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Riemannian Lp Averaging on Lie Group

of Nonzero Quaternions

Jesús Angulo

Abstract. This paper discusses quaternion Lp geometric weighting aver-
aging working on the multiplicative Lie group of nonzero quaternions H

∗,
endowed with its natural bi-invariant Riemannian metric. Algorithms
for computing the Riemannian Lp center of mass of a set of points, with
1 ≤ p ≤ ∞ (i.e., median, mean, Lp barycenter and minimax center), are
particularized to the case of H

∗.

Two different approaches are considered. The first formulation is
based on computing the logarithm of quaternions which maps them to
the Euclidean tangent space at identity 1, associated to the Lie algebra
of H

∗. In the tangent space, Euclidean algorithms for Lp center of mass
can be naturally applied. The second formulation is a family of methods
based on gradient descent algorithms aiming at minimizing the sum
of quaternion geodesic distances raised to power p. These algorithms
converges to the quaternion Fréchet-Karcher barycenter (p = 2), the
quaternion Fermat-Weber point (p = 1) and the quaternion Riemannian
1-center (p = +∞).

Besides giving explicit forms of these algorithms, their application
for quaternion image processing is shown by introducing the notion of
quaternion bilateral filtering.

Keywords. Lie group of nonzero quaternions, quaternion averaging, Log-
Euclidean quaternion mean, Riemannian center-of-mass, Fréchet-Kar-
cher barycenter.

1. Introduction

Averaging a finite set of samples is the simplest, but fundamental, operation
in signal and image filtering. It allows to deal with denoising and regularizing
among other important goals. Let us consider for instance a real valued image
f : Ω → R, which maps each pixel to an intensity value, i.e., x 7→ f(x).
The filtered image according to the kernel k(x) is given by its convolution
(f ∗ k)(x) =

∫
E

f(y)k(x − y)dy. For smoothing purposes, k(x) is a real
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non-negative valued function which is usually required to be normalized, i.e.,∫
E

k(y)dy = 1, hence the filter is simply a weighted average. Note also that
the canonical case of scale-space image filtering corresponds to the Gaussian
kernel, i.e., k(x) = 1/(2πσ2) exp

(
−‖x‖2/(2σ2)

)
. This continuous formulation

can be easily rewritten for the case of a discrete space of pixels (e.g., for a
2D image Ω ⊂ Z

2) as follows:

(f ∗ k)(x) =
∑

y∈N(x)

f(y)k(x − y),

where N(x) is the set of neighbors to pixel x such that k(x) 6= 0. Conse-
quently, in the case of images valued on a Riemannian manifold M, i.e.,
f : Ω → M, a method to compute the weighted averaging in M is required
to compute (f ∗ k)(x).

In particular, in this paper we are interested in the mathematical setting
to process images valued on the space of real quaternions H. More precisely,
our framework is the Lie group of nonzero quaternions H

∗ = H \ {0}. When
computing averages on points of sets possessing a particular geometry struc-
ture, it is desirable to respect this structure. For instance in the Lie group
H

∗, it would be important to have a notion of average which is stable by the
group operation (quaternion product and quaternion inversion in our case).
Such a property is ensured for Riemannian Lp center of mass in Lie groups
endowed with a bi-invariant Riemannian metric. The Riemannian structure
of H

∗ is considered in Section 2. In order to have a self-content paper, let us
start with a summary of basic quaternion algebra.

Brief remind on quaternion algebra. A quaternion q ∈ H may be rep-
resented in a hypercomplex form as q = w + xi + yj + zk where w, x, y
and z are real and i, j and k are operators obeying the following multi-
plication rules: i2 = j2 = k2 = ijk = −1 and jk = i, kj = −i, ki = j,
ik = −j, ij = k, ji = −k. A quaternion with w = 0 is named a pure quater-
nion. Real quaternions can be embedded in R × R

3, and be represented as
q = (w,v), by its scalar part w and its vector part v = (x, y, z), the latter
corresponds to the “vectorization” of the imaginary part. Using this represen-
tation, multiplication of two quaternions is defined by q1q2 = (w,v), where
w = w1w2 − v1 · v2 and v = w1v2 + w2v1+ v1 × v2, · and × represents
the dot product vector and the cross product vector respectively. Quaternion
product is not commutative, i.e., q1q2 6= q2q1. The norm of a quaternion

is defined by |q| =
√

w2 + x2 + y2 + z2. A quaternion with a norm equal to
1 is named a unit quaternion. The conjugate of a quaternion is defined by
q∗ = w − xi − yj − zk. The multiplicative inverse of a quaternion is defined
as q−1 = q∗/|q|, such that qq−1 = 1.

The polar representation of a quaternion is given by q = |q|enθ =

|q|(cos θ + n sin θ), where n = xi+yj+zk
ξ

, ξ =
√

x2 + y2 + z2 and θ

= arccos
(

w
|q|

)
. It will be denoted by Uq the unit quaternion associated

to q, i.e., Uq = q

|q| , thus Uq = enθ. The power of a quaternion to a
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real α ∈ R is easily obtained by the polar representation qα = |q|αenαθ =
|q|α(cos(αθ) + n sin(αθ)).

State-of-the-art on quaternion averaging. It is well known that 3D ro-
tations can be formulated by the product of unit quaternions. Rotation av-
eraging, and consequently unit quaternion averaging, have been the subject
of many research works [43] [19] [26]. In addition, averaging in the Special
Orthogonal Group SO(3) using matrix averaging as well as averaging in S

3

are also related to unit quaternion averaging [39] [35] [32] [24] [41][22] [27].
Averaging unit quaternions has also been considered in [18], as a particu-
lar case of averaging in Clifford groups (the group Spin(3)) by considering
approximation of the Riemannian means by Euclidean means on Clifford al-
gebra. However, from our viewpoint, the issue of quaternion center of mass
is not limited to unit quaternions and it is still a relatively open issue, with
potential applications for instance in 4-variate image filtering.

Organization of the paper. Inspired by the recent works on geometric
averaging of (Hermitian) Positive Definite Matrices using differential geom-
etry tools [36, 8, 23, 15, 10, 11], we introduce in Section 3 of the paper two
approaches of nonzero quaternion Lp geometric weighting averaging work-
ing on the Riemannian framework of H

∗. The first formulation is based on
computing the logarithm of quaternions which maps them to the Euclidean
tangent space at identity 1, associated to the Lie algebra of H

∗. In the tangent
space, Euclidean algorithms for Lp center of mass can be naturally applied.
In the second formulation, a family of methods based on gradient descent
algorithms aiming at minimizing the sum of quaternion geodesic distances
raised to power p is considered. These algorithms converges to the quater-
nion Fréchet-Karcher barycenter (p = 2), the quaternion Fermat-Weber point
(p = 1) and the quaternion Riemannian 1-center (p = +∞).

