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1. Introduction

Polymer matrix composites reinforced with glass fibers are
widely used in a variety of technological applications because of
the enhanced mechanical properties, particularly the stiffness
and the strength. Among these applications, one can cite the air
craft wings, some car components (e.g. body frames, hood and door
panels), and the sporting equipment. The principal difficulties
associated with predicting the mechanical behavior of these com
posites are, on the one hand, the complexity of the geometry (e.g.
volume fraction, shape and orientation of glass fibers) and on the
other hand the constitutive behavior of the thermoplastic polymer
matrix (e.g. rate dependent, hardening, temperature). Predicting of
the effective response of viscoelastic viscoplastic thermoplastic
polymers reinforced with linear elastic spherical particles requir
ing low computational cost and good accuracy is the main illustra
tion of this paper.

Accurate predictions of the macroscopic mechanical response of
such composite materials may be derived from full field calcula
tion (e.g. by finite element methods) of the local stresses and
strains throughout a statistically representative volume element
(RVE) of the microstructure subjected to periodic boundary condi
tions. Such modeling is however too costly when applied to the
simulation of real scale structures made of composite materials.
Alternatively, various multiscale computational strategies have
been developed to tackle this important issue, such as homogeni
zation strategies (e.g. mean field homogenization (MFH), asymp
totic or mathematical theory of homogenization, methods of cells
and subcells associated with the transformation fields analysis),
or reduced order models (ROMs) (a posteriori and a priori meth
ods) which can efficiently be relied upon. Their remarkably low
computational cost as compared to full field computation over
a RVE allows them to be used as implicit constitutive laws in
large scale simulations.

The present contribution is concerned with the application of
ROM and MFH methods to coupled viscoelastic viscoplastic com
posites. In both methods the microscopic strain fields are repre
sented using a reduced basis (RB). In MFH it is an eigenstrain
basis in the vocabulary of [17]. This RB is spanned by the stress
free strains introduced by Eshelby [5]. In the HR method the re
duced basis is spanned by modes. It can be created by the POD
method or the APHR method [19]. MFH and HR methods are com
pared in terms of equation formulation, accuracy and computa
tional time. The accuracy of both global and local results are
compared. We consider as MFH local results the global ones, as if
they are uniform in the matrix of the composite.

In the scientific literature, many authors shown that the recourse
to ROMs can speed up the solution of complex finite element simu
lations. The aim of these models is to supply few shape functions to
represent the spatially distributed state of a given system. In non
linear time dependent problems, the most used methods to extract
a reduced basis from a set of fields provided by simulations using
classical approximation methods (i.e. finite element method) are
the POD and the snapshot POD. The following papers give access
to relevant literature for both approaches: [12,13,23,24] and [25].
The POD method was proposed to solve homogenization problem
in [26] and [16]. But using a POD Galerkin formulation of the
equilibrium equation do not reduce the computational complexity
of the internal variable computation. The details about this draw
back are presented in Section 2.2. An alternative, approach to POD
method is the non incremental proper generalized decomposition
(PGD) method. This method was proposed to solve homogenization
problem in [9,10] and [3]. Non incremental stands for iterative
time integration schemes that provide prediction over the entire
time interval at each iteration. As explained in [22], this kind of
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method is not appropriate to all constitutive equation in mechanics
of materials. Therefore, an incremental approach based on usual
time integration schemes has been developed. This approach is
the hyper reduction method [19] extended to mechanical model
involving internal variables in [20]. Assuming that constitutive
equations are local equations, the HR method introduces a reduced
domain to state the weak form of the equilibrium equations related
to a given RB. By reducing the integration domain, some explanatory
internal variables are estimated through the constitutive equation
related to the RD. These explanatory variables are the internal vari
ables of the RD. The remainder of the internal variables, outside the
RD, is explained by the explanatory variables by solving least square
minimization problem as proposed in the Gappy POD [6]. This pro
cedure requires a RB dedicated to the internal variables. In this pa
per, all the RB are provided by the APHR method. This method is an
adaptive approach that enrich the RBs during the approximate solu
tion of the FE equations.

