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Abstract

Relationships between linear and morphological scale-spaces have been considered

by various previous works. The aim of this paper is to study how to generalise the

diffusion-based approaches in order to introduce nonlinear filters whose effects mimic the

asymmetric behaviour of morphological dilation and erosion, as well as other evolved

morphological filters. A methodology based on the counter-harmonic mean is adopted

here. Details of numerical implementation are discussed and results are provided to illus-

trate the various studied cases: isotropic, nonlinear and coherence-enhancing diffusion.

We also found a new way to derive the classical link between Gaussian scale-space and

dilation/erosion scale-spaces based on quadratic structuring functions. We have included

some preliminary applications of the generalised morphological diffusion to solve image

processing problems such as denoising and image enhancement in the case of asymmetric

bright/dark image properties.

Keywords: counter-harmonic mean, mathematical morphology, quadratic structur-

ing function, image diffusion, nonlinear scale-space theory
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1 Introduction

Two fundamental paradigms of image filtering appear distinguished nowadays in the state-of-

the-art. On the one hand, differential methods inspired from the (parabolic) heat equation,

including isotropic diffusion [26], nonlinear diffusion [31, 12], anisotropic diffusion [39], etc.

The main properties of these techniques are the appropriateness to deal with the notion of

scale-space of image structures and the ability to process symmetrically the bright/dark im-

age structures. Practical algorithms involve (local-adaptive) kernel convolution as well as

PDE-formulation and subsequent numerical solutions. The interested reader should refer to

basic references [14] and [38]. On the other hand, mathematical morphology operators [34, 36]

which are formulated in terms of geometric notions as well as in terms of complete lattice the-

ory. Morphological filters entail mainly the computation of supremum and infimum values in

neighbourhoods (or structuring elements) which correspond respectively to the dilation and

the erosion, the two basic operators. Morphological operators present also good scale-space

properties [22, 4] but, by the natural duality of complete lattices, most operators appear by

pairs and one acts on bright structures and the other one on dark structures. This latter

property of asymmetry is in fact an advantage which allows defining evolved operators by

product of a pair of dual ones. For instance, the opening (resp. closing) is obtained by the

product of an erosion (resp. dilation) followed by a dilation (resp. erosion), then the product

of openings and closings leads to the alternate filters and other families of morphological

filters [34, 36]. Diffusion involves blurring image structures whereas morphological dilation

and erosion involve enhancement of image structure transitions. In fact, morphological op-

erators are related to geometric optics models and in particular to the (hyperbolic) eikonal

equation. Hence, there exists also a well motivated formulation of morphological operators

using PDEs [1, 3, 8, 28]. This differential or continuous-scale morphology can be solved using

numerical algorithms for curve evolution [33]. Thus multiscale flat dilation/erosion by disks

as structuring elements (resp. unflat dilation/erosion by parabolic structuring functions) can

be modelled in a continuous framework. Morphological operators using geometric structuring

elements are today one of the most successful areas in image processing. However, it is obvious

that the soundness and maturity of numerical methods to implement the different versions
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(a) (b)

Figure 1: Two image examples presenting asymmetric bright/dark image structures. These

images will be studied in Section 6.

of image diffusion constitute an advantage against continuous morphology implementation,

which requires more specific numerical schemas to achieve robust results [5, 7].

Motivation and Aim: Asymmetrisation of image diffusion. Let us consider the

two images given in Fig. 1. The first image is an example of impulse-noise corrupted image,

where the noise presents a mean value which is significatively smaller than the mean image

value. In other words, the noise is asymmetrically shifted towards dark values. A successful

denoising approach, based for instance on nonlinear adaptive diffusion, should be able to deal

with this asymmetry. The second image is a low SNR retinal image and one of its typical

applications involves to extract the vessels. The latter structures are dark with respect to

their background. Vessel detection can be solved using morphological operators, but the

result would be poor without a prior enhancement of the image using typically a coherence-

enhancing diffusion-based filtering step. Obviously, the relation of intensities between the

vessels and the background could be of help to adapt the nonlinearity of the appropriate

anisotropic diffusion.

In this context, the aim of this paper is to study how to generalise the diffusion-based

approaches in order to introduce nonlinear filters whose effects mimic the asymmetric be-
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haviour of morphological dilation and erosion, as well as other evolved morphological filters.

Our goal is therefore to propose a new approach of generalised morphological image diffusion

based on standard numerical implementations.

Related work. Theoretical investigation of the relation between the scale-space concepts

of linear and morphological scale spaces has been carried out by various studies. A paral-

lelism between the role which plays the Fourier transform in the convolution with Gaussian

kernels and the dilation using quadratic structuring function has been established using the

notion of slope transform. More generally, the slope transform and its applications to mor-

phological systems was developed independently and simultaneously by [13] and [27]. In [10]

it was shown that the slope transform in the (max,+)-algebra corresponds to the logarith-

mic multivariate Laplace transform in the (+, ·)-algebra; and that the Cramer transform as

the Legendre-Fenchel transform of the logarithmic Laplace transform. It was studied in [15]

the structural similarities between linear and morphological processes in order to construct

a one-parameter semi-linear process that incorporates Gaussian scale-space, and both types

of morphological scale-spaces by quadratic structuring elements as limiting processes of a

one-parameter transformation of grey-level values. More recently, it was proposed in [41] a

morphological scale-space by deforming the algebraic operations related to Minkowski (or Lp)

norms and generalised means, where the Gaussian scale-space is a limit case. We adopted

here a different methodology in order to link diffusion-based image filtering and morpholog-

ical image filtering. The starting point of our approach is the notion of counter-harmonic

mean [9]. In fact, the idea of using the counter-harmonic mean for constructing robust

morphological-like operators, without the notions of supremum and imfimum, was proposed

in [37]. Our purpose in this paper is to go further and to exploit the counter-harmonic mean

to propose a more general framework which can be exploited for the various algorithms of

image diffusion.

Paper organisation. This paper is an extended and improved version of a conference

contribution [2]. In particular, in the present manuscript, a complete proof of the different

results and properties is given, as well as a more illustrative examples and applications are
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included.

The outline of the paper is as follows. In the next section we review the notion of

counter-harmonic mean. The appropriateness of counter-harmonic mean to approximate flat

dilation/erosion is considered in Section 3. Section 4 introduces the novel counter-harmonic

Gaussian scale-space, or counter-harmonic isotropic diffusion. The limit relationships with

parabolic dilation/erosion as well as other theoretical properties are also considered in Sec-

tion 4. Section 5 extends these investigations to the nonlinear diffusion, in particular to the

Perona and Malik model and to the Weickert model of coherence-enhanced diffusion. Some

preliminary applications of the generalised morphological diffusion to solve image processing

problems such as denoising and image enhancement in the case of asymmetric bright/dark

image properties are discussed in Section 6. The paper is concluded with a summary and

perspectives in Section 7.

2 Counter-Harmonic Mean (CHM)

Let us start by presenting the basic notion of this paper.

Definition 1 Let a = (a1, a2, · · · , an) and w = (w1, w2, · · · , wn) be non-negative real n−tuples,

i.e., a,w ∈ Rn
+. If r ∈ R then the r−th counter-harmonic mean (CHM) of a with weight w

is given by [9]

K
[r](a;w) =





∑n
i=1 wia

r
i∑n

i=1 wia
r−1
i

if r ∈ R

max(ai) if r = +∞
min(ai) if r = −∞

(1)

It will be denoted K
[r](a) the equal weight case. We notice that K

[1](a;w) is the weighted

arithmetic mean A(a;w) and K
[0](a;w) is the weighted harmonic mean H(a;w). Remark

also that K
[1/2](a1, a2) = G(a1, a2), where G(a;w) denotes the weighted geometric mean;

however this result is only valid for a 2−tuple. It is well known that these classical means

are ordered between them; i.e., H(a;w) ≤ G(a;w) ≤ A(a;w).

