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Abstract Materials presenting a negative Poisson’s

ratio (auxetics) have drawn attention for the past two

decades, especially in the field of lightweight com-

posite structures and cellular media. Studies have

shown that auxeticity may result in higher shear

modulus, indentation toughness and acoustic damp-

ing. In this work, three auxetic periodic microstruc-

tures based on 2D geometries are considered for being

used as sandwich-core materials. Elastic moduli are

computed for each microstructure by using finite

elements combined with periodic homogenization

technique. Anisotropy of elastic properties is investi-

gated in and out-of-plane. Comparison is made

between auxetics and the classical honeycomb cell.

A new 3D auxetic lattice is proposed for volumic

applications. Cylindrical and spherical elastic inden-

tation tests are simulated in order to conclude on the

applicability of such materials to structures. Proof is

made that under certain conditions, auxetics can be

competitive with honeycomb cells in terms of inden-

tation strength. Their relatively soft response in

tension can be compensated, in some situations, by

high shear moduli.

Keywords Homogenization � Finite element

method � Auxetics � Anisotropy � Negative Poisson’s

ratio � Indentation �Architectured materials � Elasticity

1 Introduction

In the case of isotropic elasticity, mechanical behavior

is described by any couple of parameters among these:

Young’s modulus E, Poisson’s ratio m, bulk modulus

K and Lamé’s coefficients k and l (also referred to as

G, shear modulus). When a material is loaded

uniaxially in tension, Poisson’s ratio is defined as the

ratio of the contraction in the transverse direction to

the extension in the longitudinal direction. Thermo-

dynamically, m lies between -1, for unshearable

materials, and 0.5 for incompressible or rubber-like

materials. Most materials naturally present a positive

Poisson’s ratio, although negative Poisson’s ratio

materials, or auxetics (Evans et al. 1991a), have been

engineered since the mid-1980s (Almgren 1985;

Lakes 1987; Caddock and Evans 1989; Lakes 1991;

Milton 1992; Prall and Lakes 1997; Gaspar et al. 2005;

Alderson et al. 2010; Dirrenberger et al. 2011). Such

materials have been expected to present enhanced

mechanical properties such as shear modulus and

fracture toughness (Choi 1996), indentation resistance

(Lakes 1993; Alderson et al. 1994, 2000) but also
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acoustic damping (Lipsett and Beltzer 1988; Chen and

Lakes 1996). The use of auxetics as building blocks for

wave-guiding metamaterials has also been investi-

gated by Spadoni et al. (2009). Besides, m\ 0 allows

synclastic curvature of plates (Evans 1991b), thus

enabling the manufacture of doubly-curved (dome-

shaped) sandwich panels without core buckling.

Moreover auxetic foams seem to provide better

resistance to crash than conventional cellular materials

(Scarpa et al. 2002). Auxetics could thus be used in

both functional and structural applications, we will

only consider the latter in this work.

However, most auxetic materials built-up from

periodic microstructures display strongly anisotropic

properties so that auxeticity is observed only with

respect to specific axes. The elastic anisotropy of such

materials may not have been sufficiently analysed in

the literature, this is the purpose of the present work.

This paper deals with the numerical determination

of the effective elastic tensor components of three 2D

microstructures, the investigation of their in-plane and

out-of-plane anisotropy and the comparison with a

honeycomb lattice. First, preliminary considerations

regarding the homogenization framework are made in

Sect. 2. Geometries of the auxetic microstructures and

the classical honeycomb cell are presented in Sect. 3.

Volumic finite elements (FE) coupled with periodic

homogenization technique are then used in Sect. 4 to

compute elastic moduli, characterize anisotropy and

compare the different microstructures considered. A

new tridimensional auxetic periodic microstructure is

proposed and studied in Sect. 5. Structural applicabil-

ity of auxetics is validated in Sect. 6 with the

simulation of cylindrical and spherical elastic inden-

tation tests. Finally the use of such materials in terms

of design and engineering applications is put into

perspective in Sect. 7.

2 Numerical homogenization

In this work, numerical homogenization consists in

determining effective mechanical properties over a

unit-cell (defined by its periodicity vectors vi) with

periodic boundary conditions (PBC) using FE as in

references (Kanit et al. 2003; Madi et al. 2005; Jean

and Engelmayr 2010). Such an approach is quite

popular among the mechanics of composites

community, while scarce in auxetics research.