Concerning the homogenization strategy applied in this work
namely MFH method, we note that this technique is based on the
interaction laws between the different phases. It provides an
approximative effective response, as well as a description of
mechanical fields within the phases in terms of volume averages,
requiring a low computational cost. The mean field methods were
first proposed for composites having linear elastic or thermo
elastic constituents. The generalization of this homogenization
procedure for nonlinear two phase composites is based on the lin
earization of the local constitutive laws and the per phase unifor
mization of the mechanical properties. Those two conditions being
satisfied, the nonlinear homogenization problem becomes similar
to an elastic or a thermo elastic homogenization problem, depend
ing on the choice of the linearization process. This kind of problem
enable to introduced stress free strains as proposed by Eshelby [5].
For the viscoelastic viscoplastic behavior, only the so called incre
mentally affine formulation was applied. This method has been
proposed for elasto viscoplastic composites [4], and after general
ized for coupled VE VP behavior [15]. This proposal is valid for
multi axial, non monotonic and non proportional loading histo
ries, and leads to thermoelastic like relations directly in the time
domain. This linearization formulation is also valid for any visco
plastic model.

The paper is organized in the following manner: Section 2 intro
duces the coupled viscoelastic viscoplastic constitutive law, the
formulation of the equilibrium equations related to the HR method
and the APHR algorithm used to generate the RB. The mean field
homogenization method based on an incrementally affine lineari
zation method is summarized in Section 3. The comparison be
tween the numerical results obtained with the FE method, HR
method, and the MFH method are discussed in Section 4. Section
5 is the conclusion of this paper.

The following abbreviations are used throughout the text. VE:
viscoelastic(ity), VP: viscoplastic(ity), EVP: elasto viscoplastic(ity),
VE VP: viscoelastic(ity) viscoplastic(ity), MFH: mean field homog
enization, RB: reduced basis, ROM: reduced order models, APHR: a
priori hyper reduction, POD: proper orthogonal decomposition,
and FE: finite elements.

Boldface symbols designate second or fourth rank tensors, as
indicated by the context. Dyadic and inner products are expressed as:

ða� bÞijkl aijbkl; a : b aijbji; ðA : bÞij Aijklblk

where summation over a repeated index is supposed. The symbols 1
and I designate the second and fourth rank symmetric identity
tensors, respectively. Finally, the spherical and deviatoric operators
Ivol and Idev are given by:

Ivol � 1
3

1� 1 and Idev � I Ivol



so that for aij = aji we have:

Ivol : a
1
3

amm 1; Idev : a a
1
3

amm1 � devðaÞ
2. Formulation of the hyper-reduced model

2.1. The reference model

In this work, a coupled VE VP constitutive law proposed by
Miled et al. [14] is considered. For this model, the total strain is
supposed to be the sum of VE and VP parts, and the Cauchy stress
is related to the history of VE strains via a linear VE model written
as a Boltzmann integral [2]. The general form of the considered
problem is given by this system, for all point x in the domain X:

divr 0
� �ve þ �vp

rðtÞ
R t
1 Cveðt sÞ : @�

ve

@s ds
_�vp _p @f

@r

_p gvðreq;p; _�ÞP 0

8>>>>><>>>>>:
ð1Þ

For an isotropic material, the fourth order relaxation tensor is writ
ten as:

CveðtÞ 2GðtÞIdev þ 3KðtÞIvol ð2Þ

where G(t) and K(t) are shear and bulk relaxation functions, respec
tively, which can be expressed in the form of Prony series:

GðtÞ G1 þ
XI

i 1

Gi exp
t
gi

� �
and KðtÞ

K1 þ
XJ

j 1

Kj exp
t
kj

� �
: ð3Þ

Here, gi (i = 1 . . . I) and kj (j = 1 . . . J) are the deviatoric and volumet
ric relaxation times respectively; Gi (i = 1 . . . I) and Kj (j = 1 . . . J) are
the corresponding moduli or weights, and G1 and K1 are the long
term elastic shear and bulk moduli.