The following properties are useful for the rest of the paper.
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Proposition 2 If a and w are non-negative real n−tuples, we have the following property:

K
[r](a;w) =

(
K
[−r+1](a−1;w)

)−1

Proof. We have K
[r](a−1;w) =

∑n
i=1 wia

−r
i∑n

i=1 wia
−r+1
i

=
(∑n

i=1 wia
−r+1
i∑n

i=1 wia
−r
i

)−1

. Hence K
[r](a−1;w) =

(
K
[−r+1](a;w)

)−1
. By taking know s = −r + 1, so r = −s + 1, we obtain the desired result

K
[s](a;w) =

(
K
[−s+1](a−1;w)

)−1
.

Proposition 3 If 1 ≤ r ≤ +∞ then K
[r](a;w) ≥ M

[r](a;w); and if −∞ ≤ r ≤ 1 then the fol-

lowing stronger results holds: K[r](a;w) ≤ M
[r−1](a;w); where M[r](a;w) =

(
1
W

∑n
i=1wia

r
i

)1/r

is the r−th power-mean, or Minkowski weighted mean of order r, defined for r ∈ R∗. In-

equalities are strict unless r = 1, +∞, −∞ or a is constant.

Proof. Assume that r ∈ R, we can rewrite K
[r](a;w) =

((
∑n

i=1 wia
r
i )

1/r)r

((
∑n

i=1 wia
r−1
i )1/(r−1))(r−1)

=

(
∑n

i=1wia
r
i )

1/r
(

(
∑n

i=1 wia
r
i )

1/r

(
∑n

i=1 wia
r−1
i )1/(r−1)

)r−1

. Consequently, we have

K
[r](a;w) = M

[r](a;w)

(
M

[r](a;w)

M[r−1](a;w)

)r−1

Considering r ≥ 1 and taking into account thatM[r](a;w) ≥ M
[r−1](a;w), we have K[r](a;w) ≥

M
[r](a;w). Now, assume that r ≤ 1, then using Proposition 2, we have

K
[r](a;w) =

(
K
[−r+1](a−1;w)

)−1
≤
(
M

[−r+1](a−1;w)
)−1

= M
[r−1](a;w)

The inequalities justify the cases r = ±∞.

Proposition 4 If a and w are n−tuples and if −∞ ≤ r < s ≤ +∞ then K
[r](a;w) ≤

K
[s](a;w), with equality if and only if a is constant.

Proof. Using the following result (see [9], Chapter 3): the function m(r) =
∑n

i=1wia
r
i is

strictly log-convex in r if a is not constant. Now if we write log
(
K
[r](a;w)

)
= log (m(r)) −

log (m(r − 1)), and if −∞ < r < s < +∞, we easily obtain by strict convexity log (m(r)) −
log (m(r − 1)) < log (m(s)) − log (m(s− 1)). If either r = −∞ or s = +∞ the result is

immediate.
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3 Robust Pseudo-Morphological Operators using CHM

The CHM has been considered in the image processing literature as a suitable filter to deal

with salt and pepper noise [16]. More precisely, let v = f(x, y) be a grey-level image: f :

Ω → V. Typically, for digital 2D images, (x, y) ∈ Ω where Ω ⊂ Z2 is the discrete support of

the image. The pixel values are v ∈ V ⊂ Z or R, but for the sake of simplicity of our study,

we consider a non-negative normalized valued image; i.e., V = [0, 1].

Definition 5 The CHM filter is obtained as

κPB(f)(x, y) =

∑
(s,t)∈B(x,y) f(s, t)

P+1

∑
(s,t)∈B(x,y) f(s, t)

P
= K

[P+1]({f(s, t)}(s,t)∈B(x,y)) (2)

where B(x, y) is the window of the filter, centered at point (x, y), i.e., the structuring element

in the case of morphological operators.

This filter is well suited for reducing the effect of pepper noise for P > 0 and of salt noise for

P < 0. In the pioneering paper [37], starting from the natural observation that morphological

dilation and erosion are the limit cases of the CHM, i.e.,

lim
P→+∞

κPB(f)(x, y) = max
(s,t)∈B(x,y)

(f(s, t)) = δB(f)(x, y) (3)

and

lim
P→−∞

κPB(f)(x, y) = min
(s,t)∈B(x,y)

(f(s, t)) = εB(f)(x, y); (4)

it was proposed to use the CHM to calculate robust nonlinear operators which approach the

morphological ones but without using max and min operators. In addition, these operators

are more robust to outliers (i.e., to noise) and consequently they can be considered as an

alternative to rank-based filters in the implementation of pseudo-morphological operators.

3.1 Comparison with Minkowski Power Means

It is easy to see that for P ≫ 0 (P ≪ 0) the pixels with largest (smallest) values in the local

neighbourhood B will dominate the result of the weighted sum. Of course, in practice, the

range of P is limited due to the precision in the computation of the floating point operations.
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Proposition 3 of the previous Section justifies theoretically the suitability of CHM with respect

to the alternative approach by high-order Minkowski mean, as considered by Welk [41]. Let

us illustrate empirically how both means converge to the supremum (resp. infimum) when

positive P increases (negative P decreases). Fig. 2 depicts convergence with respect to the

value of P for the erosion (in blue) and dilation (in red), using Minkowski mean in (a) and

using CHM in (b). The convergence is measured as the average difference value between the

CHM for each P and the exact dilation/erosion obtained by max and min. The practical

advantage of CHM to approach morphological operators is obvious: even for P = 100 (or

P = −100) the dilation (resp. erosion) is not reached for Minkowski mean whereas the error

in the results for CHM is already negligible for P = 20 (resp. P = −20). We notice also

in the empirical curves, as expected from Proposition 3, that the convergence to the erosion

with P ≪ 0 is faster than to the dilation with equivalent P ≫ 0, i.e., for P > 0

|κPB(f)(x, y)− δB(f)(x, y)| ≥ |κ−P
B (f)(x, y)− εB(f)(x, y)|, ∀(x, y) ∈ Ω; ∀B

3.2 Symmetry, (Self)-Duality and other Properties

The asymmetry of P vs. −P involves that κPB(f) and κ−P
B (f) are not dual operators with

respect to the involution associated to the usual complement (or negative), i.e.,

κPB(f) 6= ∁nκ
−P
B (∁nf),

with ∁nf = 1− f . However, using the Proposition 2, we have the following duality

κPB(f) = ∁iκ
−P−1
B (∁if), (5)

where the involution is now associated to the reciprocal (or inversion), i.e., ∁if = 1/f (equiv-

alent to the complement of the logarithms). In addition, the case P = −1/2 is particularly

relevant since we have the following result

κ
−1/2
B (f) =

(
κ
−1/2
B (f−1)

)−1
,

which becomes a self-dual operator [20]. We note that κ
−1/2
B (f) is a kind of middle (or

“neutral”) operator between the arithmetic mean and the harmonic mean.
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Symmetry associated to the duality of dilation and erosion is a basic property of classical

morphology since their combination leads to the opening and closing [34]. Fig. 2(c) gives rates

of convergence of CHM to the opening and closing approximated by the product of κPB(f)

and κ−P
B (f) and Fig. 2(d) using the CHM operators κPB(f) and κ−P−1

B (f). As expected,

we observe that the second case leads to more asymmetric results of pseudo-opening/pseudo-

closing. This is due to the facts that convergence of κ−P
B (f) is already faster than convergence

of κPB(f) and that κ−P−1
B (f) ≤ κ−P

B (f). We can conclude that, even if the pair κPB(f) and

κ−P−1
B (f) is dual with respect to the reciprocal, that does not imply that their products are

a better choice than κPB(f) and κ
−P
B (f) for evolved operators such as the opening/closing.