Homogenization requires separation between micro

and macro scales. In the case of periodic homogeni-

zation, the computed effective properties correspond

to those of an infinite continuum made of periodic

tiles.

The macroscopic stress and strain tensors R
�

and E
�

are defined by the spatial averages over the unit-cell of

volume V of local stress r
�

and strain e
�

fields:

R
�
¼̂hr
�
i ¼ 1

V

Z
V

r
�

dV ð1Þ

E
�
¼̂h e
�
i ¼ 1

V

Z
V

e
�

dV ð2Þ

PBC over the unit-cell give displacement field u such

as:

u ¼ E
�
� xþ v 8x 2 V ð3Þ

with x; the material point location vector and v; the

periodic fluctuation. v takes the same value at two

homologous points on opposite faces of V, whereas the

traction vector t ¼ r
�
� n takes opposite values, n being

the normal vector.

By applying either macroscopic strain or stress, one

can compute the effective fourth-rank tensors of

elastic moduli C
�

and compliances S
�

defined such as:

R
�
¼ C
�

: E
�

ð4Þ

E
�
¼ S
�

: R
�

ð5Þ

Elastic moduli are written using Voigt’s notation as

follows:

R11

R22

R33

R23

R31

R12

2
6666664

3
7777775
¼

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

2
6666664

3
7777775

E11

E22

E33

2E23

2E31

2E12

2
6666664

3
7777775

ð6Þ

3 Microstructures considered

3.1 Hexachiral lattice

This chiral microstructure was first proposed by Lakes

in 1991, then studied in Prall and Lakes (1997),
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Alderson et al. (2010), Dirrenberger et al. (2011),

Spadoni (2008). Based on the parameters defined in

reference Alderson et al. (2010), cell geometry can be

described in this way: the circular nodes have radius

r, the ligaments have length L, and both have in

common wall thickness t (cf. Fig. 1a) as well as depth

d, which in our case is considered infinite due to

periodicity conditions along direction 3. Hence, three

dimensionless parameters can be derived as shown in

Eq. 7.

a ¼ L=r b ¼ t=r c ¼ d=r ð7Þ

On Fig. 1b, a = 5, b = 0.25 and c! þ1: These

parameters correspond to a volume fraction of 15 %.

The sixfold symmetry provides transverse isotropy.

3.2 Anti-tetrachiral lattice

This microstructure was proposed and studied in

(Alderson et al. 2010). Cell geometry can be described

exactly as for the hexachiral lattice (cf. Fig. 2a). Here,

a = 11, b = 0.06 and c! þ1 (cf. Fig. 2b). Volume

fraction is 15 %. The cell presents three orthogonal

planes of symmetry, which gives rise to orthotropic

elasticity.

3.3 Rotachiral lattice

This chiral microstructure, initially proposed in Dir-

renberger et al. (2011), has been designed based on

ideas from Prall and Lakes (1997) and Gaspar et al.

(2005), the aim was to study the impact of ligaments

geometry on auxeticity for chiral lattices. Cell geom-

etry is similar to the hexachiral case, except for the

straight ligaments that have been replaced by circular

arcs with diameter D (cf. Fig. 3a). A new dimension-

less parameter is defined:

d ¼ D=r ð8Þ

As shown on Fig. 3b, d = 2.4, b = 0.1 and c! þ1:
Volume fraction is 15 %. The sixfold symmetry

provides transverse isotropy.

Fig. 1 a Periodic cell with geometric parameters. b Hexachiral

lattice with unit-cell (blue) and periodicity vectors v1 and v2

(red). (Color figure online)

Fig. 2 a Periodic cell with geometric parameters. b Anti-

tetrachiral lattice with unit-cell (blue) and periodicity vectors v1

and v2 (red). (Color figure online)
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3.4 Honeycomb lattice

The classical honeycomb lattice is considered for the

purpose of comparison. The sixfold symmetry pro-

vides transverse isotropy. Geometry can be described

using the same parameters as for the rotachiral lattice.

For a regular hexagonal honeycomb cell, r and D are

not independent and d ¼
ffiffiffi
3
p

(cf. Fig. 4a). Also,

b = 0.15 and c! þ1; which corresponds to 15 %

of volume fraction as for the other microstructures

considered in this work. Unit-cell for this microstruc-

ture has been chosen hexagonal but it could have been

square or rhomboid shaped as for the previous lattices

(cf. Fig. 4b).

