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LCA has been extensively used in the last few years and a large number of studies have been published in the literature. These studies show a great variability in results of comparable systems. It somehow leads policy-makers to consider the LCA approach as an inconclusive method. Some attempts have been developed to assess LCA results variability; however, they remain mostly qualitative.

In this paper, a method based on Global Sensitivity Analysis (GSA) is presented in order to understand the origin of results variability. A general variance decomposition based on the Sobol indices is applied to quantify the influence of input parameters on the environmental answer.

A preliminary study is done by using this GSA on a large set of integrated photovoltaic systems greenhouse gas (GHG) performances. We identify that the irradiation parameter has the biggest influence on those GHG performances. The other parameters such as lifetime or performance ratio have been identified as having a smaller but significant influence on the GHG results variability. The GHG performances range from 24 to 230 g CO 2eq /kWh with 75% of the performance ranging from 23.8 to 93.5g CO 2eq /kWh.

INTRODUCTION

Life Cycle Assessment (LCA) is nowadays considered as one of the main relevant tool to study a product or system environmental impacts. Therefore, LCA has been widely used in order to assess the environmental impacts for a panorama of systems. The result is a large quantity of LCA studies presenting a high variability in impacts results for comparable systems. An IPCC report [START_REF] Ipcc | IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation[END_REF] clearly shows this situation for different sources of electricity production over a large set of publications. In this report, the CO 2 equivalent emissions for photovoltaic (PV) electricity generation range between 5 and 217 g CO 2eq /kWh. This high variability tends to complicate the work of decision makers. We propose a method which aims at explaining such variability in response to this situation.

Recently, the LCA research community initiated new methods; defined as meta-analysis, to get a comprehensive panorama of systems environmental impacts [START_REF] Heath | Meta-Analysis of Life Cycle Assessments[END_REF], [START_REF] Heath | Call for paper at the European[END_REF], [START_REF] Plevin | The American Center for Life Cycle Assessment -LCA X Conference[END_REF]. These metaanalyses aim at synthesizing and identifying the main sources of results" variability [START_REF] Heath | Call for paper at the European[END_REF].

Understanding LCA variability requires the definition of its types and sources. Different studies [START_REF] Björklund | Survey of approaches to improve Reliability in LCA[END_REF], [START_REF] Reap | A Survey of unreseolved problems in life cycle assessment. Part 2: Impact Assessment and interpretation[END_REF] underline that defining that kind of information will improve the LCA method reliability. Moreover, a selection of studies [START_REF] Bala | Simplified tools for global warming potential evaluation: when "good enough" is best[END_REF] has identified the possibility of explaining a large proportion of environmental impacts variability with a limited number of parameters. Sensitivity analyses have been identified as a necessary tool to improve the LCA results representativeness [START_REF] Reap | A Survey of unreseolved problems in life cycle assessment. Part 2: Impact Assessment and interpretation[END_REF] by quantifying the influence of input parameters on a system"s environmental performances. However, when dealing with environmental impact assessment, most sensitivity analyses remain at a local level as they evaluate the variation of the input parameters one factor at a time [START_REF] Saltelli | Sensitivity analysis practices: Strategies for model-based inference[END_REF]. This approach only partially reflects the LCA results variability, because it does not consider the full range of input parameters interval, as well as the combined variability and their probability distribution [START_REF] Saltelli | Sensitivity analysis practices: Strategies for model-based inference[END_REF]. A statistical tool named Global Sensitivity analyses (GSA), by opposition to the traditional local sensitivity analyses, exists but only few studies [START_REF] Tarantola | Sensitivity analysis[END_REF][10] have proposed this systematic and generic method to identify the most environmentally influential parameters for LCAs.

This paper aims at presenting a generic methodology that can explain part of the LCA"s results variability through input parameter variability assessment. The methodology we propose relies on the study of different variability sources for electricity generation systems through GSA. The GSA is performed through the computation of Sobol indices that are built upon general variance decomposition [START_REF] Sobol | Sensitivity estimates for non linear mathematical models[END_REF]. This methodology is applied to a large sample of building integrated PV electricity LCAs as a first example.