As it was already pointed out in [37], another drawback of κPB(f) (resp. κ−P
B (f)) is the

fact that f(x, y) � κPB(f)(x, y) with P > 0 (resp. f(x, y) � κ−P
B (f)(x, y) with P < 0). Or

in other words, the extensitivity (resp. anti-extensitivity) for P > 0 (resp. P < 0) is not

guaranteed. However, according to proposition 4, the following ordering relationship holds

for P > 0:

κ−P
B (f)(x, y) ≤ κPB(f)(x, y).
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Figure 2: Convergence with respect to P > 0 of nonlinear power means-based operators to

morphological operators: (a) pseudo-dilation M
P
B and pseudo-erosion M

−P
B using Minkowski

mean; (b) pseudo-dilation κPB and pseudo-erosion κ−P
B using Counter-Harmonic mean; (c)

pseudo-opening and pseudo-closing using Counter-Harmonic mean defined respectively as the

combinations κPB(κ
−P
B ) and κ−P

B (κPB); (d) pseudo-opening and pseudo-closing using Counter-

Harmonic mean defined respectively as the combinations κPB(κ
−P−1
B ) and κ−P−1

B (κPB).
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4 Counter-Harmonic Gaussian Scale-Space

Canonic multiscale image analysis involves obtaining the multiscale linear convolutions of the

original image:

ψ(f)(x, y; t) = (f ∗Kσ)(x, y) =

∫

Ω
f(u, v)Kσ(x− u, y − v)dudv, (6)

where Kσ is the two-dimensional Gaussian function Kσ(x, y) =
1

2πσ2 exp
(
−(x2+y2)

2σ2

)
, whose

variance (or width) σ2 is proportional to the scale t; i.e., σ2 = 2t. Larger values of t lead to

simpler image representations.

We can define according to our paradigm the following generalised morphological scale-

space.

Definition 6 The counter-harmonic Gaussian scale-space of order P is defined as the fol-

lowing transform parameterized by scale t

η(f)(x, y; t;P ) =
(fP+1 ∗K√

2t)(x, y)

(fP ∗K√
2t)(x, y)

=

∫
E f(u, v)

P+1K√
2t(x− u, y − v)dudv∫

E f(u, v)
PK√

2t(x− u, y − v)dudv
. (7)

By choosing P > 0 (resp. P < 0), η(f)(x, y; t;P ) leads to a scale-space of pseudo-dilations

(resp. pseudo-erosions), whose filtering effects for a given scale t depend on the “nonlinearity

order” of P , which skew the Gaussian weighted values towards the supremum or infimum

value.

Since the image is stored as a collection of discrete pixels we need to produce a discrete

approximation to the Gaussian kernel. An infinitely large Gaussian kernel cannot be applied

in practice, hence one has to truncate it to a finite window as small as possible to obtain a

fast transformation. It is well known that the Gaussian kernel is effectively zero more than

about three standard deviations from the center, and so one can truncate the kernel at this

point. We have adopted for the examples given in this paper a support window of size 2t×2t,

or equivalently σ2 × σ2. The rationale behind this choice is to make easier the comparison

with the limit cases P = +∞ and P = −∞, which are respectively a dilation and an erosion

using a flat square of size 2t× 2t as structuring element.

Fig. 3 depicts a comparative example of image filtering using the CHM Gaussian scale-

space for a fixed t and variable P . The terminology of “pseudo-dilation”, or more generally
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“pseudo-morphological operators” is probably inappropriate: so many operators have been

published as pseudo-morphological ones, without relation with the present approach. How-

ever, due to the fact that the nonlinear filter η(f)(x, y; t;P ) for P > 0 (resp. P < 0) is not

extensive (resp. anti-extensive) and does not commute with the supremum (resp. with the

infimum), it cannot be considered stricto sensu as a dilation (resp. erosion). We notice also

that, for a fixed value of the nonlinear parameter P , the associated CHM Gaussian scale-space

for a variable scale t leads to families of multi-scale pseudo-dilations/-erosions.

4.1 Limit statements

We know that η(f)(x, y; t;P = +∞) = δB(f)(x, y) and η(f)(x, y; t;P = −∞) = εB(f)(x, y),

i.e., flat dilation and flat erosion, where B is the square support of the Gaussian kernel. Let

us consider in detail the limit cases for P ⇈ and P �.

Proposition 7 For a given scale parameter t, the limits of η(f)(x, y; t;P ) with respect to P

exist and are given by

lim
P→+∞

η(f)(x, y; t;P ) ≈ sup
(u,v)∈Ω

(
f(x− u, y − v)− (u2 + v2)

2P (2t)

)
, (8)

lim
P→−∞

η(f)(x, y; t;P ) ≈ inf
(u,v)∈Ω

(
f(x− u, y − v) +

(u2 + v2)

2P (2t)

)
, (9)

which can be interpreted respectively as the dilation and the erosion of f(x, y) with a quadratic

structuring function

b√2t(x, y;P ) =
(x2 + y2)

2P (2t)
,

i.e., the numerical dilation and erosion [34, 36] are defined by

(f ⊕ b√2t)(x, y) = sup
(u,v)∈Ω

(
f(x− u, y − v)− b√2t(u, v)

)
,

(f ⊖ b√2t)(x, y) = inf
(u,v)∈Ω

(
f(x− u, y − v) + b√2t(u, v)

)
.

Note that in these limiting cases the CHM framework involves a “normalization” by P

of the original Gaussian kernel scale parameter during unlinearization, i.e., the nonlinear

asymptotic scale parameter is σ̃ =
√
Pσ =

√
P (2t). This result is perfectly coherent with
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(a) Original (b) P = 0 (c) P = 1 (c’) P = −1

(d) P = 5 (e) P = 10 (f) P = 20 (g) P = +∞

(d’) P = −5 (e’) P = −10 (f’) P = −20 (g’) P = −∞

Figure 3: Generalised morphological Gaussian convolution (isotropic linear diffusion)

η(f)(x, y; t;P ) at scale t = 5: First row, original image, standard Gaussian filtered image

(P = 0) and cases P = 1 and P = −1; middle row, counter-harmonic Gaussian pseudo-

dilations (P > 0); bottom row, counter-harmonic Gaussian pseudo-erosions (P < 0).
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those obtained from totally different paradigms [41, 15]. Also, we notice again that for

P = +∞ the structuring function becomes flat and hence we obtain the flat dilation.