Besides giving explicit forms of these algorithms, their application for
quaternion image processing is shown in Section 4, introducing the notion
of quaternion bilateral filtering. The performance of this approach of locally
adaptive (spatially-variant) nonlinear filtering is illustrated using RGB color
images, but also RGB-NIR images and RGB-Depth ones where the quater-
nionic image representation allows to deal simultaneously with four compo-
nents.

2. Multiplicative Lie Group of Nonzero Quaternions

Any Lie group is an algebraic group that also possesses the structure of a
(smooth) differential manifold. In the present section, the Riemannian geom-
etry of the Lie group H

∗ is recalled. We start with the basic ingredients from
quaternion calculus, which are required to precise the Riemannian manifold
endowing H

∗: the exponential and logarithm of a quaternion.
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2.1. Exponential and logarithm of quaternion

Exponential of a quaternion q ∈ H is defined using the power series repre-

sentation as exp (q) = 1 + q

1! + q
2

2! + · · ·+ q
n

n! + · · · which can be expressed in
a closed-form using a similitude to Moivre’s formula [4]:

exp (q) = exp (w,v) = ew

(
cos |v|, sin |v| v

|v|

)
. (2.1)

The logarithm of a quaternion is defined as the inverse function log (q) =
exp−1 (q), which is given by the expression:

log (q) = log (w,v) =

(
log |q|, v

|v| arccos

(
w

|q|

))
. (2.2)

By definition of logarithm, it is required that |q| 6= 0. Therefore quaternionic
logarithm is defined only for nonzero quaternions, i.e., log (q) exists ∀q ∈ H

∗.
The exponential mapping is onto but not one-to-one (it is a multi-valued
function). That involves that log (exp (q)) = q is already not always true for
complex numbers; however, exp (log (q)) = q always holds for all branches of
the logarithm, because it is essentially the definition of the log.

Let us consider two special cases of exponential/logarithm of a quater-
nion. If we have a pure quaternion q = (0,v), its exponential mapping
produces a unit vector in R

4, or more formally exp (0,v) : R
3 → S

3. The

logarithm of a pure quaternion is given by log (0,v) =
(
log |v|, π

2
v
|v|

)
, i.e.,

the modulus and unit direction of vector in R
3 are decoupled. For the case

of a unit quaternion q, such that |q| = 1, its logarithm gives log (w,v) =(
0, v

|v| arccos(w)
)
.

2.2. Riemannian geometry structure of H
∗

The set H
∗ of nonzero quaternions is a Lie group under quaternion multipli-

cation. The line element of the standard bi-invariant metric is given by

ds2
H∗ =

(
d|q|
|q|

)2

+ (dUq)
2
. (2.3)

It is the metric such that the left invariant 1-form ω = q−1dq with values in
H

∗ → H is an isometry at every point, i.e., for every p nonzero quaternion,
ωp : H

∗ → H induces an isometry between TpH under this metric with H
∗

given the standard quaternion norm. This metric (which is complete and
homogeneous) is a product metric:

ds2
H∗ = ds2

R+
+ ds2

S3 .

The underlying Riemannian manifold is isometric to the product manifold
R+×S

3 with the canonical metrics. Thus, as a product manifold, it is simply

connected and complete but it is not compact. Also observe that
(
R+, ds2

R+

)

has zero sectional curvature and that
(
S

3, ds2
S3

)
has constant sectional cur-

vature 1. It can be proved that, see for instance [49], given two Riemannian
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manifolds M, N such that the sectional curvatures verify 0 ≤ KM,KN ≤ C,
where C ≥ 0 is a constant, then the sectional curvatures of the product man-
ifold M×N also verify 0 ≤ KM×N ≤ C. Hence, the sectional curvature of
H

∗ is nonnegative and bounded by 1: 0 ≤ KH∗ ≤ 1.
We notice that the set of unit quaternions which is isomorphic to S

3 is
a subgroup of H

∗. The isomorphism of unit quaternions to groups Spin(3)
and SU(2) are also well known.

Exponential function of pure quaternions and its inverse logarithm pro-
vide a correspondence between S

3 and its tangent space T1S
3 ≡ R

3 at the
identity 1 = (1, 0, 0, 0). That involves that for any given unit q in the neigh-
borhood of the identity, there exists v ∈ T1S

3 which is mapped to q by
q = exp(v).

More generally, the exponential map Expq and the logarithmic map
Logq from the Riemannian manifold associated to H

∗ onto the vector tangent
space TqH

∗ at a given quaternion q are respectively:

Expq :

{
TqH

∗ ∼= H −→ H
∗

η = (η1, η2, η3, η4) 7→ Expq(η) = q exp (η)

Logq :

{
H

∗ −→ TqH
∗ ∼= H

p 7→ Logq(p) = log
(
q−1p

)

Note that we assume that the tangent space to any element of H
∗ is identified

to the linear vector space R
4 [1], i.e., TqH

∗ ∼= H ∼= R
4. In fact, the Lie algebra

gH∗ of the group H
∗ is isomorphic to gH∗ ∼= R ⊕ so(3) [12].

In this framework, the Riemannian distance between two quaternions
q1 and q2 in (H∗, dsH∗) is the length of the shortest geodesic path on the
manifold H

∗ between both quaternions and is given by

distH*(q1,q2) = ‖Logq1
(q2)‖ =

∥∥log
(
q−1

1 q2

)∥∥ . (2.4)

This expression is well known in the case of unit quaternions since it is the
Riemannian metric of S

3. Using the polar representation, it can be rewritten
as

distH*(q1,q2)
2 = | log(|q2|) − log(|q1|)|2 + ‖log (Uq∗

1Uq2)‖2
.

The geodesic distance of H
∗ is bi-invariant, that is, for any p, r ∈ H

∗

distH*(pq1,pq2) = distH*(q1r,q2r) = distH*(pq1p
−1,pq2p

−1)
= distH*(q1,q2).

Other interesting property is associated to the invariance to inversion:

distH*(q−1
1 ,q−1

2 ) = distH*(q1,q2).

