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ABSTRACT 
Proper estimation of the metallurgical recovery is very important for the 

assessment of the economical value of a mining business. As this quantity is non-

additive, it is not possible to model its spatial variability or to perform its 

estimation directly. In the present work, we first recall that additivity can concern 

the intrinsic nature of point-support quantities, and not only the usual support 

effect encountered in data sets mixing samples with different sizes. Then, on a 

practical study based on sulphide copper data, we show when non-additive 

practices have an impact on the results and when they do not. Finally, we open a 

discussion where we explain how to proceed to assess metallurgical recovery. 

INTRODUCTION 

Since the early 90’s Codelco has been preoccupied making efforts to understand 
the spatial variability of some relevant metallurgical variables such as recovery, 
Bond Index, and Starkey Index. The consideration of the spatial variability of 
those variables has very important economical implications for the mining 
business (Carrasco and Tapia, 1998; Pease et al., 1998; Caceres et al., 2006). 
Some practical problems arise when assessing the local variability of 
metallurgical variables: 

- Generally the samples are not at constant support. 
- Sometimes, in order to get enough weight to perform several tests, 

several increments coming from very different locations are combined 
in a composite sample, so that the spatial location is lost. 

- Metallurgical recovery is not additive, therefore the assessment of its 
spatial variability is not direct. 

- Generally, the available number of samples is not sufficient to do a 
proper assessment. 

- The spatial models of the geological variables which control the 
metallurgical behaviour such as lithology, alteration, texture, liberation 
factor, surface properties and ore zones are not available or are not taken 
into account. 
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- The scale process to forecast the mill results from the in situ simulated 
or estimated point values is not well known (Dance et al., 2003). 

The main objective of this paper is to give some sound solution to the 
assessment of the spatial variability of metallurgical recovery taking into 
account some of the previously mentioned constraints. 

ADDITIVITY 
Quantities are said to be additive if the averaged quantity equals the average of 
the quantities. 
Additivity can concern quantities known over some support. See the example of 
the grade Z(V) over a block V (tonnage T, metal Q) with a non-constant density. 
Given two blocks V1 and V2 having the same volume (but different densities), the 
average of the two grades Q1/T1 and Q2/T2 equals (Q1/T1 + Q2/T2) / 2 while the 
averaged quantity over the big block V1 ∪ V2 equals (Q1 + Q2) / (T1 + T2). 
Another pedagogic example is the inverse of grade (even when the density is 
constant). The average of the two inverses 1 / Z(V1) and 1 / Z(V2) equals 
(T/Q1 + T/Q2) / 2 while the averaged inverse of grade over the big block V1 ∪ V2 
equals 2T / (Q1 + Q2). This is different if metal quantities are different. 

But additivity can also concern quantities with a point support. Instead of the 
usual permeability example, consider the example of the variable Colour 
(denoted C(x)) in chalk industry. It quantifies the quality of the chalk and is 
directly associated with economical considerations. It can be categorized (quality 
1, 2, …, n) or continuous, lying for example from 0 (black, or the greyest chalk) 
to 1 (pure, white), with continuous intermediate tints of grey. 

Let us now consider the problem of point estimation of C(x0) given two samples 
C(x1) and C(x2), such that x0 is the midpoint of [x1, x2]. Any linear estimate of 
C(x0) will give equal weights to C(x1) and C(x2). Does it have a sense? The 
answer is no. If for example C(x1) = 1 and C(x2) = 0, the mixing of both will not 
give an intermediate grey (C(x0) = 0.5) but a tint of grey much closer to 0 
(black). To obtain an intermediate grey (C(x0) = 0.5), we will have to mix a big 
amount of white with a very small amount of black. Averaging colours should be 
done according to physical properties which are very complex. In other words, 
the link between the different values taken by this variable is non-linear, the 
reason why it is not additive, even for a point support. A spatial average has no 
sense. Therefore, a kriging neither. We must keep in mind this example when we 
estimate a variable, or even just consider its variations in space: Does it have a 
sense? 