Proof. We only give the proof for the case P → +∞ since the case P → −∞ is exactly

similar. By rewriting fP = exp(P log(f)), taking first order Taylor expansion log(f) ≈ f − 1

and first order Taylor expansion of exponential function such that

N

D
= exp

(
log

(
N

D

))
≈ 1 + log(N)− log(D),

we have:

lim
P→+∞

η(f)(x, y; t;P ) = 1 + log

∫

Ω
exp((P + 1)[f(x− u, y − v)− (u2 + v2)

2(P + 1)(2t)
− 1])dudv

− log

∫

Ω
exp(P [f(x− u, y − v)− (u2 + v2)

2P (2t)
− 1])dudv,

which can be rewritten as

1 + (P + 1) log

(∫

Ω

(
exp(f(x− u, y − v)− (u2 + v2)

2(P + 1)(2t)
− 1)

)(P+1)

dudv

) 1
(P+1)

−P log

(∫

Ω

(
exp(f(x− u, y − v)− (u2 + v2)

2P (2t)
− 1)

)P

dudv

) 1
P

,

Using now the standard result

lim
P→+∞

{∫

Ω
gP (x)dx

}1/P

= sup
x∈Ω

g(x),

which holds for positive and bounded function g with support space Ω, and and considering

continuity and monotonicity of the logarithm, we obtain:

lim
P→+∞

η(f)(x, y; t;P ) = 1 + (P + 1) sup
(u,v)∈Ω

(f(x− u, y − v)− (u2 + v2)

2(P + 1)(2t)
− 1)−

P sup
(u,v)∈Ω

(f(x− u, y − v)− (u2 + v2)

2P (2t)
− 1).

By considering that both supremum operations gives closer values, i.e.,

sup
(u,v)∈Ω

(f(x− u, y − v)− (u2 + v2)

2P (2t)
− 1) ≈ sup

(u,v)∈Ω
(f(x− u, y − v)− (u2 + v2)

2(P + 1)(2t)
− 1),

we finally obtain the corresponding result.
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4.2 Properties of CHM Gaussian Scale-Space

We discuss now in more detail several features of the t× P scale-space η(f)(x, y; t;P ).

4.2.1 Continuity

The generic kernel function K√
2t(x, y) is a continuous function in R2.

Proposition 8 The scale-space image η(f)(x, y; t;P ) is continuous for all (x, y) ∈ Ω, for

any t ≥ 0 and for any P ∈ R.

Proof. Consider K√
2(t+∆t)

(x + ∆x, y + ∆y) = K√
2t(x, y) + E(x, y) where assuming the

continuity of K(x, y), which implies the continuity of K√
2t(x, y), we have

lim

|∆x| → 0

|∆y| → 0

∆t→ 0

E(x, y) = 0 for all (x, y) ∈ Ω (10)

For t > 0, we have

η(f)(x+∆x, y +∆y; t+∆t;P ) =

∫
E f(x− u+∆x, y − v +∆y)P+1K√

2(t+∆t)
(u, v)dudv

∫
E f(x− u+∆x, y − v +∆y)PK√

2(t+∆t)
(u, v)dudv

Setting w = u−∆x and z = v −∆y we have

η(f)(x+∆x, y +∆y; t+∆t;P ) =

∫
E f(x− w, y − z)P+1K√

2(t+∆t)
(w +∆x, z +∆y)dwdz

∫
E f(x− w, y − z)PK√

2(t+∆t)
(w +∆x, z +∆y)dwdz

=

∫
E f(x− w, y − z)P+1

(
K√

2t(w, z) + E(w, z)
)
dwdz

∫
E f(x− w, y − z)P

(
K√

2t(w, z) + E(w, z)
)
dwdz

So, in the limit as |∆x| → 0, |∆y| → 0, ∆t→ 0 and assuming that the expression (10) holds,

hence

η(f)(x+∆x, y +∆y; t+∆t;P ) → η(f)(x, y; t;P )

establishing the continuity.
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4.2.2 Ordering

We have the following property of ordering w.r.t. scale parameter t.

Proposition 9 There exists a value of P such that for any Q ≥ P > 0, we have that for

any pair of ordered scales 0 < t1 < t2 involves η(f)(x, y; t1;Q) ≤ η(f)(x, y; t2;Q). Similarly,

there is a P such that for R ≤ P < 0, if 0 < t1 < t2 then η(f)(x, y; t1;R) ≥ η(f)(x, y; t2;R).

Proof. If we consider that for a large enough P > 0, with Q ≥ P we have

η(f)(x, y; t1;Q) = sup
(u,v)∈Ω

(
f(x− u, y − v)− (u2 + v2)

4Qt1

)

and we have also for 0 < t1 < t2:
(u2+v2)
4Qt2

< (u2+v2)
4Qt1

, ∀(u, v) ∈ D where D ⊂ Ω. Then we

obtain

sup
(u,v)∈Ω

(
f(x− u, y − v)− (u2 + v2)

4Qt1

)
≤ sup

(u,v)∈Ω

(
f(x− u, y − v)− (u2 + v2)

4Qt2

)

thus proving the proposition. Similarly, the proof can be obtained for P < 0

Hence, the ordering properties associated to the spatial scale t appears only in the pseudo-

morphological behaviour of the CHM for large enough |P |. The fundamental ordering rela-

tionship w.r.t. P is directly inherited from Proposition 3 of the CHM.

Proposition 10 For any pair of nonlinearity orders −∞ ≤ R < S ≤ +∞, we have

η(f)(x, y; t;R) ≤ η(f)(x, y; t;S)

for any t ≥ 0, with equality for t = 0.

4.2.3 Dimensionality

Dimensionality is a fundamental concept in measurements. This principle was extended in [32]

to image processing, in particular, in the framework of mathematical morphology, as a way

to take into account the homogeneity of physical properties computed from images. Later,

it was studied in [21] the case of nonflat scale-space mathematical morphology using elliptic

poweroid structuring functions. Making a measurement on an image consists in applying
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a functional on the image, where a “functional” is a global parameter associated with a

function. More precisely, a functional W on a function f is said to be dimensional if and only

if exists constants k1, k2 such that for all λ1, λ2 > 0

W (f ′) = λk11 λ
k2
2 W (f)

where f ′(x, y) = λ1f(λ2x, λ2y) and where k1 is the intensity dimension and k2 the space

dimension. Hence the parameter λ1 accounts for the affinity along the gray tone axis and

λ2 for the homothety of the support space of image f . The relation W (f ′) restricts the

way in which affinities and homotheties of an image affect dimensional measurements on it

and results in a decoupling between affinity and homothety measurements. We notice that if

k1 = 0 the functionalW is invariant under intensity affinities and if k2 = 0 involves invariance

under homotheties. Let us consider under which conditions a dimensional functional of the

CHM Gaussian scale-space is also a dimensional functional of the underlying image.

Let us define the transformed scale-space: λ1η(f)(λ2x, λ2y;λ3t;λ4P ), for any λ1, λ2, λ3,

λ4 > 0.

Proposition 11 A functional W of the nonlinear scale-space η(f)(x, y; t;P ) is dimensional

if and only if λ22 = λ3λ4 and if |P | is large enough or if λ22 = λ3 and P = 0. In such a case,

there exist constants k1 and k2 and we have

W
(
η(f ′)(x, y; t;P )

)
= λk11 λ

k2
2 W (η(f)(x, y; t;P ))

Proof. We start by writing

λ1η(f)(λ2x, λ2y;λ3t;λ4P ) = λ1

∫
E f(λ2(x− u), λ2(y − v))λ4P+1K√

2λ3t
(λ2u, λ2v)dudv∫

E f(λ2(x− u), λ2(y − v))λ4PK√
2λ3t

(λ2u, λ2v)dudv
.