The fact that in general q−1
1 q2 6= q2q

−1
1 does not affect the distance (2.5)

since by the bi-invariance we have
∥∥log

(
q−1

1 q2

)∥∥ =
∥∥log

(
q1q

−1
2

)∥∥. We pro-
pose to use a symmetrized version of the geodesic distance between two
quaternions in H

∗ as follows:

distH*(q1,q2) =
∥∥∥log

(
q
− 1

2
1 q2q

− 1
2

1

)∥∥∥ (2.5)
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From the differential geometry of H
∗, we can also define the geodesic

parameterized by the length, t 7→ γ(t), joining two quaternions q1 and q2 as

γ(t) = q1

(
q−1

1 q2

)t
(2.6)

where γ(0) = q1 and γ(1) = q2. By the properties of quaternion product,

equivalent formulations are given by γ(t) =
(
q2q

−1
1

)t
q1 = q2

(
q−1

2 q1

)1−t
.

Using again the quaternion polar representation, the geodesic is rewritten as

γ(t) = |q1|1−t|q2|tUq1 (Uq∗
1Uq2)

t

Thus, a geodesic path is defined by the product of a geodesic in R+ (weighted
geometric mean of the norms) and a geodesic in S

3. For the case of unit
quaternions, this geodesic is just the expression of the spherical linear in-
terpolation (Slerp) [43]. We observe from the polar representation that the
geodesic is unique except in case of two quaternions having antipodal unitary
parts Uq1 and Uq2 on S

3, which involves the existence of an infinite number
of geodesics (great circles) connecting them in S

3.

We propose to reformulate also the geodesic in a symmetrized way as

γ(t) = q
1
2
1

(
q
− 1

2
1 q2q

− 1
2

1

)t

q
1
2
1 ; 0 ≤ t ≤ 1, (2.7)

with γ(0) = q1, γ(1) = q2. This kind of symmetrization is similar to the
one considered in the Riemannian geometry of positive definite matrices [13],
and it is inspired from operators algebras in mathematical physics. From a
numerical viewpoint, we have observed that this symmetrization produces
more numerically stable results in the gradient descent algorithms. Using
logarithm and exponential of quaternions, the symmetrized geodesic (2.7) is
by definition of the power equivalent to

γ(t) = q
1
2
1 exp

(
t log

(
q
− 1

2
1 q2q

− 1
2

1

))
q

1
2
1 , (2.8)

which in this form will appear below in the algorithms for averaging.

3. Riemannian Lp Averaging on the Quaternion Lie Group H
∗

Averaging on a Lie group may be regarded as weighted averaging on its asso-
ciated algebra [23]. In fact, working on the Riemannian manifold associated
to the Lie group, averaging algorithms are naturally defined using differential
geometry tools. This section starts with a summary of the definition of Lp

center of mass for a set of sample points in a Riemannian manifold. Then, as
a first tentative to instantiate these statistics to the case of nonzero quater-
nions, the Log-Euclidean averaging framework is considered for H

∗. Finally,
algorithms from a genuine framework of Riemannian Lp averaging in H

∗ are
introduced.
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3.1. Riemannian Lp center of mass

Let M be a Riemannian manifold and let d(x, y) be the Riemannian distance
function on M. Given N points x1, x2, · · · , xN ∈ M and the corresponding
positive real weights α1, α2, · · · , αN , with

∑
1≤i≤N αi = 1, the Riemannian

Lp center of mass, with p ∈ [1,+∞), is defined as the minimizer of the sum
of p powered distances function

cp = arg min
x∈M

N∑

i=1

αid
p(x, xi). (3.1)

This general definition, includes two cases of well known Riemannian statis-
tics. The geometric mean (Karcher-Fréchet barycenter) is the minimizer of
the sum-of-squared distances function

µ = arg min
x∈M

N∑

i=1

αid
2(x, xi), (3.2)

and the geometric median (Fermat-Weber point) is the minimizer of sum-of-
distances function

m = arg min
x∈M

N∑

i=1

αid(x, xi). (3.3)

Additionally, the particular case p = +∞, known as Riemannian 1-center
(minimax center), corresponds to the minimizer of max-of-distances function

c∞ = arg min
x∈suppM({xi})

[
max

1≤i≤N
d(x, xi)

]
, (3.4)

where suppM({xi}) is the closure of the convex hull on M of {xi}N
i=1.

To have an appropriate definition of Riemannian center of mass, it
should be assumed that points xi ∈ M lie in a convex set U ∈ M, i.e.,
any two points in U are connected by a unique shortest geodesic lying en-
tirely in U . The diameter of U , denoted diam(U), is the maximal distance
between any two points in U . We notice that the squared geodesic distance
function and the geodesic distance function in U are convex. Existence and
uniqueness of geometric mean (3.2) and geometric median (3.3) have been
widely considered: both exist and are unique if the sectional curvatures of
M are nonpositive, or if the sectional curvatures of M are bounded above
by ∆ > 0 and diam(U) < π/(2

√
∆) [29, 30, 24]. More recently, the existence

and uniqueness for the Riemannian Lp center of mass, 1 ≤ p ≤ ∞ have
been studied in [2]. We can find also more recent results on existence and
uniqueness, including also practical algorithms for L2 [14, 34], for L1 [48],
for Lp [2, 3] and for L∞ [6]. We can mention also some results on stochastic
algorithms (avoiding to compute the gradient to minimize) [5, 16].

3.2. Log-Euclidean Lp averaging on H
∗

The idea of this averaging approach is inspired from the framework of Log-
Euclidean mean for symmetric positive-definite matrices, introduced and
studied in [7, 8]. The rationale behind the framework is to compute the
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arithmetic average in Lie algebra gH∗ , i.e., to work on the tangent space at
the identity.

Log-Euclidean mean. Lets consider a set N of nonzero quaternions, de-
noted by Q = {qi}N

i=1, with positive weights A = {αi}N
i=1, αi ≥ 0. The

Log-Euclidean mean on H
∗ is defined as the weighted averaged in the Euclid-

ean tangent space

q̄ = ELE (Q,A) = exp

(
N∑

i=1

αi log(qi)

)
(3.5)

It can be easily rewritten as

q̄ =

N∏

i=1

|qi|αi

(
cos |v̄| + sin |v̄| v̄

|v̄|

)
,

where

v̄ =
N∑

i=1

αi

|vi|
arccos

(
wi√

w2
i + |vi|2

)
vi.

Thus, q̄ can be interpreted as the quaternion given, on the one hand, by
the weighted geometric mean of the norms of quaternions, and on the other
hand, the normalized vector part (or imaginary part) of the quaternion as
the expectation computed in the tangent space at the north pole of S

3. In
fact, we can see that the Log-Euclidean mean is the Riemannian equivalent
of the arithmetic mean in the sense that

ELE (Q,A) = arg min
q∈H∗

N∑

i=1

αidist2LE(q,qi) = q̄,

where distLE(q1,q2) = ‖ log(q1)− log(q2)‖ is the Log-Euclidean metric asso-
ciated to the Log-Euclidean geodesic γLE(t) = exp ((1− t) log(q1) + t log(q2)),

which obviously does not correspond to the quaternion geodesic metric γ(t)
given by expression (2.6).