The yield function f is expressed in function of the von Mises
equivalent stress req, the initial yield stress ry (which may depend
on the strain rate) and the hardening stress R(p) (which depend on
the accumulated plastic strain p):

f ðreq; p; _�Þ � req ðryð _�Þ þ RðpÞÞ; req �
3
2

s : s

r
ð4Þ

For this work, we consider a power law hardening function:

RðpÞ kpn ð5Þ

where k [MPa] is the hardening modulus and n the hardening expo
nent. A power law VP function is also considered with two param
eters: the viscoplastic modulus (j[1/s]) and exponent (m) which
appear as follows:

gvðreq;pÞ
j f

ryþRðpÞ

� �m
if f > 0

0 otherwise

8<: ð6Þ

The deviatoric and dilatational parts of the stress tensor can be ex
pressed in function of the deviatoric and dilatational parts of the
strain tensor using Eqs. (1) (3):

sðtÞ 2G1nveðtÞ þ
XI

i 1

2Gi exp
t
gi

� �Z t

1
exp

s
gi

� �
@nve

@s
ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

siðtÞ

rHðtÞ 3K1�ve
H ðtÞ þ

XJ

j 1

3Kj exp
t
kj

� �Z t

1
exp

s
kj

� �
@�ve

H

@s
ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rHj
ðtÞ

8>>>>>>>>><>>>>>>>>>:
ð7Þ
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In order to compute the previous integral equations, two time inte
gration methods have been tested. The first one supposes that the
VE strain rate is constant in a generic time interval [tn, tn+1]. The sec
ond method is the mid point integration rule. A return mapping
algorithm has been also proposed based on two steps, VE predictor
followed by VP corrector. After some algebra, the following total
stress computed at tn+1 has been found:

rðtnþ1Þ rpredðtnþ1Þ eCve : D�vp ð8Þ

with

rpredðtnþ1Þ Cve
1 : �veðtnÞ þ eCve

: D�þ
XI

i 1

exp
Dt
gi

� �
siðtnÞ

þ
XJ

j 1

exp
Dt
kj

� �
rHj
ðtnÞ1 ð9Þ

where Cve
1 2G1Idev þ 3K1Ivol and eCve 2eGIdev þ 3eK Ivol. The incre

mental relaxation moduli eG and eK which are functions of the time
increment, are expressed for the first integration method as follows:

eG � G1 þ
XI

i 1

Gi 1 exp Dt
gi

� �h i
gi
Dt

eK � K1 þ
XJ

j 1

Kj 1 exp Dt
kj

� �h i
kj

Dt

8>>>>><>>>>>:
ð10Þ

and for the second integration method:

eG G
Dt
2

� �
and eK K

Dt
2

� �
ð11Þ
2.2. The hyper reduced approximation

2.2.1. Weak form based on a reduced domain
Usually, in mechanical engineering, model reduction methods

aim to introduce a RB to represent the displacement. Let us denote
/u

k

� 	
k 1...Mu

the set of modes of the reduced basis. One have to fore
cast the linear combination of the vectors of the RB according to a
weak form of Problem (1). The usual Galerkin procedure uses the
vectors of the RB as test functions to state the following weak form
of the mechanical problem: find uu

kðtÞ
� 	Mu

k 1; �
ve; �vp; p and r such

that:

uðx; tÞ
XMu

k 1

/u
kðxÞ uu

kðtÞR
X /u

k divr dX 0 8k 1; . . . ;Mu

�ðuÞ �ve þ �vp 8x 2 X

rðtÞ
R t
1 Cveðt sÞ : @�

ve

@s ds 8x 2 X

_�vp _p @f
@r 8x 2 X

_p gvðreq;p; _�ÞP 0 8x 2 X

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð12Þ

Using a numerical one step time integration scheme, one can fore
cast different states of the system at different instants. According to
an incremental formulation, for a generic time interval [ti, ti+1], the
mechanical state of the variables (stress field and the internal vari
ables) is assumed to be known at time ti. The unknowns are the
state variables at time ti+1. Obviously, the integral over the domain
X requires the prediction of the stress field and the internal vari
ables over the entire domain X. This does not reduce the computa
tional complexity related to the constitutive equations.

