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Domaining by clustering multivariate
geostatistical data

Thomas Romary', Jacques Rivoirard', Jacques Deraisme?, Cristian
Quinones® and Xavier Freulon®

Abstract

Domaining is very often a complex and time-consuming process in mining
assessment. Apart from the delineation of envelopes, a significant number
of parameters (lithology, alteration, grades) are to be combined in order to
characterize domains or subdomains within the envelopes. This rapidly leads
to a huge combinatorial problem. Hopefully the number of domains should
be limited, while ensuring their connectivity as well as the stationarity of
the variables within each domain. In order to achieve this, different methods
for the spatial clustering of multivariate data are explored and compared. A
particular emphasis is placed on the ways to modify existing procedures of
clustering in non spatial settings to enforce the spatial connectivity of the re-
sulting clusters. K-means, hierarchical methods and model based algorithms
are reviewed. The methods are illustrated on a simple example and on mining
data.

1 Introduction

In mining assessment, once the delineation of mineralization envelopes has
been performed, it is often necessary to partition the area inside this envelope
into several homogeneous subdomains. This is particularly the case when the
extracted materials have to be subsequently chemically processed. It is also
helpful to assess the viability of a mining project of for its planning optimiza-
tion. A significant number of parameters (lithology, alteration, grades...) are
to be combined in order to characterize domains or subdomains. This rapidly
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leads to a huge combinatory. Methods to automatize this task are therefore
necessary. Almost no method has been proposed in the literature expect from
an univariate approach based on grade domaining ([]). A sensible approach
consists in adapting statistical clustering procedures.

Cluster analysis or clustering is the assignment of a set of observations into
subsets (called clusters) so that observations in the same cluster are similar in
some sense. Clustering is a method of unsupervised learning, and a common
technique for statistical data analysis used in many fields, including machine
learning, data mining, pattern recognition, image analysis, information re-
trieval and bioinformatics ([]).

In the settings of independent observations, no particular structure is ex-
pected among the data. In a geostatistical context however, one expects to
obtain a classification of the data that presents some spatial connexity.
Clustering in a spatial framework has been mainly studied in the image anal-
ysis and remote sensing context where the model is usually the following:
the true but unknown scene, say ¢, is modeled as a Markov random field
and the observed scene, say x, is interpreted as a degradation version of ¢,
such that conditionally on ¢, the values x; are independent to each other. In
this model, label properties and pixel values need only to be conditioned on
nearest neighbors instead of on all pixels of the map, see e.g. E] for a review.
Clustering of irregularly spaced data (i.e. geostatistical data) has not been
much studied. ﬂa] proposed a method for clustering multivariate non-lattice
data. They proposed to modify the dissimilarity matrix of the data by mul-
tiplying it by a variogram. Although this approach leads to a sensible algo-
rithm, the method was not fully statistically grounded. Indeed, it terms to
smooth the dissimilarity matrix for pairs of points at short distances but will
not enforce the connexity of the resulting clusters. Contrarily, this tends to
mitigate the borders between geologically different areas, making it difficult
to differentiate between them.

E] proposed a clustering algorithm for Markov random fields based on the
expectation-maximization algorithm (EM, see M]) that can be applied to
irregular data using a neighborhood defined by the Delaunay graph of the
data (i.e. the nearest-neighbor graph based on the Vorono tessellation). How-
ever this neighborhood structure does not reflect a structure in the data, but
rather the structure in the sampling scheme. A Gaussian Markov random
field model, while adapted to lattice data, is not natural on such a graph.
Furthermore, this method does not ensure the connexity of the resulting clus-
ters either.

Finally, ﬂ} proposed a clustering method based on an approximation of the
EM algorithm for a mixture of Gaussian random functions model. However
this method relies on strong assumptions that are not likely to be encountered
in practice and particularly with mining deposit data: the data are assumed
to be Gaussian and data belonging to different clusters are assumed indepen-
dent. Moreover, this last method is not suitable to large multivariate datasets
as it computes the maximum likelihood estimator of the covariance matrix at
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each iteration of the EM algorithm. Thus, a single iteration requires several
inversions of a (N x P) x (N x P) matrix, where N is the number of data
and P is the number of variables. This becomes quickly intractable as N and
P increase.

In this paper, we first review existing procedures in an independent con-
text. In section 2, we describe a novel geostatistical clustering algorithm that
ensures the connexity of the resulting clusters. It is based on a slight modifi-
cation of the hierarchical clustering algorithm. We compare its performances
with other methods on a toy example. Finally, an application on mining data
is exposed.