On the one hand, we have K√
2λ3t

(λ2x, λ2y) =
1

4πλ3t
exp

(
−(x2+y2)

4t
λ2
2

λ3

)
, on the other hand, we

define f ′(x, y) = λ1f(λ2(x, y)). In addition, λ21f
λ4P+1(λ2(x, y)) = λ1f

λ4P (λ2(x, y))λ1f(λ2(x, y)) =

(f ′)λ4P (x, y)f ′(x, y) = (f ′)λ4P+1(x, y). Thus

λ1η(f)(λ2x, λ2y;λ3t;λ4P ) =

∫
E f

′(x− u, y − v)λ4P+1e
−(u2+v2)

4t

λ22
λ3 dudv

∫
E f

′(x− u, y − v)λ4P e
−(u2+v2)

4t

λ22
λ3 dudv
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Consequently if we fix λ22 = λ3, for the case P = 0 we have

λ1η(f)(λ2x, λ2y;λ3t; 0) = η(f ′)(x, y; t; 0)

and for the case P → +∞ and fixing λ22 = λ3λ4 we have

λ1η(f)(λ2x, λ2y;λ3t;λ4P ) = η(f ′)(x, y; t;P )

In conclusion, a functional W will be dimensional only when a modification of homothety

is compensated by an affinity on the spatial scale, which involves also to increase the non-

linearity order. This point can be also studied under the viewpoint of the Heijmans theory

of [18, 19].

4.2.4 Invariance

By its linearity, Gaussian scale-space is invariant under linear transformations f 7→ f̂ = αf+β

⇒
(
f̂ ∗K√

2t

)
(x, y) = α

(
f ∗K√

2t

)
(x, y) + β. Morphological dilation/erosion are invariant

only under grey-value shifts f 7→ f̂ = f + β ⇒
(
f̂ ⊕ b√2t

)
(x, y) =

(
f ⊕ b√2t

)
(x, y) + β.

We notice that the flat dilation/erosion are invariant under anamorphosis [34, 29], i.e., any

strictly increasing mapping is an anamorphosis. Let us look now at invariance properties of

the CHM Gaussian scale-space.

Proposition 12 The CHM Gaussian scale-space η(f)(x, y; t;P ) is invariant under scalar

multiplication of grey-values for any P , −∞ ≤ P ≤ +∞, i.e., η(αf)(x, y; t;P ) = αη(f)(x, y; t;P ).

In the limit cases P = 0 (equivalent to Gaussian scale-space) and P → ±∞, the CHM

Gaussian scale-space is invariant under linear transformations: η(αf + β)(x, y; t;P = 0) =

αη(f)(x, y; t;P = 0)+β and limP→±∞ η(αf+β)(x, y; t;P ) = α limP→±∞ η(f)(x, y; t;P ) +β.

Proof. The proofs are direct from the expressions of the limit cases.

Hence the most interesting cases of the CHM Gaussian scale-space are invariant to grey-

level addition and multiplication.
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4.2.5 Asymptotic separability and semi-group law

In the classical state-of-the-art on linear scale-spaces, the fundamental semi-group prop-

erty [25], or recursivity principle [30], states as follows: ∀t1, t2 ≥ 0,
(
(f ∗K√

2t1
) ∗K√

2t2

)
=

(
f ∗K√

2(t1+t2)

)
. This is due to the fact that the Gaussian convolution kernels are the

only separable and rotationally invariant functions that preserve the shape under Fourier

transform. That allows also a separability in the implementation of the 2D Gaussian kernel

convolution at scale t, using two successive 1D Gaussian kernel convolutions (at directions

x and y) at scale t. From the works by Van den Boomgaard [4], it is also well known

that in mathematical morphology the parabolic structuring function (in fact, any quadratic

structuring function) are the equivalent class of functions which are dimensionally separa-

ble and closed with respect to the dilation/erosion, i.e., ∀t1, t2 ≥ 0,
(
(f ⊕ b√2t1

)⊕ b√2t2

)
=

(
f ⊕ b√

2(t1+t2)

)
, and similarly for the erosion. This result is usually proved in the slope

transform domain [13, 27].

The filter family η(f)(x, y; t;P ) for a given P ∈ R has no semi-group structure and is,

therefore, not a scale-space in strict sense. However, using the limit expressions it is easy to

proof that for the asymptotic cases P = 0 and P → ±∞, the following semi-group holds:

η (η(f)(x, y; t1;P )) (x, y; t2;P ) = η(f)(x, y; t1 + t2;P ); ∀t1, t2 ≥ 0

This result constitutes an advantage for an efficient numerical computation of an accept-

able approximation to the limit cases of 2D CHM Gaussian scale-space using 1D separable

Gaussian kernel for the convolutions of fP+1 and of fP . Nevertheless, since computational

efficiency is often important, the result of the operator η(f)(x, y; t;P ) for any P can be

computed using low-order recursive filters for the numerator and denominator 2D Gaussian

convolutions of the CHM filter. For example, the approach introduced in [42] uses a third-

order recursive filter with one real pole and a pair of complex poles, applied forward and

backward to make a sixth-order symmetric approximation to the Gaussian with low compu-

tational complexity for any scale t.
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4.3 Interpretation as CHM Linear Diffusion and iterative framework

A filtered image u(x, y; t) of f(x, y) is calculated by solving the diffusion equation with the

original image as initial state, and reflecting boundary conditions:

∂tu = div (c∇u) = c∆u = c

(
∂2u

∂x2
+
∂2u

∂y2

)
(11)

u(x, y; 0) = f(x, y)

∂nu|∂Ω = 0

where c is the conductivity and n denotes the normal to the image boundary ∂Ω. The

popularity of the Gaussian scale-space is due to its linearity and the fact that the multiscale

function ψ(f)(x, y; t) can be generated from the isotropic heat diffusion, i.e.,

u(x, y; t) = (f ∗K√
2t)(x, y) = ψ(x, y; t), t > 0.

4.3.1 Numerical solution

The PDE can also be solved using finite differences in an explicit schema. Pixel i represents

the location (xi, yi). Let hl denote the grid size in the l direction (working on square grid,

we assume 1 for horizonal and vertical directions and
√
2 for 45◦ and −45◦ directions);

and τ denote the time step size (to guarantee stability, the step size must satisfy [39]: τ =

1/(
∑m

l=1 2/h
2
l )), considering discrete times tk = kτ (with k positive integer). By uki we denote

approximation to u(xi, yi; tk). The simplest discretization can be written in a compact way

as [40]:

uk+1
i = uki + τ




m∑

l=1

∑

j∈Nl(i)

ckj + cki
2h2l

(ukj − uki )


 , (12)

where Nl(i) consists of the two neighbours of pixel i along the l discretized direction. The

conduction coefficients cki are considered here constant in time and space.