METALLURGICAL RECOVERY 
The recovery of sulphide ore is obtained experimentally in small-scale 
laboratory tests. Such a test transforms the ore in a concentrate plus a tail, and 
provides us with the head grade ZH, concentrate grade ZC, and tail grade ZT. The 
conservation of the ore quantity T and metal quantity Q implies that 
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Since the quantity of metal is the product of the ore tonnage by the grade, if the 
ore density is constant, which will be assumed here, this is equivalent to 

H C T

H H C C T T

T T T
Z T Z T Z T

= +
= +  

Let r denote the proportion of the in situ ore which constitutes the concentrate, 
also called “weight recovery”: 

C

H

Tr
T

=
 

The second equation of the above system can be expressed as 

(1 )H C TZ r Z r Z= + −  
which leads to 

H T

C T

Z Zr
Z Z

−
=

−  
As ZT < ZH < ZC, we can interpret this formula as follows: The head grade ZH 
divides the interval [ZT, ZC] in two intervals [ZT, ZH] and [ZH, ZC] whose lengths 
are proportional to the concentrate and tail tonnages, respectively. 

Similarly, the recovery ratio R is defined as the ratio of the quantity of metal in 
the concentrate to the total quantity of metal: 

C C C

H H H

Q Z TR
Q Z T

= =
 

Since TC / TH is by definition the ratio r, R can be expressed by 

C C H T

H H C T

Z Z Z ZR r
Z Z Z Z

−
= =

−  
Let us finally define the (in situ) recovered grade ZR as the product of the 
recovery by the head grade: 

 R H CZ R Z r Z= =  (1) 

This is the variable of interest if we want to estimate the recovered metal 
quantity (the complement ZH – ZR = (1 – R) ZH = (1 – r) ZT represents the in situ 
grade which is lost in the tail). 

The recovery is not an additive variable. If two similar blocks have recoveries R1 
and R2, respectively, the recovery of the superblock composed of these two 
blocks is not (R1 + R2) / 2. 

ZH is of course an additive variable but, contrarily to intuition, ZC and ZT are not. 
More precisely, they would be additive variables if we would consider samples 
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taken in the concentrate or in the tail, but here the coordinates associated to our 
data are in situ locations, and the concentrate weight and tail weight associated 
to a core sample are smaller than the core weight and vary from one core to the 
other. The corresponding additive variables are in fact the recovered grade ZR 
and its complement ZH – ZR. 

Conclusion: The set of three basic variables (ZH, ZC, ZT), where ZH is the sole 
additive variable, shall be replaced by a set of three additive variables, namely 
ZH, r, and ZR. 

EXPERIMENTATIONS 

Presentation of the Data 
There are 1112 samples covering 1300 m along X, 3900 m along Y and 1400 m 
in depth. Data are split in three mineral zones (206, 207, and 409) and main tests 
have been applied to the last one represented by 671 samples (Fig. 1). 
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Figure 1:  671 samples of mineral zone 409 (projection on the orthogonal planes XY, XZ, and YZ). 

Each sample contains the Recovery R, the Head grade ZH, Concentrate grade ZC, 
and Tail grade ZT. According to the previous formulas, we calculate and study 
the ratio r (small letter, called here r_ratio to prevent from any confusion with 
Recovery R) and the recovered grade ZR. 

The scatter diagrams between ZH, ZR and r_ratio (Fig. 2) show a strong 
correlation of 0.995 between ZH and ZR with a very low dispersion of their 
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difference. We obviously have ZR < ZH. The correlation with r_ratio is not very 
large (about 0.4). The high correlation between ZH and ZR implies: 

- In this particular case the recovery process has been very efficient. The 
slope of the regression between ZR and ZH is the mean metallurgical 
recovery of the unit. 

- The geological controls for the copper mineralization are as well 
controls for the recovered grade ZR. 

- As a consequence the estimation and simulation domains for both 
variables should be the same. 
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Figure 2: Scatter diagrams between ZH and ZR (top left), ZH and r_ratio (top right), ZR and r_ratio 
(bottom). 