4 Effective elastic properties

Elastic moduli tensor C
�

is computed over a periodic

unit-cell for each microstructure using Z-Set FE

software1. Meshes are composed of volumic fully-

integrated quadratic elements, such as 10-node tetra-

hedra and 20-node hexahedra, taking into account the

finite thickness of the microstructure components.

Using the Euler-Bunge (1982) angles /, h and w as

shown on Fig. 5, let us define three orthogonal vectors

l; m and n such as:

½l� ¼
cosð/Þ cosðwÞ � sinð/Þ sinðwÞ cosðhÞ
sinð/Þ cosðwÞ þ cosð/Þ sinðwÞ cosðhÞ

sinðwÞ sinðhÞ

2
4

3
5 ð9Þ

½m� ¼
� cosð/Þ sinðwÞ � sinð/Þ cosðwÞ cosðhÞ
� sinð/Þ sinðwÞ þ cosð/Þ cosðwÞ cosðhÞ

cosðwÞ sinðhÞ

2
4

3
5

ð10Þ

½n� ¼
sinð/Þ sinðhÞ
� cosð/Þ sinðhÞ

cosðhÞ

2
4

3
5 ð11Þ

Fig. 3 a Periodic cell with geometric parameters. b Rotachiral

lattice with unit-cell (blue) and periodicity vectors v1 and v2

(red). (Color figure online)

Fig. 4 a Periodic cell with geometric parameters. b Honey-

comb lattice with unit-cell (blue) and periodicity vectors v1 and

v2 (red)

1 http://www.zset-software.com/.
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Using macroscopic strain and stress tensors

E
�
ð/; h;wÞ and R

�
ð/; h;wÞ, one can now define the

Young’s modulus EðlÞ and effective Poisson’s ratio

m�ðl;mÞ for tension along direction l :

E ¼
l � R
�
� l

l � E
�
� l ð12Þ

m� ¼ �
m � E

�
�m

l � E
�
� l ð13Þ

If we now consider simple shear in the plane ðl;mÞ;
the shear modulus lðl;mÞ can be defined as follows:

2l ¼
l � R
�
�m

l � E
�
�m ð14Þ

For h = w = 0, elastic moduli and Poisson’s ratio

are obtained in the plane (1,2) of the microstructure as

functions of /, we will refer to those as in-plane elastic

properties. On the other hand, when / = 0 and h ¼ p
2
;

one obtains moduli and Poisson’s ratio within plane

(1,3) as functions of w. These values will be consid-

ered as out-of-plane elastic properties.

For comparison purposes, normalized elastic mod-

uli are defined using fV, volume fraction of material,

local constitutive isotropic elastic material parameters

such as E0 (Young’s modulus) and l0. Shear modu-

lus l0 is defined from E0 and Poisson’s ratio m0 as

follows:

l0 ¼
E0

2ð1þ m0Þ
ð15Þ

Thus, normalized Young’s modulus E* is obtained as

follows:

E� ¼ 1

E0fV
E ð16Þ

Normalized shear modulus l* is defined in this way:

l� ¼ 1

l0fV
l ð17Þ

In-plane elastic properties are shown in Table 1 and

plotted against / for the anti-tetrachiral cell on Figs. 6

and 7 (polar plots). The use of auxetic lattices in

engineering applications might involve out-of-plane

loading. Hence, m*, E* and l* were also plotted against

w on Figs. 8, 9, 10, 11, 12, 13, 14 and 15. For this

work, E0 = 210000 MPa and m0 = 0.3 are the isotro-

pic elastic properties of the base material. Resulting

elastic moduli tensors are presented hereafter as

Eqs. 18–21. Components are expressed in MPa.