PROBLEMATIC

The LCA modeling process can be summarized as in Figure 1: Each stage of a LCA implies variability and uncertainty. Björklund [START_REF] Björklund | Survey of approaches to improve Reliability in LCA[END_REF] proposed to classify these different sources; we will focus on the data inaccuracy (the quantifications of all input parameters are dependant of measurements or data given by experts), the model uncertainty (the model of the studied system for the LCA calculations is a simplified representation of the reality), the uncertainty due to choice (the LCA practitioners need to make choices during the modeling phase such as allocation rules, system boundaries, choice of average data…), the spatial variability (a renewable energy system, for example photovoltaic performance is strongly dependant of its geo-localization) and the epistemological uncertainty (due to lack of knowledge on system"s behavior, such as the system"s lifetime estimation).

These aspects and limitations are known and accepted by LCA practitioners. However, their transparent descriptions are limited in the literature.

This issue is a sensitive debated subject when modeling electricity generation systems. The fast developments of renewable energy technologies and incentives policies require a clear vision of renewable energies environmental impacts panorama. The IPCC [START_REF] Ipcc | IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation[END_REF] has made a literature review of the GHG emissions for electricity generation systems which clearly shows this problematic (see figure 2). This literature review has been based on different criterions such as assumption transparency and temporal representativeness (the LCAs selected in the IPCC review had to correspond to an up-to-date technology or to be representative of a near future).

Figure 2 describes the high variability seen in the literature and confirms the difficulties, for non-expert, to understand such differences. For example the results range from 5 to 217 g CO 2eq /kWh for PV systems. This complicates the understanding of electricity generation systems GHG performances. Few attempts [START_REF] Weisser | A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies[END_REF] have presented the main sources of variability of the electricity generation systems; however, these studies remain mostly qualitative. Recent works have been initiated [START_REF] Plevin | The American Center for Life Cycle Assessment -LCA X Conference[END_REF], [START_REF] Alsema | Methodology Guidelines on Life Cycle Assessment of Electricity, Subtask 20[END_REF] in order to propose an approach to reduce LCA results variability through the definition of a set of normalized values for input parameters. Those approaches enable a reduction of the environmental impact variability but do not quantify the parameters variation influence on environmental performance.

Figure 2 : GHG variability for electricity generation systems from IPCC graph [1]

Sensitivity analyses (SA) are approaches allowing investigating the results variability from inputs parameters [START_REF]International Reference Life Cycle Data System (ILCD) Handbook -General Guide for Life Cycle Assessment -Detailed guidance[END_REF]. They are defined as the study of relationships between information flowing in and out of models [START_REF] Tarantola | Sensitivity analysis[END_REF]. Thereby, performing SA enables a better understanding of results variability.

Sensitivity analyses are not always used in LCA and as an alternative only best and worst case scenarios are considered. The commonly used sensitivity analysis (SA) in LCA, named local sensitivity analysis, does not give access to distributions of environmental impact results and does not quantify the full influence of input parameter on the environmental answer. The commonly used SA in LCA is defined as a local study where parameters vary inside an interval around a nominal value. Other particular case of local sensitivity analyses are used in LCA, where one factor is varied and the others are held constant (one-factor-at-a-time approach OAT, [START_REF] Saltelli | Sensitivity analysis practices: Strategies for model-based inference[END_REF]) however, this approach does not consider the possible interaction between parameters. To overcome these limitations (no probability distribution, no consideration of interaction and local analysis only) another type of sensitivity analysis technique called Global Sensitivity Analysis (GSA), by opposition to local SA, is of strong interest. GSA enables the quantification of input parameters influence on the variance of output performance for nonlinear and non monotonic model, by a decomposition of output total variance [START_REF] Iooss | Revue sur l"analyse de sensibilité globale de modèles numériques[END_REF] [START_REF] Jacques | Pratique de l"analyse de sensibilité : comment évaluer l"impact des entrées aléatoires sur la sortie d"un modèle mathématique[END_REF]. To do this, the function "F" of the LCA model (see Figure 1) is decomposed over a sum of elementary functions f:

繋岫隙 1 , , 隙 券 岻 = 血 0 + デ 血 件 券 件 岫隙 件 岻 + デ 血 件倹 券 件<倹 盤隙 件 , 隙 倹 匪 + 橋 + 血 1,2 穴 岫隙 1 , , 隙 券 岻 (1)
Where f can be integrated on [0, 1] d , f 0 is constant and the other functions are orthogonal:

褐憲 = 岫件 1 , , 件 嫌 岻 塙 懸 = 盤倹 1 , , 倹 圏 匪 完 血 憲 (捲 憲 ) [0,1] 喧 血 懸 (捲 懸 ) 穴捲 = 0 (2)
This decomposition has been proposed by Sobol [START_REF] Sobol | Sensitivity estimates for non linear mathematical models[END_REF]. Now, if the parameters X i are random and independent, from equation (1), we can obtain the variance decomposition of Y:

撃欠堅岷桁峅 = デ 撃 件 券 件=1 岫桁岻 + デ 撃 件倹 件<倹 岫桁岻 + デ 撃 件倹倦 件<倹 <倦 岫桁岻 + 橋 + 撃 1,2 穴 岫桁岻 (3) 
Where:

撃 件 岫桁岻 = 撃欠堅岷継岫桁 隙 件 岻峅 ; 撃 件倹 岫桁岻 = 撃欠堅範継盤桁弁隙 件 隙 倹 匪飯 伐 撃 件 岫桁岻 伐 撃 倹 岫桁岻 (4)
And thus the sensitivity indices also called Sobol indices are expressed as

鯨 件 = 撃欠堅 [継岫桁 隙 件 岻] 撃欠堅 岫桁岻 = 撃 件 岫桁岻 撃欠堅 岫桁岻 鯨 件倹 = 撃 件倹 岫桁岻 撃欠堅 岫桁岻 鯨 件倹倦 = 撃 件倹倦 岫桁岻 撃欠堅 岫桁岻 (5)
The indices can be interpreted as the percentage of variance of a model answer Y, explained by each variable X i or their combinations with the other X j .

However, this approach presents the drawback of a high computational cost if the number of indices to be assessed is important [START_REF] Saltelli | Sensitivity analysis practices: Strategies for model-based inference[END_REF]. Indeed, the number of Sobol indices are a function of the number of the "d" input parameters (number of indices = 2 d -1). Moreover, the Sobol indices are complex to manipulate if they are numerous. One approach to overcome these limitations is to only consider the total Sobol indices of one parameter encountering the total effect of one input parameter on the model output:

鯨 建剣建欠健 件 = 鯨 件 + デ 鯨 件倹 倹 塙件 + デ 鯨 件倹倦 倹 塙件,倦塙倹 ,倹 <倦 + 橋 (6)
For a matter of clarity in the assessment of the variance decomposition results, we will consider these total indices in our approach (note in that case S tot can be greater than 1).

Thereby, using GSA through Sobol indices we ensure the description of a complete panorama for environmental impact variability of a model and their input parameters. This new method can be used to assess the literature variability or the specific variability of a given system or sample and to identify which inputs are responsible for a large proportion of the output variability.

METHODOLOGY

The methodology we aims at applying Global Sensitivity Analysis and variance decomposition to LCA set of results. It is based on the general pathway of GSA adapted to the specific case of the LCA method through 3 steps:

1. Definition of the studied system o Based on the standardized LCA methodology (goal and scope definition, functional unit, system boundaries, general hypothesis). The methodology can thereby be summarized as in Figure 3: 

FIRST APPLICATION TO PHOTOVOLTAIC ELECTRICITY Definition of the studied system

We are aiming at studying the GHG performance variability of building integrated photovoltaic (PV) electricity. The functional unit of studied system is:

The kWh produced by a 3 kW p building integrated PV installation Our study considers only crystalline silicon technologies (multi and single-crystalline). The GHG performances are calculated as the ratio of the environmental impacts over the electricity produced for the life time considered:

鶏撃 罫茎罫 喧結堅血剣堅兼欠券潔結嫌 = 鶏撃 嫌検嫌建結兼 荊兼喧欠潔建 考 .頚迎.鶏迎.鯨.荊堅堅 .詣劇.健剣嫌嫌 (7) 
The PV system impact refers to the carbon footprint of manufacturing a 3kWp system (including modules, installation structure, cables, inverters…). The system efficiency is defined by , OR is the orientation factor which shows the difference in energy production between possible orientations and optimal orientation; PR is the performance ratio (it takes into account: shadowing losses, connection losses, inverters losses); S is the system surface, Irr is the irradiation, LT is the lifetime and loss is a factor considering the loss of system efficiency during the lifetime compared to initial efficiency.