The HR method aims to introduce a RD, denoted XZ, by using
truncated test functions wu

k

� 	Mu

k 1 in the Sobolev space function
H1(X). A truncated vector is associated to each vector of the RB re



lated to displacements. Inside the RD, each truncated mode wu
k

matches the empirical mode /u
k such that the following con

strained is fulfilled outside the RD:

wu
kðxÞ 0 8x 2 X nXZ 8k 1; . . . ;Mu ð13Þ

Therefore, we obtain the following weak form of the mechanical
problem: find uu

kðtÞ
� 	Mu

k 1; �̂
ve; �̂vp; p̂ and r̂ such that:

u
XMu

k 1

/u
kuu

kðtÞR
XZ

wu
k divr̂ dX 0 8k 1; . . . ;Mu

�ðuÞ �̂ve þ �̂vp 8x 2 XZ

r̂ðtÞ
R t
1 Cveðt sÞ : @�̂

ve

@s ds 8x 2 XZ

_̂�vp _̂p @ f̂
@r 8x 2 XZ

_̂p gvðr̂eq; p̂; _̂�ÞP 0 8x 2 XZ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð14Þ

Here the symbol ^ is used for the variables restricted to XZ. These
variables are named explanatory variables. The smaller XZ, the less
complex are the set of constitutive equations in problem (14). But,
XZ must be large enough to have a well posed problem with a
unique solution.

The mechanical problem (14) is well posed if the tangent stiff
ness matrix rank is Mu. Here, the tangent stiffness matrix reads:

Kkj

Z
XZ

wu
k div Calg : � /u

j

� �� �
dX ð15Þ

The fourth order tensor Calg is the algorithmic tangent operator (Eq.
(29)) related to the local constitutive equation. If during the numer
ical simulation of (14) the tangent stiffness matrix is rank deficient,
then the numerical simulation must be restarted with a bigger XZ.
For instance, one can add the neighbour element of XZ in the ex
tended XZ. This procedure converge toward a Galerkin formulation
when XZ tends to X. In practice a convenient extent of XZ is directly
provided by the method presented in Section 2.3.

2.2.2. Full field reconstruction
In Eq. (14) the internal variables and the stress are forecast only

inside XZ. At this stage, it is not a full field prediction because these
fields are not estimated outside XZ. We use the Gappy POD method
to estimate the internal variables over XnXZ by using a RB for each
internal variable. For instance, when the RB dedicated to displace
ments is created, we simultaneously generate a RB for accumu
lated plastic strains. This RB is denoted /

p
k

� 	
k 1...Mp

. The same
procedure holds for all these variables: �ve, �vp and r. The Gappy
POD reads: find up

k

� 	
k 1...Mp

such that,

pðx; tÞ p̂ 8x 2 XZ

pðx; tÞ
XMp

k 1

/
p
kðxÞu

p
kðtÞ 8x 2 X nXZ

up
k

� 	
k 1;...Mp

argminðykÞk¼1; Mp

R
XZ

p̂
XMp

k 1

/
p
k yk

!2

dX

8>>>>>>>><>>>>>>>>:
ð16Þ

In the above extrapolation, p is a repaired value of the accumulated
plastic strain by using the Gappy POD. Here, we preserve inside XZ

the predictions provided by the constitutive equations. According to
[6], it corresponds to the available value p̂ at all points of XZ. As we
will show in the following illustrations, unphysical non smooth
field may be generated by this procedure. For instance, it is the case
when the RB involves only one constant field and when p̂ is not uni
form over XZ. Therefore, we proposed a smooth Gappy POD. This
extrapolation method reads:
4

pðx; tÞ
XMp

k 1

/
p
kðxÞ u

p
kðtÞ 8x 2 X

up
k

� 	
k 1;...Mp

argminðykÞk¼1; Mp

R
XZ

p̂
XMp

k 1

/
p
k yk

!2

dX

8>>>>><>>>>>:
ð17Þ

In (17) the field of p is fully represented by the reduced basis
up

k

� 	Mp

k 1.This prediction erases the one given by the local constitu
tive equation.
2.3. Determination of the XZ

The APHR method is an incremental method. At each time
increment there is a predictor step and if the accuracy of the pre
diction is not satisfactory a corrector step is performed. The correc
tor step is a full FE solution, over one time increment, which is
initialized with the results of the predictor step. It provide the cor
rections denoted du, dp, d�ve, d�vp, dr. These corrections are de
fined over X. They are used as new vectors to expand the RB
related to each of these variables. More details about this adaptive
procedure can be found in [21].