4.1 Hexachiral lattice

Elastic moduli tensor was computed for the hexachiral

lattice as shown in Eq. 18. Transverse isotropy is

verified since C11�C12

2
¼ C66:

½C
�
� ¼

1650 �1218 130 0 0 0

�1218 1650 130 0 0 0

130 130 31968 0 0 0

0 0 0 5075 0 0

0 0 0 0 5075 0

0 0 0 0 0 1434

2
6666664

3
7777775

ð18Þ

Fig. 5 Euler-Bunge angles

Table 1 In-plane Poisson’s ratio and normalized elastic moduli

Hexachiral Anti-tetrachiral Rotachiral Honeycomb

m* -0.74 [-0.92; 0.69] -0.26 0.92

E* 2.3 9 10-2 [4.3 9 10-3; 2.7 9 10-2] 2.7 9 10-3 4.2 9 10-2

l* 2.3 9 10-1 [6.6 9 10-3; 8.8 9 10-1] 9.6 9 10-3 5.6 9 10-2
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Components were used to obtain the in-plane proper-

ties gathered in Table 1. m* is underestimated com-

pared to the value from Alderson et al. (2010), while

our estimation of the normalized Young’s modulus E*

is higher. This is discussed later. Figure 8 shows an

increase of E* when the material is streched out-of-plane,

while reaching its maximum value along direction 3

ðw¼ p
2

or w¼ 3p
2
Þ: Figure 9 shows that Poisson’s ratio

m* is always negative, except for w = 0 or w = p
where m* is close to 0, and w¼ p

2
or w¼ 3p

2
where it

takes the constitutive material value 0.3. Normalized

shear modulus l* fluctuates within a decade around

the in-plane value depending on angle w.

4.2 Anti-tetrachiral lattice

While the small geometrical dissymmetry between

direction 1 and 2 is theoretically responsible for

orthotropic elasticity, it is negligible at the scale of the

homogenized material since the obtained elastic

moduli tensor (cf. Eq. 19) is representative of qua-

dratic elasticity (invariant by rotation of p
2

in plane).

½C
�
� ¼

5474 �5040 130 0 0 0

�5040 5474 130 0 0 0

130 130 31233 0 0 0

0 0 0 5184 0 0

0 0 0 0 5184 0

0 0 0 0 0 39

2
6666664

3
7777775

ð19Þ

Figure 7 shows that in the cell’s principal directions,

m* is lower than the value from Alderson et al. (2010),

for the same lattice with approximately the same

geometric parameters, but the normalized Young’s

modulus E* is higher as shown on Fig. 6. Besides, l*

fluctuates over 2 decades and reaches its minimum

when m* is close to -1. m* is negative for short angle

Fig. 6 Anti-tetrachiral lattice (h = 0, w = 0)

Fig. 7 Anti-tetrachiral lattice (h = 0, w = 0)

Fig. 8 Hexachiral lattice (h ¼ p
2
; / = 0)

Fig. 9 Hexachiral lattice (h ¼ p
2
; / = 0)
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intervals around the principal directions of the cell. E*

is varying over less than one order of magnitude

depending on /. Normalized out-of-plane moduli are

plotted on Fig. 10, which is very comparable with

Fig. 8 in terms of values and angles. E* is higher than

or equal to in-plane values. m* is always negative as

shown on Fig. 11, except for w = 0 or w = p where m*

is close to 0, and w ¼ p
2

or w ¼ 3p
2

where it takes the

bulk material value 0.3 as for the hexachiral lattice. l*

fluctuates less with / than with w.

4.3 Rotachiral lattice

The elastic moduli for the rotachiral lattice are given in

Eq. 20. As for the hexachiral lattice, transverse

isotropy is verified.

½C
�
� ¼

93 �24 20 0 0 0

�24 93 20 0 0 0

20 20 31617 0 0 0

0 0 0 3605 0 0

0 0 0 0 3605 0

0 0 0 0 0 59

2
6666664

3
7777775

ð20Þ

The in-plane normalized moduli and effective Poisson’s

ratio are listed in Table 1. E* and l* are about one order

of magnitude lower than for the hexachiral lattice.

Figure 12 shows an increase of E* which fluctuates over

3 orders of magnitude when the material is streched out-

of-plane. m* is always negative as shown on Fig. 13,

except for w = 0 or w = p where m* is close to 0, and

w ¼ p
2

or w ¼ 3p
2

where it reaches 0.3, which is the

constituent value. Normalized shear modulus l* is

always higher than its in-plane counterpart.

4.4 Honeycomb lattice

Elastic moduli tensor components were computed as

shown in Eq. 21. Transverse isotropy is verified again.