The set of defined assumptions are the following:

-End of life is not considered -Two types of technologies are considered (multi-crystalline and single-crystalline) -Two types of installations are considered (mounted and integrated) -The system impacts are extracted from the ecoinvent 2.2 inventories [START_REF][END_REF](PV modules, installation structure, cables, inverters…). The details about the system boundaries can be found in [START_REF] Jungbluth | Life cycle assessment of crystalline photovoltaics in the swiss ecoinvent database[END_REF] -Characterization factors (corresponding to the Global Warming Potentials) are from the IPCC [START_REF] Forster | Changes in Atmospheric Constituents and in Radiative Forcing[END_REF] with a 100 years" time horizon

Characterization of the inputs parameters

The input parameter definitions, characterizations and distributions of our model are:

Parameters Distribution Characterization Peak Power [kW]

Since the study is on residential, we fixed the value at 3kWp

System selection

As described above, there are 2 types of technologies (single or multi-silicon) as well as 2 types of installations structure (mounted or integrated). The system selection is made with equiprobability distribution over these 4 technical choices. System Impacts [kg CO 2 eq] Module impacts (for both technologies and installation structures) are issued from ecoinvent V2.2 [START_REF][END_REF]. In addition, we defined an uncertainty impact distribution following a normal law centered on the ecoinvent values with a 15% relative standard deviation This has been proposed in order to assess the influence of the possible inventory uncertainty on the GHG performances

Irradiation [kWh/m 2 ]
Annual irradiation between 900 to 2200 kWh/m² with equiprobability distribution

Lifetime [years]

In the literature, we observed lifetimes ranging between 20 and 30 years. We decided to define the lifetime distribution as a normal law centered on 25 years with SD=2

Efficiency [%]

The efficiency range and distribution for each studied technologies (multi and single Si) have been estimated according to IEA PVPS work [START_REF] Clavadetscher | Cost and performance trends in grid-connected photovoltaic systems and case studies[END_REF]. Therefore, the variability due to the system selection as well as the efficiency variability for a same technology are addressed. The range is between 0.10 to 0.16.

Orientation factor [-]

The orientation factor has been defined as ranging between 0, 75 to 1. This represents installation ranging from optimized to fully perpendicular to fully horizontal but it can also represent installation directed in the western or eastern direction

Performance ratio [-]

The efficiency range and distribution have been estimated according to IEA PVPS work [START_REF] Clavadetscher | Cost and performance trends in grid-connected photovoltaic systems and case studies[END_REF] ranging from 0.65 to 0.90

Surface [m 2 ]

The systems" surfaces have been calculated as a function of system efficiency in order to keep the system peak power constant

Loss [%]

Loss factor of 1% each year in production compared to year n-1 (estimation)

Table 1 Input parameters characterization for a GSA on residential PV electricity

Results from the GSA The Monte Carlo simulations are performed applying randomly the inputs as defined in Table 1 to calculate the GHG performances distribution of the residential PV electricity (Figure 4).

Figure 4 GHG performances of building integrated PV electricity (20'000 simulations)

According to our sample definition on which we apply the Monte Carlo simulations, the GHG performances vary from one order of magnitude between the minimum and maximum values. The median, 1 st and 3 rd quartiles values are below 100 g CO 2 eq/kWh. Compared to IPCC literature survey [START_REF] Ipcc | IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation[END_REF], the coverage range of GHG performance is slighter higher.

The variance decomposition is then applied to the system described above. The following total Sobol indices are obtained (applying equation 6) on figure 5: The total Sobol indices show that most of the variability in the PV systems GHG performances is due to the irradiation parameter (and its combination with the other factors since total indices are considered, see equation 6). According to the Sobol indices, the other important parameters are the system choice, the lifetime and the performance ratio which induce a smaller but non negligible variability. The Sobol indices enable a prioritization on parameters which explain the variability.

CONCLUSION

This approach has proposed a methodology to assess the LCA results variability using the Global Sensitivity Approach based on Sobol indices. This new method applied to a large set of PV LCAs results enables a quantitative assessment of the input parameters influences on the environmental answer of the modeled systems. However, this assessment remains dependant of the system model completeness. In relation with the considered set of systems, a hierarchy between inputs is therefore possible and helpful for decision makers and industries to understand where and how to invest to improve the environmental performances of renewable energies for example.
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 1 Figure 1 : Representation of the LCA model
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 2 Definition of the system modeling, and parameters characterization for the sample definition o List the input parameters and their range of variation based on literature review, expert discussions and goal of the study o Define the model which will be use to perform the GSA calculation (how are calculated the environmental performances). 3. Perform the GSA based and variance decomposition (as described in the previous section) o Generate inputs randomly from a probability distribution over the domain o Plug the random samples into the model to obtain the model output (environmental answer) o Assess the model output using variance decomposition (equation 3) in order to enable a hierarchy of the input parameters" influence by computing the total Sobol indices (equations 5 and 6).
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 3 Figure 3 : GSA Pathways applied to environmental profile

Figure 5 :

 5 Figure 5: Sobol indices for the residential PV electricity