The predictor step is performed by the HR method. But, if the
prediction is not smooth despite the FE solution is smooth, then
the correction is going to be non smooth. Therefore, the RB will in
volve unphysical non smooth vectors. Hence, we prescribe to use
the smooth Gappy POD to avoid the generation of unphysical RB.

At each time step ]ti, ti+1], four information are provided by the
APHR method: (1) a prediction of the stress field and the internal
variables over the entire domain X; (2) convenient reduced bases
(/u

k for displacement field and /
p
k for accumulated plastic strain) to

represent the prediction of the state variables over the time inter
val; (3) a reduced domain XZ; (4) truncated modes wu

k related to
the reduced basis /u

k .
The main idea of the hyper reduction is to write both equilib

rium equations and local constitutive equations at points of X
where the strains induced by the modes are large, and where the
magnitude of the internal variables is large. A RB being known,
the construction of XZ follows five steps:

Xp
k arg max

eX
i
;i 1;...;N e

Z
eX

i

/
p
k

� 	2 dX; k 1; . . . ;Mp ð18Þ

Xu
k arg max

eX
i
;i 1;...;N e

Z
eX

i

� /u
k

� 	
: �ð/u

kÞdX; k 1; . . . ;Mu ð19Þ

Xu [Mu
k 1X

u
k ð20ÞeF Z fi j i 2 f1; . . . ;Ng; kNikXu > 0g ð21Þ

XZ eX
j jj 2 1; . . . ;N e;

X
i2eF Z

kNikeX
j
> 0

8><>:
9>=>; � [Mp

k 1X
p
k ð22Þ

Here, N is the number of FE shape functions, Ni is the ith FE
shape function, N e is the number of elements of the mesh, and
eX

j is the support of the jth element. Eq. (18) enables to locate
the elements of the mesh where the internal variables magnitude
is large. Eq. (19) enables to locate the elements of the mesh where
the strain magnitude is large. Eq. (21) gives the set of nodes con
nected to the set of elements covering the domain Xu, and Eq.
(22) gives the union of the supports of the FE shape functions of
the set of nodes eF Z completed by the contributions of the modes
related to the internal variables. One can notice in Eqs. (20) and
(22) that the bigger the RB, the bigger the RD. In practice, the ex
tent and the shape of XZ is sufficient to ensure that Eqs. (14),
(16) and (17) have unique solutions. As mention above, The extent
of the RD can be increased by adding to the list, the elements con
nected to at least one element of the list.



2.4. Error indicator

An error estimator is defined by using the partial residual de
noted RZ of the parametrized problem according to the Riesz rep
resentation theorem. The definition of the full residual reads:

RN 2 R=Ri

Z
X

NiðxÞdivrdX 8i 1; . . . ;N ð23Þ

Unfortunately, due to the hyper reduction, the constitutive equa
tions provide a stress prediction only in XZ. Therefore, only a part
of the equilibrium residuals are available. They are related to the
degrees of freedom that are not connected to the remainder part
XnXZ of the domain. We denote F Z the list of dof indexes that
are not connected to XnXZ. Therefore the partial residual reads:

RN
Z 2 R=RZi

Z
XZ

NiðxÞdiv r̂dX 8i 2 F Z ð24Þ

RZi
0 if i R F Z ð25Þ

The definition of the error estimator, denoted by g, reads:

g kRZk ð26Þ

Obviously, this error indicator may under estimate the true error.
An approximate prediction is satisfactory if:

g 6 �R ð27Þ

where �R is the reduced order model error.

3. Mean-field homogenization method

The mean field homogenization procedure for nonlinear two
phase composites is based on the linearization of the local consti
tutive laws and the per phase uniformization of the mechanical
properties. The linearization formulation adopted in [15] for VE
VP behavior with a coupling between linear isotropic VE and J2

VP, under isothermal conditions and a small perturbation hypoth
esis, is the incrementally affine linearization method. The basic
equations and the main hypotheses of this linearization method
are summarized in this section.