Thus, the pseudo-morphological isotropic diffusion of order P can be rewritten as

η(f)(x, y; t;P ) =
[u(x, y; t)]P+1

[u(x, y; t)]P
, (13)

where [u(x, y; t)]P is the solution of diffusion equation 12 with the initial condition

u(x, y; 0) = f(x, y)P .
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4.3.2 Coupled schema

Furthermore, starting from the PDE numerical solution, it is also possible to define an iter-

ative CHM-based isotropic diffusion, η̂(f)(x, y; t;P ), by a coupled evolution of both power

terms, according to the following discretization:

uk+1
i =

(uki )
P+1 + τ

(∑m
l=1

∑
j∈Nl(i)

ckj+cki
2h2

l
((ukj )

P+1 − (uki )
P+1)

)

(uki )
P + τ

(∑m
l=1

∑
j∈Nl(i)

ckj+cki
2h2

l
((ukj )

P − (uki )
P )

) . (14)

As we can expect, the results of decoupled η(f)(x, y; t;P ) (equivalent to the CHM gen-

eralised Gaussian convolution) and coupled η̂(f)(x, y; t;P ) diffusions are different. Let start

our analysis with the CHM linear diffusion of a 1D signal given in Fig. 4. It concerns a

very simple ramp signal (black signal in both figures) where the decoupled iterative scheme

η(f)(x, y; t;P ) and the coupled one η̂(f)(x, y; t;P ) are compared, at same spatial scale t = 5,

with respect to various values of P ≤ 0. Obviously the filtered signal at order P = 0 is the

same in both cases as well as the limit case P = −∞, which corresponds to a flat erosion

(yellow signal in both figures). We observe that for small |P | (e.g., P = −1 or −3), their

behaviour is similar; however, for high values of |P |, we notice that the decoupled schema

produces smother results. Hence, the main qualitative property of the coupled schema is

to produce a nonlinear diffusion with a notably sharp effect on the regularization of the

structures. In Fig. 5 is given a comparison of CHM linear diffusion using also both the de-

coupled iterative scheme vs. the coupled iterative scheme, at spatial scale t = 5 and order

P = 10. We note from this experiment of pseudo-dilation that the same effect of sharp-

ness on η̂(f)(x, y; t;P ) is observed. We can conclude that the iteration n times of a unitary

(i.e., σ =
√
2) generalised morphological Gaussian convolution introduces a nonlinearity de-

gree superior to the corresponding generalised morphological Gaussian convolution at scale

σ =
√
2n. Other comparisons of decoupled vs. coupled CHM diffusion leading to the same

analysis are given in the examples on Fig. 7 of pseudo-dilation/pseudo-erosion of a binary uni-

form noise image, as well as the case depicted in Fig. 9(e) and (f), which just corresponds to a

comparison of the pseudo-opening obtained by product of pseudo-erosion and pseudo-dilation

η̂ (η̂(f)(x, y; t;−P )) (x, y; t;P ) and the counterpart decoupled diffusion operators.
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Figure 4: Comparison of CHM linear diffusion of a 1D signal using in (a) the decoupled

iterative scheme η(f)(x, y; t;P ) (a) and in (b) the coupled iterative scheme η̂(f)(x, y; t;P ),

at spatial scale t = 5 and with respect to various values of P ≤ 0.
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(a) Original f(x, y) (b) (c) η(f)(x, y; t;P ) (d) η̂(f)(x, y; t;P )

P = +∞ P = 10 P = 10

Figure 5: Comparison of CHM linear diffusion using the decoupled iterative scheme (equiv-

alent to the generalised Gaussian convolution) vs. the coupled iterative scheme, at spatial

scale t = 5 and order P = 10: (a) original image f(x, y), (b) standard dilation, (c) decoupled

η(f)(x, y; t;P ) and (d) coupled η̂(f)(x, y; t;P ). At the bottom are zoom-in frames of a square

section cropped from the corresponding images.
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5 Counter-Harmonic Nonlinear Diffusion

Ideas introduced above are extended in this section to two well-known cases of evolved image

diffusion.

5.1 Nonlinear diffusion

The big disadvantage of isotropic diffusion is the fact that linear smoothers do not only smooth

the noise but also blur and shift structure edges, which are important image features in some

applications, i.e., segmentation and object recognition. The pioneering idea introduced by

Perona and Malik [31] to reduce these problems is to locally adapt the diffusivity, i.e., the

value of the conductivity c, to the gradient of the image at each iteration. More precisely,

this nonlinear diffusion involves replacing the diffusion equation 11 by the following model:

∂tu = div
(
g
(
‖∇u‖2

)
∇u
)

(15)

u(x, y; 0) = f(x, y)

∂nu|∂Ω = 0

In this model the diffusivity has to be such that g
(
‖∇u‖2

)
→ 0 when ‖∇u‖2 → +∞ and

g
(
‖∇u‖2

)
→ 1 when ‖∇u‖2 → 0. One of the diffusivities Perona and Malik proposed is the

function

g(s2) = 1/
(
1 + (s2/λ2)

)
, λ > 0,

where λ is a threshold parameter that separates forward and backward diffusion. This model

accomplishes the aim of blurring small fluctuations (noise) while enhancing edges (by prevent-

ing excessive diffusion). To avoid some numerical and theoretical drawbacks of this model,

it was proposed in [12], a new version of Perona and Malik theory, based on replacing dif-

fusivity g
(
‖∇u‖2

)
by a regularized version g

(
‖∇uσ‖2

)
with ∇uσ = ∇ (Kσ ∗ u) where Kσ

is a Gaussian kernel. This latter model is just used in our framework and the numerical

solution can be obtained using the explicit scheme 12, where the local conductivity is here

the approximation to the regularized term g
(
‖∇uσ‖2

)
, i.e.,

cki =
1

1 + ‖∇uσ(xi,yi;tk)‖2
λ2

, (16)
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with the gradient computed by central differences.

Similarly to the isotropic case, we can now define the pseudo-morphological counter-

harmonic nonlinear diffusion of order P as

ξ(f)(x, y; t;P ) =
[u(x, y; t)]P+1

nl

[u(x, y; t)]Pnl
, (17)

where [u(x, y; t)]Qnl is the solution of regularized Perona and Malik diffusion equation with

the initial condition u(x, y; 0) = f(x, y)Q. Fig. 6 provides the results of pseudo-dilation and

pseudo-erosion (P = 10 and P = −10) using the regularized Perona and Malik model on a

noisy image. Comparing with respect to the standard filtering (P = 0), the good properties

of denoising without blurring are conserved but in addition, an effect of dilation/erosion is

obtained. This kind of pseudo-morphology is useful for instance to compute morphological

gradient, i.e.,

ξ(f)(x, y; t;P )− ξ(f)(x, y; t;−P ),

of noisy images or to construct filters as morphological openings, i.e.,

ξ(ξ(f)(x, y; t;−P ))(x, y; t;P ).

See in Fig. 9(c) and (g) the comparison of the standard Perona and Malik diffusion and the

corresponding pseudo-opening diffusion, which removes some small bright structures.

It is also possible to define the coupled numerical schema instead of the decoupled one

given by expression (17). Fig. 7 provides a comparison of decoupled and coupled pseudo-

morphological Perona and Malik diffusion ξ(x, y; t;P ) at scale t = 5 (regularization parameter

σ = 0.5). The original image is a noisy binary image which in all the cases is restored without

blurring the edges of the objects. This example is interesting to illustrate how the generalised

Perona and Malik diffusion can be used to emphasize the bright or the dark image structures

during the diffusion process and simultaneously preserving the edges.

A critical point here is the choice of parameter λ, which is an ill-posed problem. Sophisti-

cated approaches in the state-of-the-art are based on noise estimation. We have determined

empirically that the value

λ =
1

m

(
m∑

l=1

Mean(∇lu(x, y; t))

)
, (18)
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where m is the number of discretized directions, and which of course is different for P and

P + 1, leads to stable results.