While the experimental variograms of ZH and ZR are isotropic and stationary 
(Fig. 3), that of r_ratio has a linear tendency, with an important nugget effect 
(about 25 % of the experimental variance). The cross-variograms confirm the 
previous remarks: the behaviour between the cross-variograms of ZH and ZR is 
similar to their direct variograms, whereas the cross-variograms between r_ratio 
and the other two variables are a mixture of the behaviours seen in the direct 
variograms, with a medium correlation. 

ZH

ZR 

r_ratio 
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Figure 3: Experimental variograms of r_ratio (top), ZR (middle right) and ZH (bottom right). Cross-
variograms complete the table. Fitted curves represent tendencies, not models. 

Experiment 1: Global Recovery 
If we want to calculate the recovery R at the scale of the deposit, we can imagine 
to use point values for this, considering that the associated sampling constitutes 
an acceptable discretization of the deposit. By averaging the different point 
recoveries known at samples, we obtain a global estimation R* equal to 88.8% 
while the right calculation, which consists in dividing the average of ZR by the 
average of ZH (supposing that these averages are estimated without error), gives 
89.3%. The difference cannot be neglected at the scale of the deposit. We have 
done the calculation for the other mineral zones and see important differences 
between both calculations in all cases (Table 1). 

Table 1:  Global recovery for three mineral zones. R* is the average of point recovery, R the average 
of ZR divided by the average of ZH 

Mineral 
zone 

Number 
of 

samples 

Variance 

of ZH 

Mean 

of ZH 
Variation 

coefficient 

R* 

Average of 
recoveries 
(biased) 

R 

Ratio of 
averages 
(correct ) 

409 671 0.18 0.91 47% 88.8% 89.3% 

207 394 0.32 1.16 49% 88.8% 89.8% 

206 47 1.21 2.22 49% 86.3% 86.9% 
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Experiment 2: Local Recovery 
Now we focus on a restricted 200×200×50 m3 area (Fig. 4). 
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Figure 4: In the centre (3400 < X < 3600, 4000 < Y < 4200) the restricted area where point 
recoveries have been simulated. This area is divided in 500 blocks. Each block is discretized in 500 
nodes. On each node, 20 cosimulations values of ZH, ZR, and r_ratio are calculated. 

This area has been divided in 500 blocks Vj, each of which is discretized in 500 
nodes. For each node, 20 conditional cosimulations of ZR, ZH and r_ratio, are 
done, which reproduce the general histograms and variograms deduced from the 
initial data. Each simulation allows calculating the block recovery in two ways: 

- Additive procedure: For each block Vi, ZR(Vi) and ZH(Vi) are calculated 
by averaging the point values contained in Vi. Then we obtain the 
recovery of the block, denoted R(Vi), as the ratio of these quantities. 

- Non-additive procedure: For each node, point recoveries are calculated, 
using formula (1). The recovery of the block Vi is obtained by averaging 
the 500 point recoveries contained in Vi. 

Again, the exercise consists in comparing the ratio of two averages to the 
average of a ratio. Figure 5 shows the results for three realizations. Each time, 
the correlation between the non-additive estimator and the correct one is equal to 
1, the distributions are the same, and differences on the bounds of the values and 
the average are of the order of the third decimal. These differences are not 
significant. 

Explanations 
So we have here two simple experiments which give different results concerning 
the impact of additivity. The second one, the evaluation of the influence of 
additivity at the scale of a block, consists in the comparison, for each block V, of 
an average of ratios 
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where n is the number of discretization points xj of V. 
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Figure 5: Cosimulations n° 1 (left column), 10 (middle) and 20 (right column). Upper histograms 
concern the distribution of block recoveries R(V) obtained by the additive calculation, middle ones 
the non-additive procedure. Lower figures are scatter diagrams between the correct calculation 
(horizontal axis) and the biased one (vertical axis). No significant difference can be detected. The 
impact of non-additivity can be neglected. 