Log-Euclidean median. A similar idea can be used to compute the Log-
Euclidean median by working on the vector space associated to gH∗ . However,
the median in vector spaces does not have a closed formula. Given a discrete
set of N samples x1, x2, · · · , xN , with each xi ∈ R

n, the geometric median
(Fermat-Weber point or 1-median) is defined as

m = arg min
x∈Rn

M∑

i=1

‖xi − x‖2.

In Euclidean spaces, it has been shown that no explicit formula, nor any exact
algorithm, exists in general. The most popular technique to obtain the vector
median is Weiszfeld algorithm [47], later improved in various works [33, 37].
It consists in iteratively weighted least squares updating the estimate mk of
the median, where the weights are inversely proportional to the distances
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from the current estimate to the samples

mk+1 =




N∑

i=1 xi 6=mk

xi

‖xi − mk‖






N∑

i=1 xi 6=mk

1

‖xi − mk‖




−1

.

Therefore, the Log-Euclidean quaternion median (L1 average) of a set of N
nonzero quaternions Q = {qi}N

i=1 with positive weights A = {αi}N
i=1, αi ≥ 0,

is defined as the weighted median in the Euclidean tangent space at identity
1, i.e.,

q̃ = MLE (Q,A) = exp (η̃) , (3.6)

where η̃ is the median estimate obtained by Weiszfeld algorithm, i.e., η̃ = ηk

such that ‖ηk+1 − ηk‖ < ǫ and

ηk+1 =




N∑

i=1 ηi 6=ηk

αi

ηi

‖ηi − ηk‖






N∑

i=1 ηi 6=ηk

αi

‖ηi − ηk‖




−1

, (3.7)

where

ηi = log(qi) =

(
log |qi|,

vi

|vi|
arccos

(
wi

|qi|

))
, ηi ∈ T1H

∗ ∼= R
4. (3.8)

Log-Euclidean minimax center. Furthermore, the Log-Euclidean frame-
work naturally generalizes to the 1-center (center of mass with p = ∞). Given
a discrete set of N samples x1, x2, · · · , xN , with each xi ∈ R

n, the 1-center
(Sylvester point or minimax center) is defined as

c∞ = arg min
x∈Rn

max
1≤i≤N

‖xi − x‖2,

and corresponds to finding the unique smallest enclosing ball in R
n that con-

tains all the given points. Computing the smallest enclosing ball in Euclidean
spaces is intractable in high dimension, but efficient approximation algo-
rithms have been proposed. The Bădoiu and Clarkson algorithm [9] leads to
a fast and simple approximation (of known precision ǫ after a given number of
iterations ⌈ 1

ǫ2
⌉ using the notion of core-set, but independent of dimensionality

n): Initialize the minimax center c1
∞ with an arbitrary point of {xi}1≤i≤N ,

then iteratively update the center

ck+1
∞ = ck

∞ +
fk − ck

∞

k + 1
,

where fk is the farthest point of set {xi}1≤i≤N to ck
∞. The Log-Euclidean

quaternion 1-center (or L∞ average) of Q = {qi}N
i=1 is defined as the 1-center

in the Euclidean tangent space at 1

q̆ = DLE (Q) = exp (η̆) ,

where η̆ is the estimate of the center of the unique smallest enclosing ball in
R

4, i.e., η̆ = ηk according to the algorithm

1. η1 = η1;
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2. Iteratively update

ηk+1 = ηk +
φk − ηk

k + 1
;

where φk = arg maxηi, 1≤i≤N ‖ηi − ηk‖, until ‖ηk+1 − ηk‖ < ǫ.

Note that the vectors ηi are obtained from (3.8).

Properties of Log-Euclidean Lp averages. Log-Euclidean Lp averages are
invariant to quaternion inversion: the inversion of quaternion is the multipli-
cation by −1 of their logarithms, i.e., q 7→ q−1 ⇒ log(q) 7→ − log(q). More
generally, the Log-Euclidean Lp averages are invariant to scaling (multiplica-
tion by a real factor involves a translation in the domain of logarithms, i.e.,
q 7→ αq ⇒ log(q) 7→ log(α) + log(q). However, Log-Euclidean Lp averages
are not invariant to rotation transformation. Indeed, quaternion rotation is
given by the product of unit quaternions, i.e., q 7→ uqu−1, but log(uqu−1)
is not necessarily equal to log(u) + log(q) − log(u). It is well known in the
case of positive matrices that the Log-Euclidean Lp averages are not order-
preserving (since the exponential map is not order-preserving) [13]. A similar
behavior is observed for the case of nonzero quaternions.

3.3. Riemannian Lp averaging in H
∗

We propose now to compute efficiently a precise estimation to the Riemann-
ian mean quaternion underlying the minimization of the quaternion geodesic
distance, i.e.,

E (Q,A) = arg min
q∈H

N∑

i=1

αi dist2
H*(q,qi),

with distH*(q1,q2) =
∥∥∥log

(
q
− 1

2
1 q2q

− 1
2

1

)∥∥∥. The case when N = 2 is explicitly

given by the geodesic path (2.8) at t = 1/2. Unfortunately, this closed form
of the geometric mean of two quaternions on H

∗ cannot be generalized to
more than two quaternions. We propose to use a gradient descent algorithm
to estimate E (Q,A).

Riemannian mean. Given a manifold M, Fréchet-Karcher flow [25] [29]
is an intrinsic gradient flow on M that converges to the L2 center of mass,
called Fréchet-Karcher barycenter. In the discrete case, the L2 center of mass
for a finite set of N points on M is given by:

µk+1 = Expµk

(
β

N∑

i=1

Logµk
(xi)

)
,

where Expµ(·) is the exponential map and Logµ(a) ∈ TµM is the tangent
vector at µ ∈ M of the geodesic from µ to a; and where β > 0 is the step
parameter of the gradient descent.
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Coming back to the case of Lie group H
∗, the geometric barycenter

E (Q,A) can be computed by the following gradient Fréchet-Karcher flow

q̄k+1 = q̄
1
2

k exp

(
β

N∑

i=1

αi log
(
q̄
− 1

2

k qiq̄
− 1

2

k

))
q̄

1
2

k . (3.9)

which is iterated until convergence (i.e., dist(q̄k+1, q̄) ≤ ǫ) and where we fix
β = 1

N
. This algorithm of geometric barycenter for quaternions is structurally

similar to those introduced recently for covariance matrices in the framework
of information geometry [10, 11]. If we remind that the Riemannian mani-
fold associated to H

∗ has a nonnegative bounded by 1 sectional curvature,
the uniqueness of quaternion Fréchet-Karcher barycenter depends on the di-
ameter of the geodesic ball set containing the quaternions to be averaged.
This can be a problem if the points are very spread on H

∗. A critical con-
cern for the uniqueness of Fréchet-Karcher barycenter is the case of antipodal
quaternions. However, for the applicative framework considered in this work,
where the 4-variate image pixels are always nonnegative valued, the set of
quaternions {qi} lies in the positive orthant of H

∗.
In any case, to guarantee a fast convergence of the algorithm (3.9) to

a (local) minimum, it is needed that the initialization is close to the final
average. Hence, we propose the initialization to the Log-Euclidean mean;

i.e., q̄k=1 = exp
(

1
N

∑N
i=1 αi log(qi)

)
.