½C
�
� ¼

9945 9259 5761 0 0 0

9259 9945 5761 0 0 0

5761 5761 35070 0 0 0

0 0 0 6512 0 0

0 0 0 0 6512 0

0 0 0 0 0 343

2
6666664

3
7777775

ð21Þ

Components were used to obtain the in-plane proper-

ties gathered in Table 1. m* differs from the theoretical

value of 1, due to the beams slenderness hypothesis

which is not fulfilled in our full-field simulations.

Figure 14 shows an increase of E* when the material is

streched out-of-plane. Surprisingly, out-of-plane, the

effective Poisson’s ratio m* shown on Fig. 15 is almost

Fig. 10 Anti-tetrachiral lattice (h ¼ p
2
; / = 0)

Fig. 11 Anti-tetrachiral lattice (h ¼ p
2
; / = 0)

Fig. 12 Rotachiral lattice (h ¼ p
2
; / = 0)
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always negative for the honeycomb lattice, except for

w = 0 or w = p where m* is close to 0, and along

direction 3 (w ¼ p
2

or w ¼ 3p
2

) where it takes the bulk

material value 0.3 as for the other microstructures.

Out-of-plane l* and E* are always equal or higher

than their in-plane counterparts.

4.5 Discussion

Values obtained in this work for E* (cf. Table 1)

exceed those from Alderson et al. (2010). This is due

to the boundary conditions of the FEM problem. With

periodicity over displacements and prescribed nodal

forces, the configuration in Alderson et al. (2010)

correponds to a static uniform boundary conditions

micromechanical problem, which is known to lead to

an underestimation of the elastic moduli (Kanit et al.

2003). On the other hand, the PBC problem gives

exact results for an infinite medium. While the

honeycomb cell exhibits the highest in-plane normal-

ized Young’s modulus, the hexachiral lattice presents

a normalized shear modulus l* about four times

higher. The hexachiral, anti-tetrachiral, rotachiral

and honeycomb lattices all present a strong anisotropy

when loaded out-of-plane (cf. Figs. 8, 10, 12, 14).

Extreme Poisson’s ratio value of -8 can be reached

for the rotachiral lattice as shown on Fig. 13. It is

worth noting that the anti-tetrachiral lattice presents a

negative in-plane Poisson’s ratio only for quite small

angle intervals. Interestingly, for each microstructure,

even the honeycomb lattice, m* is almost always

negative when loaded out of plane (function of angle

w). The hexachiral, anti-tetrachiral and honeycomb

lattices show comparable values in terms of magnitude

for normalized elastic moduli as functions of w. For

the same volume fraction, the impact on in and out-of-

plane mechanical properties from the change in

ligament geometry between hexachiral and rotachiral

lattices is critical: circular ligaments give values which

are more than one order of magnitude lower for both

E* and l*.

5 3D auxetic microstructure: hexatruss lattice

The hexatruss lattice is an extension of auxetic lattices

to 3D. It is very comparable to the unit-cell used in

Doyoyo and Hu (2006) for modelling auxetic foams.

The geometry of the cell is cubic, as shown on Fig. 16.

The geometry can be described by lengths L, l, t and

angle x as shown on Fig. 17. A new dimensionless

parameter is defined in Eq. 22. L is not independent

Fig. 13 Rotachiral lattice (h ¼ p
2
, / = 0)

Fig. 14 Honeycomb lattice (h ¼ p
2
; / = 0)

Fig. 15 Honeycomb lattice (h ¼ p
2
; / = 0)
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from l and x, they are related to each other by the

following equation: L ¼ 2l cos2 x: For this work, x ¼
p
5

and f ¼ 15; this corresponds to a volume fraction of

2.1 %.

f ¼ l

t
ð22Þ

The elastic moduli for the hexatruss lattice were

computed in the same way as for 2D geometries.

Cubic elasticity is verified, as shown here:

½C
�
� ¼

307 81 81 0 0 0

81 307 81 0 0 0

81 81 307 0 0 0

0 0 0 11342 0 0

0 0 0 0 11342 0

0 0 0 0 0 11342

2
6666664

3
7777775

ð23Þ

Components were used to plot elastic properties in

Figs. 18 and 19. m* is negative for a large angle range,

except near the principal directions of the cell, it

reaches a minimal value of -0.97 for w ¼ p
4
:

Figure 18 shows a strong increase of l* along the

principal directions of the cell with a maximal

normalized value of 12. E* is higher in diagonal

directions than in the principal directions.