There are two situations where both formulas are equivalent: i) the head grade 
ZH(xj) is constant; ii) the ratio ZR(xj) / ZH(xj) is constant. Let us examine if we are 
close to these situations, for a block support and at a global scale, respectively. 

1: Point-to-block dispersion of ZH 

The variability of point values within a block V is measured by the point-to-
block dispersion variance σ2(0 | V), which is equal to the average variogram 
between two points uniformly and independently distributed in block V: 
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2 (0 | ) ( , )V V Vσ = γ  

Since the size of V is 20×20×10 m3, the distance between two points in V lies 
between 0 and 30 m. The variogram of head grades (Fig. 3, bottom right) shows 
that its average value for such distances is of the order of 0.05. Then, even if the 
local distribution of point values of ZH within V may vary significantly from a 
block to another one, within each block V, most point values belong to the 
narrow interval [ZH(V) – 0.45 , ZH(V) + 0.45]. To get an order of magnitude, this 
gives a variation coefficient equal to 17% when we refer to the average of point 
values of ZH all over the domain (which is a crude approximation). 

Now if we increase the size of the block, the point-to-block dispersion variance 
increases until reaching the experimental variance of the data, so that ZH is far 
from being constant when we consider the global scale. This is why additivity 
has an impact in the case of global recovery calculation. 

2: Conditional variance of ZR given ZH 
The strong correlation coefficient between ZR and ZH (0.995) indicates a general 
behaviour of ZR following ZH linearly and also that 99% of the variance of ZR is 
explained by its linear dependency on ZH. The cross-variogram of ZR and ZH 
(Fig. 3, bottom middle) shows that their spatial correlation is very high, even for 
the nugget effect component. But the most important fact that can be observed 
on the scatter diagram of ZR and ZH (Fig. 2, top left) is that the conditional 
variance of ZR, given ZH is small for any ZH, even if it tends to increase with the 
head grades. As a consequence the ratio ZR(xj)/ZH(xj) varies only slightly with 
ZH(xj), and is approximately constant when ZH does not vary too much, and in 
particular at the scale of a block V. This is the reason why, at such a small scale, 
we see little difference between both calculations. At a global scale, the ratio 
ZR(x)/ZH(x) displays some variations so that additivity has a significant impact. 

CONCLUSIONS 
These two simple experiments, which consist in comparing ratio of averages to 
average of ratios, show that additivity can or not have an impact on the result, 
depending on the variability of the quantities involved in the ratios, and the scale 
of the calculation. In the case of global recovery, the variance involved equals 3 
times the variance involved in the case of local recovery, and this sole difference 
causes the emergency of the influence of additivity. This result must incite us, 
one time for all, to give up illicit calculation as their validity may vary without 
control. 

Consequently, we have to face the problem of recovery estimation, and its use in 
the mineral industry. In practice, there are many samples where head grades ZH 
are known, but very few laboratory tests where ZR, r_ratio and R can be 
calculated (around 1 laboratory test for 100 exploratory measurements). On the 
one hand, geologists do a kriging of head grades to build the block model. On 
the other hand, process engineers do a kriging (or average) of recoveries using 
the few laboratory tests, and the recovery grade estimator is obtained by 
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multiplying both estimators. This is certainly the worse procedure we can 
imagine, as this product first uses an illicit estimation of R, and secondly it is not 
optimal and may be biased. 

The correct procedure must use cosimulations of additive variables ZH, ZR and 
r_ratio. Then, if we are interested by block recoveries, we must average ZH and 
ZR over each block, and then divide; and if we are interested by the point 
recovery all over the domain, we must calculate its conditional expectation 
estimator. We build something like 100 cosimulations, calculate point recovery 
for each simulation (at each node), and then average the different realizations of 
R at each node: this time, this is a statistical average, not a spatial one, and it is 
licit. 

Finally, all our work here did consist in replacing the problematic triplet head 
grade, concentrate and tail grade by the benefit triplet head grade, recovery grade 
and weight recovery. 
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