With respect to the state-of-the-art, we remark also that expression (3.9)
of Fréchet-Karcher barycenter is equivalent to the gradient descent algorithm
A1 in [19] for averaging unit quaternions in S

3. Note that the algorithm in [19]
was proposed for spherical weighted averages in S

d using the exponential map
and its inverse map in spherical coordinates.

Riemannian median. Fermat-Weber point, as the geometric median (3.3),
can be also extended to quaternions. Indeed, for any Riemannian manifold
M, the gradient of the Riemannian sum-of-distances function is given by

∇f(x)|x∈U ; x6=xi
= −

N∑

i=1

wi

Logx(xi)

d(x, xi)
= −

N∑

i=1

wi

Logx(xi)

‖Logx(xi)‖
With this result, Weiszfeld-Ostresh algorithm for Riemannian manifolds is
written as [24]:

mk+1 = Expmk



(

β
∑

i∈Ik

wi

Logmk(xi)

‖Logmk(xi)‖

)(
∑

i∈Ik

wi

‖Logmk(xi)‖

)−1



where Ik =
{
i ∈ [1, N ] : mk 6= xi

}
and 0 ≤ β ≤ 2. Now, by straightforward

substitution, we obtain that the geometric median of a finite set of N quater-
nions, M (Q,A), can be computed as follows

q̄k+1 = q̄
1
2
k

exp

0BB�0BB�βk

X
i∈Nk

αi

log

�
q̄
− 1

2
k

qiq̄
− 1

2
k

�
‖ log

�
q̄
− 1

2
k

qiq̄
− 1

2
k

�
‖

1CCA0BB� X
i∈Nk

αi

‖ log

�
q̄
− 1

2
k

qiq̄
− 1

2
k

�
‖

1CCA−11CCA q̄
1
2
k

(3.10)
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where Nk = {i ∈ [1, N ] : qk 6= qi}. It was proven in [24] that the Rie-
mannian Weiszfeld-Ostresh algorithm converges to the geometric median
limk→∞ mk = m, for 0 ≤ β ≤ 2 if sectional curvatures of M are nonneg-
ative and bounded. These requirements fits with the geometry of H

∗ and
consequently the use for nonzero quaternions is particularly well adapted.
More precisely, we propose to use as preconized in [48], a step size which is
parameterized with respect to the iteration index βk = ǫ

1+k
, with ǫ = 1.

Riemannian Lp center of mass. More generally, as studied in [2] for 2 ≤
p < ∞, the Riemannian Lp center of mass cp (3.1) of a discrete set {xi}N

i=1 ⊂
M on a manifold M, with respect to weights 0 ≤ wi ≤ 1,

∑N
i=1 wi = 1 is the

unique zero of the gradient vector field ∇fp, where

∇fp(x) = −
N∑

i=1

wid
p−2(x, xi) Logx(xi)

for any x ∈ M as long as it is not in the cut locus of any of the data points.
The corresponding gradient descent algorithm to find the Riemannian Lp

center of mass cp is given by [3]:

ck+1
p = Expckp

(
−βk∇fp(c

k
p)
)

= Expckp

(
βk

N∑

i=1

wid
p−2(x, xi) Logckp

(xi)

)
.

Therefore, the geometric Lp center of mass on H
∗ for a finite set of N quater-

nions, Ep (Q,A), can be computed using the following gradient descent algo-
rithm

q̄k+1 = q̄
1
2

k exp

(
βk

N∑

n=1

αi

∥∥∥log
(
q̄
− 1

2

k qiq̄
− 1

2

k

)∥∥∥
p−2

log
(
q̄
− 1

2

k qiq̄
− 1

2

k

))
q̄

1
2

k ,

(3.11)
where the step size is parameterized by the iteration index

βk =
ǫ

1 + k
, with ǫ = 0.1,

thus limk→∞ βk = 0.
Riemannian minimax center. For the case of L∞ Riemannian center of

mass (minimum enclosing geodesic ball) as defined in (3.4), there is no canon-
ical algorithm which generalizes the gradient descent algorithms considered
for p ∈ [1,∞). An extended version of the Euclidean Bădoiu and Clarkson al-
gorithm for 1-center, or minimax center, for Riemannian manifolds has been
introduced in a recent work [6]. Let us consider the discrete set {xi}N

i=1 ⊂ M
on a manifold M. First, initialize the center x̄∞ with a point of set, i.e.,
x̄1
∞ = x1. Then, iteratively update the current minimax center as

ck+1
∞ = Geodesic

(
ck
∞, fi,

1

1 + k

)
,

where fi denotes the farthest point of the set to ck
∞, and Geodesic(p, q, t)

denotes the intermediate point m on the geodesic passing through p and q
such that dist(p,m) = tdist(p, q). For the case of a finite set of N nonzero
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quaternions {qi}N
n=1, the Riemannian 1-center on H

∗ can be computed using
the instantiation of Arnaudon-Nielsen algorithm as follows:

1. Initialization: q̄1 = q1

2. Iteratively update
(a) Obtain the farthest quaternion to the current estimate:

φk = arg max
qi, 1≤i≤N

‖ log
(
q̄
− 1

2

k qiq̄
− 1

2

k

)
‖.

(b) Compute geodesic distance from current center estimation to far-
thest point:

dist(q̄k, φk) = ‖ log
(
q̄
− 1

2

k φkq̄
− 1

2

k

)
‖.

(c) By bisection search algorithm, find the cut of the geodesic

γ(t) = q̄
1
2

k

(
q̄
− 1

2

k φkq̄
− 1

2

k

)t

q
1
2
1 .

at a value t = 1
1+k

, which gives the quaternion q̄k+1, so that

dist(q̄k, q̄k+1) =
1

1 + k
dist(q̄k, φk),

where dist(q̄k, q̄k+1) = ‖ log
(
q̄
− 1

2

k q̄k+1q̄
− 1

2

k

)
‖.