3.1. The incrementally affine formulation

In order to find the incrementally affine relation, we start by the
linearization of the evolution equations of the viscoplastic strain
and the accumulated plastic strain at the beginning of a time step
around the end time of the step. Next, a numerical integration of
the linearized equations is required using a fully implicit backward
Euler scheme. The obtained algebraic equations lead to the follow
ing incrementally affine formulation (to more detail, see [15]):

Dr Calgðtnþ1Þ : ðD� D�afÞ ð28Þ

The algorithmic tangent operator at time tn+1 (Calg(tn+1)) is ex
pressed as follows:

Calg eCve ð2eGÞ2
hv

N�N ð2eGÞ2 reqDp

reqþ3eGDp

@N
@r

2eG
hvg;r

N�g;� ð29Þ

where the rate dependent denominator hv is defined by this
expression:

hv �
1

ðDtÞg;r
þ 3eG g;p

g;r
ð30Þ

Notations : g;r �
@gv

@req
; g;p �

@gv

@p
; g;� �

1
Dt

@gv

@ _�

N is the normal to the yield surface in stress space, and the expres
sion of the affine strain increment (D�af) is:
5

D�af D�af
evp þ

1

2eG
X

i

1 exp
Dt
gi

� �
 �
siðtnÞ

þ 1

3eK Xj

1 exp
Dt
kj

� �
 �
rHj
ðtnÞ1 ð31Þ

In J2 viscoplasticity, the expression of the affine strain increment for
the EVP behavior D�af

evp is:

D�af
evp _pðtnÞDt NðtnÞ þ Nðtnþ1Þ

g;pðtnþ1ÞDt
1 g;pðtnþ1ÞDt

" #
ð32Þ
3.2. Analogy with linear thermoelasticity

Starting from the incrementally affine expression (28), Miled
[15] shown that this equation is form similar to linear thermoelas
tic relation (r = Cel:� + bh), so that at each time step, available
homogenization models for linear thermoelastic composites can
be applied for nonlinear VE VP composites using the following
substitutions:

r! Dr; Cel ! Calg; �! D�; ðbhÞ ! Calg : D�af ð33Þ

where h designates a change in temperature and Cel is the elastic
stiffness modulus. Knowing the homogenization procedure of linear
thermoelastic composites (see e.g. [11] and [18]), and using the sub
stitutions of Eq. (33), the macroscopic stress tensor has been found
as follows:

hDri C : hD�i v0
bCalg

0 : D�̂af
0 v1

bCalg
1

: D�̂af
1 v1

bCalg
1

bCalg
0

� �
: ðA IÞ 1

: bCalg
1 : D�̂af

0
bCalg

0 : D�̂af
0

� �
ð34Þ

where C is the effective stiffness of the composite:

C v0
bCalg

0 þ v1
bCalg

1 : B
h i

: ½v0Iþ v1B� 1 ð35Þ

A and B are the strain concentration tensors which are related as
follows:

A B : ðv1Bþ v0IÞ 1 ð36Þ

For this work, the strain concentration tensor of the Mori Tanaka
scheme is used:

B Iþ P : bCalg
1

bCalg
0

� �h i 1
ð37Þ

where P S : bCalg
0

� � 1
is Hill’s polarization tensor and S is Eshelby’s

tensor, which depends only on the properties of the matrix and the
inclusion shape. We note that the comparison algorithmic tangent
operators for the matrix bCalg

0

� �
and inclusion bCalg

1

� �
phases are uni

form and anisotropic, by construction.

4. Numerical analysis

In order to assess the numerical simulations of both MFH and
APHR methods, we have carried out FE simulations of a continuous
VE VP matrix reinforced by spherical inclusions with linear elastic
behavior. For this, the numerical algorithm introduced for the VE
VP model was integrated into the ZeBuLon FE software [1] as a
User defined MATerial (UMAT) routine.

