore they are not equal, as required.

One may also wonder where the separation of the logical denotation 1 of
>̇ from its interpretation in D appears in our proof. The expression >̇ has an
existence only at the term level since at the propositional one it is replaced by
ε(>̇). The interpretations in D of >̇ and ε(>̇) respectively correspond to the
interpretation in Vo and the denotation in a Heyting algebra of > in previous
proofs.

The separation between denotation and interpretation, that had to be de-
fined “by hand”, introducing a new definition for models, in the earlier works
with V -complexes [13; 16; 1; 3; 11; 10], is automatically captured by the
simple syntactical device ε.
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4.3 Conclusion Thus the main difference between our model construction
and that of the V-complexes is that we have broken this dependency on
u of the right component of the pair obtained by applying 〈t, f〉 to 〈u, g〉.
This leads to a two-stage construction where the very notion of V -complex
has vanished and the second model is syntactical. The reason why we have
been able to do so is that starting with an underlying model of sequents S,
our semantic objects [A] are much sharper, and do not require additional
construction. Moreover, the presence of the symbol ε has simplified the
dependency of the semantics on the syntax and allowed a purely syntactical
model at the term-level.

It has to be noticed that super-consistency allows us to construct a model
on more usual Heyting algebras, such as the Lindenbaum Heyting Algebra, or
the context-based ones used for cut elimination [10; 12], where [A] is defined
as the set of contexts Γ such that Γ ` A has a cut-free proof. It gives us an
interpretation on this algebra that satisfies the congruence ≡. The pitfall is
that if we build such a model in ordinary way, we cannot prove that JAK = [A].
To achieve this goal we have to proceed by first defining the algebra of sequents
in an untyped way, and then by extracting the needed contexts in order to
force JAK to be equal to [A]. So a two-stage construction seems unavoidable
when one uses super-consistency to show the admissibility of the cut rule.

It remains to be understood if such a construction can also be carried out
for a normalization proof.
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