4. Bilateral Filtering of Quaternion Images

The applicative aim of this paper is to illustrate the interest of Riemannian
averaging for quaternion image denoising and regularization. In particular,
we propose to generalize the notion of bilateral filtering, a very powerful
and computationally simple approach for spatially-variant nonlinear filtering
framework. We start by formalizing the framework for such images.

Quaternionic images. A 2D quaternion valued image is represented by

fq : Ω → H
∗,

which corresponds to the function fq(x) = fw(x)+ fx(x)i+ fy(x)j + fz(x)k,
x = (x1, x2) ∈ Ω ⊂ Z

2, i.e., we have a nonzero quaternion at each pixel x

of the image. For instance, a color image of red, green and blue components
(RGB), (fR, fG, fB), can be represented by a quaternionic image, i.e., fq(x) =
1(x)+fR(x)i+fG(x)j +fB(x)k (the scalar component is constant and equal
to 1). Needless to say that the powerfulness of our image quaternion filtering
approach is its ability to deal with images of four components, typically a
RGB color image for the imaginary part together with an additional image
for the scalar part.

Let us consider two kinds of these images which are nowadays used in
the state-of-the-art. On the one hand, using visible and near-infrared (NIR)
filters, it is possible to capture color plus thermic images [17]. Fig 1-Top shows
an example of such an image, which can be represented as a quaternion image:
fq(x) = fNIR(x)+fR(x)i+fG(x)j+fB(x)k. On the other hand, the current
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technologies of range cameras, such as the popular Kinect one, produce RGB
images together with a depth map. An example of RGB+Depth image from
database [45] is given in Fig 1-Bottom. The quaternion image is now fq(x) =
fDepth(x)+fR(x)i+fG(x)j +fB(x)k. But, of course, the key question is the
following: what is the justification of working on the multiplicative Lie group
of quaternion for processing color, color+temperature and color+distance
images.

fw = fNIR fv = (fR, fG, fB)

fw = fDepth fv = (fR, fG, fB)

Figure 1. Examples of four components image represented
by a quaternionic function fq(x) = fw(x)+fx(x)i+fy(x)j+
fz(x)k. Top, color + temperature image (RGB+NIR); bot-
tom, color + distance image (RGB+Depth).

Rationale. The classical Weber–Fechner law states that human sensation
is proportional to the logarithm of the stimulus intensity. In the case of vision,
the eye senses brightness approximately according to Weber–Fechner law over
a moderate range. This rationale has been the motivation to introduce a
geometry of color spaces that fits the logarithmic perceptual principle. First
attempts to deal with were considered by Helmholtz [28] and Schrödinger [42]
who introduced color geometries with arc-length for the red, green and blue
stimuli of type:

ds2 =
1

L

(
cr

(
dR

R

)2

+ cg

(
dG

G

)2

+ cb

(
dB

B

)2
)

, (4.1)
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where L = crR + cgG + cbB and cr, cg and cb are constants. This kind of
logarithmic color metrics have been used in modern and theoretically sound
image processing based on the Beltrami geometrical framework [44, 31].

By embedding the color images into H
∗ according to the metric dsH∗ ,

we have a logarithmic manipulation of the color intensity (or luminance),
which corresponds to the norm of the color pixel. In addition, the decoupled
chromatic information, given by the unit vector component, is measured by
its appropriate metric. This principle of perception-driven processing is also
compatible with color + temperature or color + distance images since both
temperature and distance are also “logarithmically perceived” as human sen-
sations.

Blurring effect in Riemannian Lp filtering. Hence, geometric Lp center
of mass can be used for image filtering by simply computing an average with
the quaternion pixels values belonging to a neigbourhood centered at the
current pixel.

A comparative series for a RGB+Depth image are given in Figure 2
for the Log-Euclidean framework and in Figure 3 for the Riemannian one.
We observe, on the one hand, that the value of p is critical for the effect
of filtering. It is well known that, for image filtering, the median estimator
(p = 1) leads to less blurred contour results than the mean (p = 2). This is
due to the robustness of median (asymptotic breakdown point equal to 1/2
compared to 1 for the mean [24]), which involves that, in the image zones
close to region transitions, the median produces a point belonging to the
most represented zone in the filtering window. But, even using the median,
the blurring effect is unpleasant. We notice that the minimax center (p =
∞) involves a filtering which enhances the outlier pixels values. Obviously,
this effect is unappropriate for denoising or standard regularization, however,
it is particularly useful for applications such as anomaly detection. On the
other hand, concerning the differences between the Log-Euclidean Lp averages
against the Riemannian ones, we observe that, for a given filter size, Log-
Euclidean produces smoother results associated to the fact that the obtained
center of mass does not take into account the precise distribution of the points
on the manifold. Nevertheless, in terms of image filtering, results from the
Log-Euclidean center of mass are totally acceptable.

Locally adaptive Riemannian Lp averaging. Bilateral filtering [46] is a
locally adaptive Gaussian convolution technique to smooth images while pre-
serving edges, where separable Gaussian coefficients at a point are weighted
jointly by the spatial distance and the intensity distance between its neigh-
bours. For a real valued discrete image f : Ω → R, bilateral filtering is
formalized as

BL(f)(x;σs, σr) =

∑
y∈N(x) f(y)e

− ‖x−y‖2

2σ2
s e

− |f̄(x)−f̄(y)|

2σ2
r

∑
y∈N(x) e

− ‖x−y‖2

2σ2
s e

− |f̄(x)−f̄(y)|2

2σ2
r
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fw = fDepth fv = (fR, fG, fB)

(a) p = 1 (Log-Euclidean median)

(b) p = 2 (Log-Euclidean mean)

(c) p =∞ (Log-Euclidean minimax center)

Figure 2. Quaternion image filtering using Log-Euclidean
Lp averaging of RGB+Depth image, with three values of p.
Average is computed in a window of 11 × 11 pixels.

and it requires only two easily tunable parameters: a scale parameter related
to the size σs and a scale parameter related to the contrast σr of the image
features to be preserved. The neigbourhood of filter N is typically a square
window of [2σs − 1 × 2σs − 1] pixels. A systematic study on the theory and
applications of bilateral filtering can be found in [38]. As it was shown in [21],
bilateral filtering is strongly related to other image filtering techniques such
as weighted least squares filtering, robust estimation filtering and anisotropic
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fw = fDepth fv = (fR, fG, fB)

(a) p = 1 (Riemannian median)

(b) p = 2 (Riemannian mean)

(c) p =∞ (Riemannian minimax center)

Figure 3. Quaternion image filtering using Riemannian Lp

averaging of RGB+Depth image, with three values of p. Av-
erage is computed in a window of 11 × 11 pixels.

diffusion. In particular, bilateral filtering is a discrete filter equivalent asymp-
totically to Perona and Malik PDE equation [40].