The volume fraction of particles is 15%. Assuming a periodic
microstructure and uniaxial stress tests, a 2D axisymmetric unit
cell is defined and depicted in Fig. 1a. The prescribed boundary
conditions are the following. Zero displacements are imposed in
the radial direction on the left vertical side and in the vertical
direction on the bottom horizontal side. The right vertical side is



Fig. 1. 2D unit cell representation of a two-phase composite with periodic microstructure under axisymmetric loading: (a) full domain, (b) reduced domain in red. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Constitutive model parameters for polycarbonate at 22 �C.

Viscoelastic parameters
Initial shear modulus G0 = 1074 MPa
Initial bulk modulus K0 = 3222 MPa
Gi (MPa) gi (s) Ki (MPa) ki (s)

157 0.0021 472 0.007
80 0.00378 242 0.126
37 0.0248 111 0.216

Viscoplastic parameters
Hardening function k = 150 MPa n = 0.43
Viscoplastic function j = 150 s 1 m = 5
Yield stress ry = 35 MPa
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Fig. 2. Finite-element, incrementally affine homogenization, and a priori hyper
reduction results of the stress–strain curves in tension test at the strain rate of 1 s 1

for a volume fraction of inclusions equal to 15%.

Table 2
Accuracy of each computational method computed at the end of the simulation.

j = MFH j = REF1 j = REF2 j = REF3 j = REF4

�rj �rFE

�rFE

��� ��� (%) 8.5 0.03 0.14 0.67 0.67

pj pFE

pFE

��� ��� (%) 5.22 0.08 5.72 0.21 0.21

pj
max pFE

max
pFE

max

��� ��� (%) 79.64 0.1 0.86 0.1 0.09
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Fig. 3. Average acumulated plastic strain in the matrix after tensile deformation up
to 5% for a volume fraction of the inclusions equal to 15% and at the strain rate of
1 s 1.
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Fig. 4. Maximum accumulated plastic strain in the matrix after tensile deformation
up to 5% for a volume fraction of the inclusions equal to 15% and at the strain rate of
1 s 1.
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Table 3
Computational times.

FE MFH REF1 REF2 REF3 REF4

CPU time (s) 407 4 62 74 46 156
CPU time saving (%) 0 99 85 81 89 61
constrained to have uniform radial displacement. Uniform vertical
displacement is imposed on the top horizontal side. We used the
GMSH [8] software to mesh the geometry, and a typical mesh com
prises approximately 914 elements and 5198 number of degrees of
freedom (dof). The FE computations are conducted using six noded
triangular elements (CAX6) for the inclusion phase and eight
noded quadratic elements(CAX8) for the matrix phase.

The elastic properties of the particles are E1 = 76 GPa and
m1 = 0.22, and those of the matrix are collected in Table 1 which
presents parameters of polycarbonate at 22 �C based on experi
mental data collected from [7].

In this section, different strategies are adopted to compute the
numerical results. The first strategy consists in the FE simulation
Fig. 5. modes �22 wu
k

� 	� 	
k¼1 Mu

found with: (
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which represents the reference solution. The second strategy is re
lated to the MFH method. The third and fourth strategies introduce
the adaptive procedure with hyper reduction method using two
different approaches to extrapolate the field of internal variables:
a smooth Gappy POD (17) for the third strategy and the usual Gappy
POD (16) for the fourth strategy. The fifth strategy is reproducing
the third without adaptation of the ROM. It is a pure HR simulation
based on the smooth Gappy POD. The sixth strategy is reproducing
the third without adaptation of the ROM and without hyper reduc
tion. It is the usual REF4alerkin strategy. These six strategies are de
noted respectively FE strategy (FE), semi analytical strategy (MFH),
APHR strategies (REF1, REF2, REF3), and POD Galerkin strategy
(REF4). We note that for the strategies REF1 and REF2, the reduced
state variables are computed without using an initial set of known
shape functions. However, the RB obtained with the REF1 strategy
is used to compute the reduced state variables for the strategies
REF3 and REF4.

The RD consists of all elements in red that can be seen in Fig. 1b.
Its mesh comprises approximately 133 elements.

The curves stress strain obtained for the reference simulation
(FE), reduced model (APHR), and the MFH method are shown in
a) REF1 strategy and (b) REF2 strategy.