6 Structural application of auxetics

In order to conclude on the potential use of auxetic

materials in engineering applications, we performed

Fig. 16 Hexatruss unit-cell
Fig. 17 Hexatruss periodic unit-cell with geometric parameters

Fig. 18 Hexatruss lattice (h ¼ p
2
; / = 0)

Fig. 19 Hexatruss lattice (h ¼ p
2
; / = 0)
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simulations of both elastic cylindrical and spherical

indentation on macroscopic homogenized models

using elastic moduli determined in Sects. 4 and 5.

Two sets of boundary conditions have been consid-

ered. For each set and each microstructure, indentation

was performed along direction 2 with indented plane

(1,3) and direction 3 with indented plane (1,2),

respectively corresponding to in-plane and out-of-

plane indentation tests. The material orientation used

here is the microstructure orientation used in Figs. 1b,

2b, 3b, 4b and 17. Radius of the indentor R = 1 mm

and maximum indentation depth hs = 0.2 mm.

6.1 Cylindrical indentation

First, an elastic cylindrical indentation test simulation

was performed. The first loading case corresponds to

the classical indentation test with prescribed displace-

ment at the base of the indented medium along the

direction of indentation. Symmetry conditions are also

added in order to compute only half of the indentation

problem. Loading is controlled by the displacement of

the indentor. A 2D-mesh was used as shown on

Fig. 20. Computations were done for both plane-strain

and plane-stress assumptions. Force vs. indentation

depth curves for both in-plane and out-of-plane

cylindrical indentations are presented in Figs. 21 and

22. Plain lines denote plane-strain assumption while

dashed lines denote plane-stress. It is clear from

Fig. 21 that the rotachiral lattice is not a good

candidate for in-plane structural applications. On the

other hand, results for the honeycomb cell are

systematically good.

For the second loading case, the base of the

indented medium is free, but displacement is now

fixed to 0 at the external border of the indented solid.

These boundary conditions are closer to those of an

impact test, which relates more to what an hypothet-

ical architectured sandwich panel would endure in use.

For the second loading case, the hexachiral cell

develops a higher strength in-plane than the honey-

comb for hs = 0.2 mm (cf. Fig. 23), this would

advocate for the potential use of hexachiral cells for

in-plane applications. Also, for the same loading case,

the hexatruss lattice exhibits a very high in-plane

strength for a volume fraction of 2.1 % compared to

the other cells with 15 % volume fraction. The in-

Fig. 20 FE mesh used for cylindrical indentation tests, here

with orientation for in-plane indentation

Fig. 21 Force versus indentation depth curves for cylindrical

loading case 1 with indented plane (1,3) —in-plane indentation

Fig. 22 Force versus indentation depth curves for cylindrical

loading case 1 with indented plane (1,2)—out-of-plane

indentation
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plane performance of the anti-tetrachiral cell is

relatively low. If we now consider the out-of-plane

performance of auxetics (cf. Figs. 22, 24), it is

interesting to note the very low results of the hexatruss

lattice compared to those from the extruded 2D

geometries. This is due to its low volume fraction.

The anti-tetrachiral cell exhibits high out-of-plane

strength, comparable with the honeycomb strength

level, for both loading cases. There are very strong

discrepancies for the out-of-plane response of the

rotachiral cell between loading case 1 and 2.

6.2 Spherical indentation

In order to emphasize the structural applicability of

auxetics, we performed spherical indentation simula-

tion. Unlike the cylindrical indentation, we considered

tridimensional meshes for the spherical indentation, as

shown on Fig. 25. In order to reduce computation

time, symmetry conditions were prescribed at face

boundaries so that the FE problem is equivalent to a

full spherical indentation simulation. Also, for the

sake of simplicity, 8-node hexahedral and 6-node

tetrahedral linear elements were chosen for this

computation.