The extension of bilateral filtering to 2D quaternion images fq is rather
natural using our methods of geometric averaging of a set of quaternions
E (Q,A). The corresponding algorithm is formulated as follows:

BL(fq)(x;σs, σr) = {E ({fq(y)}, {αx(y;σs, σr)}) ; y ∈ N(x)} , (4.2)
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(a) fq = (1, fR, fG, fB)

(b-1) BL(fq)(σs, σi) (c-1) BL(fq)(σs, σr)

σr = 0.9, p = 2 σr = 0.1, p = 2

(b-2) BL(fq)(σs, σi) (c-2) BL(fq)(σs, σr)

σr = 0.9, p = 2 σr = 0.1, p = 2

(b-3) BL(fq)(σs, σr) (c-3) BL(fq)(σs, σi)

σr = 0.9, p = 1 σr = 0.1, p = 1

(b-4) BL(fq)(σs, σi) (c-4) BL(fq)(σs, σr)

σr = 0.9, p = 1 σr = 0.1, p = 1

Figure 4. Quaternion bilateral filtering BL(fq) of noisy
color image (with σs = 5): (a) original image (256 × 256
pixels); (b-) quaternion range penalization σr = 0.9, (c-)
quaternion range penalization σr = 0.1; (-1) Log-Euclidean
quaternion mean, (-2) Fréchet-Karcher quaternion barycen-
ter, (-3) Log-Euclidean quaternion median, (-4) Fermat-
Weber quaternion point.

such that

E ({fq(y)}, {αx(y;σs, σr)}) = arg min
q∈H

∑

y∈N(x)

αx(y;σs, σr) dist2
H*(q, fq(y)),

(4.3)
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Figure 5. Quaternion bilateral filtering BL(fq) of
RGB+NIR and RGB+Depth images of Fig. 1. In both cases
it consists in Log-Euclidean mean averaging, with σs = 5
and σr = 0.1.

Figure 6. Marginal bilateral filtering of RGB and Depth
images of Fig. 1. The four components have been filtered
with σs = 5 and σr = 0.1.

where αx(y;σs, σr) is the set of spatially local adaptive bilateral weights for
pixel x computed as

αx(y;σs, σi) =
1

W̃x

e
−

(x1−y1)2+(x2−y2)2

2σ2
s e

−
dist2

H*
(f̄q(y),f̄q(x))

2σ2
r , (4.4)
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Original ff ′
q = fq + nq (Gaussian noise σnoise = 0.01)

Bilateral filtered BL(ff ′
q), σs = 5, σr = 0.1

Original ff ′′
q = fq + nq (Gaussian noise σnoise = 0.02)

Bilateral filtered BL(ff ′′
q ), σs = 5, σr = 0.1

Figure 7. Quaternion bilateral filtering BL(fq) of
Gaussian-noise corrupted RGB+NIR image, using Log-
Euclidean mean averaging, with σs = 5 and σr = 0.1.

and where W̃x is the normalization factor; i.e., W̃x =
∑

y∈N(x) αx(y;σs, σr).

The pair of width parameters (σs, σr) in (4.4) defines the filtering scales,
where σs is the spatial (or size) scale and σi the “quaternion range” scale.
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Original ff ′′
q = fq + nq (Gaussian noise σnoise = 0.02)

Marginal bilateral filtered BL(ff ′′
w), BL(ff ′′

x ), BL(ff ′′
y ), BL(ff ′′

z ), σs = 5, σr = 0.1

Figure 8. Marginal bilateral filtering BL(fq) of Gaussian-
noise corrupted RGB and NIR images. The four components
have been filtered with σs = 5 and σr = 0.1.

The quaternion range distances in the expression (4.4) are obviously
computed as the Riemannian distance on H

∗. However, in order to achieve
a robust estimation, this penalization distance is computed in a pre-filtered
version of the quaternion image, which is denoted by f̄q, i.e.,

distH*

(
f̄q(y), f̄q(x)

)
=
∥∥∥log

(
f̄q(y)−

1
2 f̄q(x)f̄q(y)−

1
2

)∥∥∥ ,

where f̄q is typically obtained by a fast marginal mean filter for each com-
ponent of the quaternion image using a window of size 3 × 3 pixels. The
computation of the weights from f̄q, a regularized version of the image, leads
to robustness against noise. This approach is well known in nonlinear dif-
fusion [20]. Instead of the marginal mean, any other fast pre-filter can be
applied, e.g., marginal median. Note that the Riemannian mean in (4.3) is
computed from the original values of fq (minimizing the square of the geo-
desic distance) and only the adaptive weights are estimated from f̄q. Note
also that in the iterative algorithms for the Riemannian mean, the weights
at each point are the same for all the iterations.

The Riemannian mean estimator E (·) can be replaced by any other
Riemannian Lp center of mass. The general procedure is summarized in Al-
gorithm 1. We can also consider the Log-Euclidean Lp center of mass for
bilateral filtering. In this latter case, the Riemannian distance should be re-
placed by the Log-Euclidean distance, see Algorithm 2. In computational
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terms, it is obvious that the Log-Euclidean bilateral filtering is more efficient
since only involves vector algorithms on the pixelwise quaternion logarithm
image. In particular, the case L2 involves a straightforward computation of
the mean without the need of an iterative algorithm.

input : Quaternion image fq(x), type of center-of-mass p, filtering
parameters σs, σr

output: Filtered quaternion image BL(fq)(x)

begin
- Compute cardinal of neighborhood: N ← (2σs − 1)(2σs − 1);
- Compute marginal median filtered image: f̄q(x);
- Compute spatial penalization weights for y ∈ Nb(0) (same for all
pixels): α(y)← exp

�
−‖y‖/2σ2

s

�
;

for x ∈ Ω do
- i← 1;
for y ∈ Nb(x) do

- Compute range penalization weights using quaternion
distances from f̄q(x):
αx(y)← exp

�
− dist2

H*(f̄q(y), f̄q(x))/2σ2
r

�
;

- Get original quaternion image value: qi = fq(x) ;
- i← i + 1;

end

for i← 1 to N do
- Compute normalized weights:
αi ← (α(y)αx(y))/

P
y∈Nb(x) αx(y);

end

- Compute Riemannian Lp center-of-mass q for set of quaternions
{qi}

N

i=1 using weights {αi}
N

i=1: switch p do
case 1 Iterative algorithm from (3.10) case 2 Iterative
algorithm from (3.9)case 2 < p <∞ Iterative algorithm from
(3.11)

end

- Quaternion center-of-mass to image result: BL(fq)(x)← q

end

end

Algorithm 1: Quaternion Riemannian Lp bilateral filtering.