Fig. 6. Modes of accumulated plastic strain field found with: (a) REF1 strategy and (b) REF2 strategy.
Fig. 2. Compared to the FE analysis, the macroscopic predictions of the
APHR method are very good whatever the adopted strategy (the accu
racy of each computational strategy is reported in Table 2). However,
the correlation between FE and mean field simulations is rather low
(the discrepancy between both predictions is of the order of 8.5%).

In order to investigate the accuracy of the predictions of the
APHR method to capture the plastic strains, Figs. 3 and 4 show
the development of average and maximum accumulated plastic
strains, respectively, in the matrix surrounding the spherical
inclusion. Each figure includes the results of three different APHR
strategies. The conclusion that can be drawn, in terms of correla
tion between APHR and FE methods, is that the REF3 strategy gives
very good results for all cases. However, the results of the REF1
strategy are good for the average accumulated plastic strain, and
the results of the REF2 strategy are good for the maximum accu
mulated plastic strain.

The computational time related to each strategy is reported in
Table 3. For the APHR method, the CPU time saving varies between
61% for the REF4 strategy and 89% for the REF3 strategy. This gain
can be contributed at the same time to the reduction of the size of
the problem (i.e. the number of vectors of the reduced basis), and
8

to the hyper reduction, because thanks to the hyper reduction, the
calculation at each time step is not performed on all elements of
the integration domain, but only on a restrained number of ele
ments. This comparison between the computational times shows
also that the MFH method has a bigger contribution to the saving
of the computational time compared to the APHR method.

The observation of modes which constitute the reduced basis
(used for the APHR computation) allows a better understanding
of the considered problem. In practice, in a POD reduced basis,
the first modes are representative of global modes. Then the higher
modes are associated with localized phenomena. This remark is
illustrated in Fig. 5 where we present the different modes corre
sponding to the second component of the deformation field ob
tained from the APHR model using the REF1 strategy (six modes)
and the REF2 strategy (seven modes). In Fig. 6, we can find the dif
ferent modes corresponding to the accumulated plastic strain field
obtained from the APHR model using the REF1 strategy (five
modes) and the REF2 strategy (eight modes).

It is important to note that the number of modes forming the re
duced basis depends strictly on the chosen HR strategy. Here, we can
conclude that the non smooth HR strategy provides non smooth



and un physical modes both for strains and accumulated plastic
strain. To preserve the same order of accuracy, the non smooth HR
strategy requires more modes than the smooth HR strategy.

5. Conclusions

In this work, we studied a technique for the construction of re
duced model from a finite element model for coupled VE VP solids.
It is based on the use of the APHR method which was previously
introduced by Ryckelynck [19] in the framework of thermome
chanical simulations and has been generalized here for VE VP
composites involving material non linearities. In opposition with
the a posteriori decomposition techniques, the APHR method is a
priori resolution technique which is driving to a POD without
requiring any initial ROM nor known solutions. This technique is
based on two attractive features namely the adaptive and the hyper
reduction strategies. For the first feature, the reduced basis repre
senting all the previous numerical results obtained during the sim
ulation is updated during each new increment. For the second one,
the recourse to the hyper reduction of the equations provides sig
nificant computational time savings without losing much in terms
of result accuracy. In this work, various strategies are tested by
using usual Gappy POD or smooth Gappy POD during the hyper
reduction. In comparison with the solution obtained for the full
model with classical FE methods, the computation time necessary
for solving the numerical example treated is reduced, whereas the
accuracy is of the same order of magnitude. However, in compari
son with the predictions of the MFH method, the computation time
is more expensive, whereas the accuracy is improved.

The obtained results are overall encouraging for the application
of the APHR method in the coupled VE VP case. However, modeling
of the mechanical behavior of composite materials in the nonlinear
domain merits further developments. First, the performances of the
APHR method should be validated using more advanced nonlinear
models, in particular VE VP behavior with nonlinear VE part or
nonlinear kinematic hardening VP part. Another research direction
is to study the solution of large scale parametric problem by using a
multidimensional formulation. Finally, The study of nonlinear
behavior could be accompanied by a study of damage phenomena
(inclusion fracture, interface decohesion, matrix damage, etc.)
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