5.2 Coherence-enhanced diffusion

Coherence-enhanced diffusion, or tensor-driven diffusion, was introduced by Weickert [39] in

order to achieve an anisotropic diffusion filtering based on directionality information. The

idea is to adapt the diffusion process to local image structure using the following nonlinear

diffusion equation:

∂tu = div (D∇u) . (19)

where the conductivity function becomes a symmetric positive definite diffusion tensor D,

which is a function adapted to the structure tensor:

Jρ(∇uσ) = Kρ ∗ (∇uσ ⊗∇uσ).

The eigenvectors of Jρ are orthonormal and the eigenvalues are positive. The corresponding

eigenvalues (let us call them µ1 ≥ µ2) describe the local structure. Flat areas give µ1 ≈ µ2,

straight edges give µ1 ≫ µ2 = 0 and corners give µ1 ≥ µ2 ≫ 0. In order to control the

diffusion, Jρ is not used directly, but tensor D has the same eigenvectors as Jρ , but different

eigenvalues, thus controlling the diffusion in both directions. The eigenvalues are




λ1 = α

λ2 = α+ (1− α) exp(−C/κ)

where κ is the orientation coherence and C > 0 serves as a threshold parameter. Parameter

α > 0 is quite important and serves as a regularization parameter which keeps D uniformly

positive definite. For this diffusion, we have used in our tests a numerical implementation

using the additive operator splitting (AOS) scheme [39], which is particularly efficient and has

the advantage of being rotationally invariant compared to their multiplicative counterparts.

As previously, the pseudo-morphological counter-harmonic coherence-enhanced diffusion

of order P is defined as

χ(f)(x, y; t;P ) =
[u(x, y; t)]P+1

ce

[u(x, y; t)]Pce
, (20)
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where [u(x, y; t)]Qce is the solution of Weickert diffusion equation (19) with the initial condition

u(x, y; 0) = f(x, y)Q. As in the previous case, we have to adapt the regularization parameter

α to the dynamics of the power images f(x, y)P in order to have numerical stable results.

Empirically, we have observed that

α =





0.01|P | if P 6= 0

0.005 if P = 0
(21)

lead to satisfactory results. Moreover, we have also observed in experimental tests that

numerical solution of the CHM coherence diffusion given in expression (20) can introduce

some instabilities and errors for P > 0, whereas for P < 0 the results are numerically regular.

To avoid this drawback, we propose to compute, by duality, the coherence-enhanced pseudo-

dilation χ(f)(x, y; t;P ), with P > 0, by means of the operation χ(f−1)(x, y; t;−P − 1)−1,

based on property (5). In any case, a deeper study on the numerical implementation of

counter-harmonic Weickert diffusion, in particular in the case of coupled diffusion, is required.

Examples of pseudo-morphological anisotropic diffusion are given in Fig. 8 and Fig. 9(d)-

(h). Dark regions are anisotropically pronounced in pseudo-erosion schemes (P < 0) whereas

bright regions are anisotropically emphasized in pseudo-dilation as well as in their products,

respectively the pseudo-openings and pseudo-closings.
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(a) Original (b) P = 0

(c) P = +∞ (d) P = −∞ (e) Difference

(c’) P = 10 (d’) P = −10 (e’) Difference

Figure 6: Generalised morphological Perona and Malik diffusion ξ(x, y; t;P ) at scale t = 5

(regularization parameter σ = 0.5 ): (a) original image, (b) standard nonlinear diffusion,

(c)/(d) standard dilation/(d) standard erosion, (e) image difference between dil./ero. (gra-

dient), (c’)/(d’) pseudo-dilation/erosion by counter-harmonic nonlinear diffusion, (e’) image

difference between pseudo-dil./ero.
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(a) Original

(b) P = 0

(c) P = −3 (decoupled) (d) P = 5 (decoupled)

(e) P = −3 (coupled) (f) P = 5 (coupled)

Figure 7: Comparison of decoupled and coupled generalised morphological Perona and Malik

diffusion ξ(x, y; t;P ) at scale t = 5 (regularization parameter σ = 0.5 ): (a) original image,

(b) standard nonlinear diffusion, (c)/(d) pseudo-dilation/erosion by counter-harmonic non-

linear diffusion using decoupled schema, (e)/(f) pseudo-dilation/erosion by counter-harmonic

nonlinear diffusion using coupled schema.
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(a) Original (b) Weickert Diff. (c) Opening (d) Closing

(e) P = 5 (f) P = −5 (g) P = −5, P = 5 (h) P = 5, P = −5

Figure 8: Generalised morphological Weickert diffusion χ(x, y; t;P ) at scale t = 10 (with

regularization parameters: local scale σ = 1.5, integration scale ρ = 6) : (a) original image,

(b) standard anisotropic diffusion, (c)-(d) opening and closing of size equivalent to t = 5,

(e)/(f) pseudo-dilation/erosion by counter-harmonic anisotropic diffusion, (g)/(h) pseudo-

opening/closing by counter-harmonic anisotropic diffusion.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Comparison of standard diffusions and pseudo-morphological openings (the original

image is given in Fig. 5: (a) standard opening using a square 11× 11, (b) isotropic diffusion

t = 5, (c) Perona and Malik diffusion t = 5, (d) Weickert diffusion t = 10, (e) pseudo-opening

using isotropic diffusion t = 5, P = 10, P = −10, (f) pseudo-opening using coupled isotropic

diffusion t = 5, P = 10, P = −10, (g) pseudo-opening using Perona and Malik diffusion t = 5,

P = 5, P = −5, (h) pseudo-opening using Weickert diffusion t = 10, P = 5, P = −5.
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6 Applications to asymmetric image processing

In the previous sections, we have illustrated with various examples the comparative effects

of generalised morphological diffusion. Our aim now is to demonstrate the significance of the

approach for practical image analysis. Let us start with the problem of images corrupted

with non-Gaussian noise.

Fig. 10(a) shows the original unnoisy f image which has been corrupted using two kinds

of noise: i) standard speckle noise f ′, i.e., multiplicative noise f ′ = f + nf , where noise n is

uniformly distributed random noise with mean 0 and variance σ; ii) asymmetric (negative)

impulse noise f ′′, generated as f ′′ = f − n, where n depends on the absolute value of the

logarithm of an uniform noise with variance σ. Figs. 10(b) and (c) show just an example

of each noisy image. We have simulated for both types of noise 10 images at four different

values of σ.

We consider image denoising using the generalised morphological nonlinear (Perona and

Malik) diffusion ξ(x, y; t;P ), where the nonlinear order P has been discretised in the interval

−20 ≤ P ≤ 0 (pseudo-erosions) and in the interval 0 ≤ P ≤ 20 (pseudo-dilations) as well

as their products (pseudo-openings and pseudo-closings). Finally, we have computed the

corresponding SNR. The averaged values of SNR with respect to P are given in the curves

of Fig. 11. The interest of these experiments is just to study the behaviour of ξ(x, y; t;P )

with respect to P , or more precisely to find which P produces the highest SNR. Figs. 11(d)-

(f) show three cases of speckle-noise restored image and Figs. 11(g)-(i) show three cases of

asymmetric-impulse restored image.

As we can observe from the curves of speckle noise, for any σ, the maximum SNR corre-

sponds to a value −3 ≤ P ≤ 0, that is a pseudo-erosion. This result is confirmed by the fact

that pseudo-openings at these values perform better than the pseudo-closing. However, the

results are not very impressive for such a noise. The case of asymmetric negative impulse

noise is more conclusive, since for significant noise levels, it is observed that the maximum

SNR is much better for a high positive value the of order: 5 ≤ P ≤ 10. As expected, the

results of pseudo-closings are better than the pseudo-openings.