In order to illustrate the behavior of quaternion bilateral filtering, let us
consider firstly an example of noisy color image (fR, fG, fB). Fig. 4 depicts
a systematic comparison of the effect of quaternion bilateral filtering, for a
given spatial size of bilateral filter σs = 5. More precisely, the example com-
pares, on the one hand, the results obtained using Log-Euclidean quaternion
averaging for p = 2 and p = 1 with respect to those obtained using Fréchet-
Karcher barycenter and Fermat-Weber point; on the other, the effect of the
quaternion range penalization σr = 0.9 and σr = 0.1. As expected, for all the
examples, high values of σi produce similar blurring results to the spatially-
invariant Gaussian filter; on the contrary, a typical value of σr = 0.1 is a good
trade-off to achieve the adaptive effect of bilateral kernels, which preserves
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input : Quaternion image fq(x), type of Log-Euclidean center-of-mass p,
filtering parameters σs, σr

output: Filtered quaternion image BL(fq)(x)

begin
- Compute cardinal of neighborhood: N ← (2σs − 1)(2σs − 1);
- Compute pixelwise logarithm of quaternion image:
f log
q (x)← log (fq(x));

- Compute marginal median filtered image from f log
q (x) : f̄q

log
(x);

- Compute spatial penalization weights for y ∈ Nb(0) (same for all
pixels): α(y)← exp

�
−‖y‖/2σ2

s

�
;

for x ∈ Ω do
- i← 1;
for y ∈ Nb(x) do

- Compute range penalization weights using vector distances

from f̄q

log
(x): αx(y)← exp

�
−‖f̄q

log
(y)− f̄q

log

q
(x)‖2/2σ2

r

�
;

- Get original logarithmic image value: ηi = f log
q (x) ;

- i← i + 1;
end

for i← 1 to N do
- Compute normalized weights:
αi ← (α(y)αx(y))/

P
y∈Nb(x) αx(y);

end

- Compute Lp center-of-mass η for set of 4D vectors {ηi}
N

i=1 using

weights {αi}
N

i=1: switch p do

case 1 η =
PN

i=1 αiηi case 2 Iterative algorithm from (3.6)
end

- Center-of-mass to image result: fη(x)← η
end

- Compute pixelwise exponential of image: BL(fq)(x)← exp (fη(x));
end

Algorithm 2: Quaternion Log-Euclidean L1/L2 bilateral filtering

appropriately the image edges. Concerning the averaging algorithm, we ob-
serve that the results are rather similar; the Riemannian mean and median
yielding both more colorful values. An important conclusion from the exam-
ple is the fact that the choice of p = 1 or p = 2 has a relatively low impact on
the bilateral filtering since, by definition, bilateral filtering is robust against
outliers (corresponding weights depending on the quaternion range are very
slow). Consequently the estimation using L2 takes into account this effect to
lead to a robust averaging.

We can naturally apply quaternion bilateral filtering to regularize color
+ temperature and color + distance images. Fig. 5 gives the results obtained
for the images of Fig. 1. We observe how color and temperature/distance
structures are simultaneously simplified into similar geometric regions where
the contours are well preserved. In order to illustrate the interest of the
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present approach, we have included in Fig. 6 the result of marginal bilateral
filtering of RGB and depth images, i.e., the four components have been fil-
tered independently using the same scale parameters as in Fig. 5. As we can
observe from the depth component, the quaternion bilateral filtering involves
a filtering effect which is driven by the regular parts of the RGB compo-
nents. In the case of the marginal approach, without interaction between the
components, the filtering of the depth is very unsatisfactory.

Finally, let us consider a last example given in Fig. 7, to illustrate the
denoising performance of quaternion bilateral filtering. Two noisy versions of
the color+temperature image are considered (i.e., the initial quaternionic
image fq has been corrupted with Gaussian noise of standard deviation

σnoise = 0.01 for f̃ ′
q and σnoise = 0.02 for f̃ ′′

q ). Images are bilateral filtered
using the same scale parameters with Log-Euclidean mean estimator. The
restored results can be compared to the one obtained for the unnoisy image
in Fig. 5, which proves the excellent robustness of bilateral filtering for image

denoising. For the case of image f̃ ′′
q , we have also included in Fig. 8 the result

obtained by a marginal bilateral processing of the four components. As we
can observe, the quaternion bilateral processing clearly outperforms the mar-
ginal processing. More precisely, the marginally denoised components present
severe drawbacks: the NIR component is poorly restored and the RGB com-
ponents have introduced notably false colors.

5. Conclusions and Perspectives

We have introduced two families of algorithms for the computation of the
weighted mean of quaternions on the intrinsic geometry of H

∗. The Log-
Euclidean framework is simply Euclidean processing in the logarithmic do-
main (i.e., Lie algebra of H

∗) and consequently is computationally simpler
than the Riemannian Lp center of mass on H

∗, which is based on gradient
flow algorithms. We notice also that quaternion exponential and logarithm
are relatively inexpensive to compute, particularly compared with the cost
of those operations for other charts on matrices Lie groups which requires
matrix exponential and matrix logarithm. This point supports the fact that
geometric averaging in SO(3) or SU(2) can be done more efficiently working
with unit quaternions (a subgroup of H

∗), which can be implemented using
the algorithms here discussed.

The averaging statistics can be used for four-components image filtering
and in particular, we have considered the case of the extension of bilateral
filtering to quaternionic images. From the empirical examples, we can con-
clude that both families of algorithms produce relatively similar results in
processing color + temperature / distance images.

Aiming at developing a more theoretically sound approach for adap-
tive color + distance image filtering, we will consider the geometric flow
PDE associated to the extension of Laplace-Beltrami framework [44, 31] for
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quaternion-valued images. It mainly involves an embedding of the 2D quater-
nion image into a product manifold, i.e.,

fq(x1, x2) 7→ (X1 = x1, X
2 = x2, X

3 = fq(x, y)) ∈ R
2 × H,

then, using the underlying product metric of arc length element equal to
ds2 = ds2

space + αds2
H∗ = dx2

1 + dx2
2 + αdf2

q, α > 0, the numerical solution of
the corresponding Laplace-Beltrami flow can be obtained by finite difference
numerical schemas.

From a more applicative perspective, our goal is to work on the problem
of nonzero quaternion interpolation, in both Log-Euclidean and Riemannian
frameworks, for simultaneous color + distance image interpolation (image
resizing, image inpainting, etc.)
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