The first loading case corresponds to the same

conditions as for the cylindrical indentation but with

additional symmetry conditions in the planes trans-

verse to the direction of indentation due to tridimen-

sionality. Force versus indentation depth curves are

shown on Fig. 26 for in-plane indentation and Fig. 27

for out-of-plane indentation. For both in-plane and

out-of-plane indentations, the honeycomb cell exhibits

the highest strength. Both hexachiral and anti-

tetrachiral lattices develop a slightly lower but

reasonnable strength. On the other hand, the rotachiral

Fig. 23 Force versus indentation depth curves for cylindrical

loading case 2 with indented plane (1,3)—in-plane indentation

Fig. 24 Force versus indentation depth curves for cylindrical

loading case 2 with indented plane (1,2)—out-of-plane

indentation

Fig. 25 Cross sectional view of FE mesh used for spherical

indentation tests, here with orientation for in-plane indentation

Fig. 26 Force versus indentation depth curves for spherical

loading case 1 with indented plane (1,3)—in-plane indentation
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lattice does not seem adequate for such applications.

The hexatruss cell performs quite well in-plane but

exhibits poor properties out-of-plane as compared to

the other cells, although the difference in volume

fraction has to be taken into account.

For the second loading case, conditions are similar

to those from the cylindrical indentation simulation

but with additional symmetry conditions as for the

spherical indentation above. Force versus indentation

depth curves are shown on Fig. 28 for in-plane

indentation and Fig. 29 for out-of-plane indentation.

Once again, the honeycomb cell exhibits the highest

strength for both orientations, and the hexachiral and

anti-tetrachiral lattices are still competitive, at least in

its principal directions for the latter. The rotachiral

lattice is definitely inadequate as far as elastic energy

is concerned. For in-plane structural applications, the

hexatruss cell is a very competitive alternative to the

honeycomb cell if volume fraction is considered.

7 Conclusions and prospects

Elastic moduli for three periodic auxetic 2D lattices, a

15 % volume fraction honeycomb cell and a new 3D

auxetic microstructure, have been computed using

periodic homogenization technique coupled with FE.

Anisotropy of in-plane and out-of-plane normalized

elastic parameters was investigated. Each microstruc-

ture studied in this work was found to exhibit very

strong anisotropy when loaded out-of-plane. Also, out-

of-plane effective Poisson’s ratio is almost always

negative for all the microstructures considered, even

the classical honeycomb cell. With its circular (or

elliptic) ligaments, the rotachiral lattice provides an

additional parameter for tuning the microstructure

(Ashby and Bréchet 2003) for specific absorption

properties. This lattice can exhibit highly negative

Poisson’s ratio when loaded out-of-plane. The ortho-

tropy of the anti-tetrachiral lattice was investigated

numerically, showing higher normalized Young’s

modulus E* in the principal directions of the cell, with

in-plane auxetic effects restricted to short angle

intervals around these directions. Such lattices could

be used in replacement of traditional honeycomb-core

for sandwich panels, especially if produced by extru-

sion. Results from structural computations were pre-

sented, advocating for further developments in the field

of structural auxetics. While the honeycomb cell

exhibits a constantly high indentation strength, auxetic

lattices can be competitive if shear is involved,

especially the hexachiral and anti-tetrachiral lattices.

The hexatruss 3D lattice gave promising results in

terms of indentation strength, especially if volume

fraction or density is the key parameter for designing a

structure. It would be interesting to compare the

hexatruss mechanical performance with those of other

Fig. 27 Force versus indentation depth curves for spherical

loading case 1 with indented plane (1,2)—out-of-plane

indentation

Fig. 28 Force versus indentation depth curves for spherical

loading case 2 with indented plane (1,3)—in-plane indentation

Fig. 29 Force versus indentation depth curves for spherical

loading case 2 with indented plane (1,2)—out-of-plane

indentation
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tridimensional strut-lattices. Nevertheless, due to the

importance of sandwich skins in the strength of

composite structures, those will be taken into account

and their influence investigated in subsequent works.

While not mentioned in this work, auxetic samples are

being made using selective laser melting, a powder

metallurgy process, extending one’s microstructural

design spectrum from 2D to 3D. This method has been

used successfully by others for auxetics (Huang and

Blackburn 2002; Schwerdtfeger et al. 2010; Mitschke

et al. 2011). New tridimensional auxetic microstruc-

tures are currently being developed using this tech-

nique coupled with numerical homogenization.

Numerical results will be confronted to experimental

data currently being obtained. The influence of auxe-

ticity on plasticity has already been partly investigated

(Dirrenberger et al. 2012) but further studies have to be

conducted in this direction. For industrial applications,

non-linear phenomena such as buckling will have to be

taken into account.
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