The interest of a pre-processing step such as the generalised morphological diffusion
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ξ(x, y; t;P ) is not only to improve the SNR, but also to produce a suitable image regulari-

sation which improves other subsequent image analysis steps. Hence, we have performed a

Harris corner detector [17], computed using the implementation available in [24]. Fig. 12

provides three examples of the obtained key-points; in particular, it is compared, using

the same detection parameters, the original asymmetric impulse noisy image f ′′, the im-

age ξ(x, y; t = 5;P = 0)(f ′′) (standard Perona and Malik diffusion) and the image ξ(x, y; t =

5;P = 5)(ξ(x, y; t = 5;P = −5)(f ′′)) (pseudo-opening). As we can observe the keypoints

obtained from the generalised morphological diffusion are more significant than the ones

obtained form the standard Perona and Malik diffusion.

Finally, let us consider the case study summarised in Fig. 13. The vessels are dark

structures which can be extracted using the residue of a morphological closing (the dual

top-hat transform [36]). From this image, the edges can be obtained using for instance

the Canny edge detector [11] (we have also used the implementation available in [24]). We

note the vessels are anisotropic structures which can be enhanced using the Weickert diffusion

model. In Fig. 13 are compared the edges obtained using the same detection parameters from

the original image f , the image χ(x, y; t = 5;P = 0)(f) (standard Weickert diffusion) and the

image χ(x, y; t = 5;P = 5)(χ(x, y; t = 5;P = −5)(f ′′)). We consider that this example shows

well that a prior knowledge of the nature of the structures to be enhanced (e.g., anisotropic

and dark ones) can be used to tailor the most suitable generalised morphological diffusion.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Image denoising using generalised morphological nonlinear diffusion ξ(x, y; t;P ):

(a) original unnoisy image, f ; (b) image corrupted with speckle noise σ = 0.01, f ′; (c) image

corrupted with asymmetric impulse noise σ = 0.1, f ′′; (d) restoration of image (b) using

ξ(x, y; t = 5;P = 0)(f ′); (e) restoration of image (b) using ξ(x, y; t = 5;P = −3)(f ′); (f)

restoration of image (b) using ξ(x, y; t = 5;P = 3)(ξ(x, y; t = 5;P = −3)(f ′)); (g) restoration

of image (c) using ξ(x, y; t = 5;P = 0)(f ′′); (h) restoration of image (c) using ξ(x, y; t = 5;P =

−5)(f ′′); (i) restoration of image (c) using ξ(x, y; t = 5;P = 5)(ξ(x, y; t = 5;P = −5)(f ′′)).
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Figure 11: Denoising assessment in terms of SNR with respect to order of the gener-

alised morphological nonlinear diffusion ξ(x, y; t;P )(f ′) (fixed t = 5): (a) pseudo-erosion

ξ(x, y; t;P < 0)(f ′) and pseudo-dilation ξ(x, y; t;P > 0)(f ′) for speckle noise at four val-

ues of σ; (b) pseudo-opening ξ(x, y; t;P > 0)(ξ(x, y; t;P < 0)(f ′)) and pseudo-closing

ξ(x, y; t;P < 0)(ξ(x, y; t;P > 0)(f ′)) for speckle noise at four values of σ; (a) pseudo-erosion

ξ(x, y; t;P < 0)(f ′′) and pseudo-dilation ξ(x, y; t;P > 0)(f ′′) for asymmetric impulse noise at

four values of σ; (b) pseudo-opening ξ(x, y; t;P > 0)(ξ(x, y; t;P < 0)(f ′′)) and pseudo-closing

ξ(x, y; t;P < 0)(ξ(x, y; t;P > 0)(f ′′)) for asymmetric impulse noise at four values of σ.
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(a) (b) (c)

(d) (e) (f)

Figure 12: Example of Harris corner detector: (a) original asymmetric impulse noisy image

f ′′; (b) denoised image ξ(x, y; t = 5;P = 0)(f ′′) (standard Perona and Malik diffusion);

(c) denoised image ξ(x, y; t = 5;P = 5)(ξ(x, y; t = 5;P = −5)(f ′′)) (pseudo-opening); (d)

keypoints of image (a); (e) keypoints of image (b); (f) keypoints of image (c).

36



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: Edge vessel detection on retinal image using Canny detector: (a) original image

f ; (b) enhanced image χ(x, y; t = 5;P = 0)(f) (standard Weickert diffusion); (c) enhanced

image χ(x, y; t = 5;P = 5)(χ(x, y; t = 5;P = −5)(f ′′)); (d) dual top-hat of image (a); (e)

dual top-hat of image (b); (f) dual top-hat of image (c); (g) detected edges from image (d);

(h) detected edges from image (e); (i) detected edges from image (f).
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7 Conclusions and perspectives

We have introduced a mathematical framework of pseudo-morphological image diffusion using

the notion of counter-harmonic mean. In particular, we have proposed the counter-harmonic

Gaussian scale-space, and we have studied in detail its properties. In the case of 2D images,

the nonlinear smoothed signals η(f)(x, y; t;P ) taken as a whole can be considered as a contin-

uous function on R2+2, that is, a double pseudo-scale-space with respect to t and with respect

to P . This family of filters expands and includes the Gaussian scale-space and the morpho-

logical erosion/dilation scale-spaces. We have also proposed the corresponding generalisation

of Perona and Malik diffusion model as well as of Weickert model of coherence-enhanced

diffusion.

As the dilation/erosion operators depend on the extreme values of the (additively weighted

signal) in the neighbourhood of a point, impulse noise and other kind of high-frequency

noise cause spurious results of the standard morphological processing of noisy image. Linear

diffusion filtering is able to deal with the noise, however the averaging process blurs and limits

also the effect of the filtering in the case of asymmetric perturbation. As we have shown in

the applications, the fundamental property of the present generalised image diffusion is its

ability to robustly filter out the image structures in a nonlinear way, which can selectively

bias the result toward high (low) values such as the dilation (erosion) filter.

We have given a first analysis about the limit statements, but a deeper study is still

required about the behaviour of the counter-harmonic linear diffusion with respect to value

of P . In particular, we believe that the relationship between our numerical framework and

an hybrid evolutionary PDE such as

∂tu = α∆u± β‖∇u‖2,

with variable coefficients α and β which determines the part of linear versus morphological

smoothing w.r.t. P , should be explored. This hybrid equation was already mentioned in [8],

considered in [15] and it is related also to Kuwahara-Nagao PDE introduced in [6] but, to

our knowledge, it remains an open problem. Additionally, it should be considered how the

present nonlinearization of image diffusion can be turned to the Laplace-Beltrami framework
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to describe diffusion process [35, 23].

A deeper analytical study on the numerical implementation of counter-harmonic Perona-

Malik and Weickert diffusions, and in particular in the case of coupled diffusion schemas,

should be achieved. We have pointed out that, for data defined in the interval [0, 1], the

behaviour of filters with P < 0 is generally more stable than the case P > 0. Consequently,

the use of the duality by inversion using Proposition 2 seems an appropriate alternative to

solve the cases P > 0 by means of the dual −P − 1. However a better understating of these

numerical effects is still to be investigated.

Acknowledgements. The author would like to thank the anonymous Reviewer who

pointed out the duality of the CHM by the reciprocal as well as the case of self-duality.
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