2 Review of some methods for independent observations

The goal of cluster analysis is to partition the observations into clusters such
that those within each cluster are more closely related to one another than
variables assigned to different clusters. A central notion for clustering is the
degree of similarity (or dissimilarity) between the individual observations
being clustered. A clustering method attempts generally to group the obser-
vations based on the definition of dissimilarity supplied to it.

2.1 Dissimilarity matrix

Most of the clustering algorithms take a dissimilarity matrix as their input,
the first step is to construct pairwise dissimilarities between the observa-
tions. For quantitative variables, one can choose among euclidean, squared
euclidean, 1-norm (sum of absolute differences), co-norm (maximum over ab-
solute differences). For ordinal variables, where the values are represented
as contiguous integers (e.g. alteration degree), error measures are generally
defined by replacing their N original values with

i—1/2
N ?

1=1...N

in the prescribed order of their original values. They are then treated as quan-
titative variable on this scale. For unordered categorical variables however the
degree of difference between pairs of values must be delineated explicitly (e.g.
for geological factors). The most common choice is to take the distance be-
tween two observations to be 0 when they belong to different categories, 1
otherwise.

In a multivariate context, the next step is to define a procedure for com-
bining the individual variable dissimilarities into a single overall measure of
dissimilarity. This is done by means of a weighted average, where weights
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are assigned to regulate the relative influence of each variable. In general,
setting the weight as the inverse of the average individual dissimilarity for
all variables will cause each one of them to equally influence the overall dis-
similarity between pairs of observations. Variable that are more relevant in
separating the groups should be assigned a higher influence in defining object
dissimilarity.

2.2 Partitioning clustering

The most popular clustering algorithms directly assign each observation to a
group or cluster without regard to a probability model describing the data. A
prespecified number of clusters K < N is postulated, and each one is labeled
by an integer k£ € 1,..., K. Each observation is assigned to one and only one
cluster. The individual cluster assignments for each of the IV observations are
adjusted so as to minimize a cost function that characterizes the degree to
which the clustering goal is not met. A natural cost function is the sum over
the clusters of the average distance between observations within each cluster.
Cluster analysis by combinatorial optimization is straightforward in principle.
As the amount of data increases however, one has to rely on algorithms that
are able to examine only a very small fraction of all possible assignments. Such
feasible strategies are based on iterative greedy descent. An initial partition is
specified. At each iterative step, the cluster assignments are changed in such
a way that the value of the criterion is improved from its previous value.
The popular K —means algorithm and its variant K-medoids are built upon
that principle. In order to apply K-means or K-medoids one must select
the number of clusters K and an initialization, see ﬂﬂ] for a review. The
number of clusters may be part of the problem. A solution for estimating K
typically examine the within-cluster dissimilarity as a function of the number
of clusters K, see ﬂﬂL chapter 14, for more details.

2.3 Hierarchical clustering

In contrast to K-means or K-medoids clustering algorithms, (agglomerative)
hierarchical clustering methods do not require the choice for the number of
clusters to be searched and a starting configuration assignment. Instead, they
require the user to specify a measure of dissimilarity between (disjoint) groups
of observations, based on the pairwise dissimilarities among the observations
in the two groups. As the name suggests, they produce hierarchical repre-
sentations in which the clusters at each level of the hierarchy are created by
merging clusters at the next lower level.

Agglomerative clustering algorithms begin with every observation represent-
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ing a singleton cluster. At each of the N-1 steps the closest two (least dissimi-
lar) clusters are merged into a single cluster, producing one less cluster at the
next higher level. Therefore, a measure of dissimilarity between two clusters
must be defined. Single linkage agglomerative clustering takes the intergroup
dissimilarity to be that of the closest (least dissimilar pair). This is also of-
ten called the nearest-neighbor technique. Complete linkage agglomerative
clustering (furthest-neighbor technique) takes the intergroup dissimilarity to
be that of the furthest (most dissimilar) pair. Group average clustering uses
the average dissimilarity between the groups. Although there have been many
other proposals for defining intergroup dissimilarity in the context of agglom-
erative clustering (see e.g. ﬂm])7 the above three are the ones most commonly
used.

2.4 Model-based clustering

Contrarily to the two previous methods, model-based clustering methods rely
on the assumption that the data are drawn from a particular distribution.
Generally, this distribution is a Gaussian mixture model, i.e a weighted sum
of Gaussian distributions each with a different mean (which corresponds to
the centroid in K-means) and covariance. Each component of the mixture
defines a cluster, i.e. each observation will be considered to have been drawn
from one particular component of the mixture.

The estimation of the parameters and the assignment of each observation to
a cluster is conducted through an expectation-maximization (EM) algorithm
M] The two steps of the alternating EM algorithm are very similar to the
two steps in K- means. There exists a different version of the EM algorithm
called classification EM (CEM, []) that may be more adapted to classification
problems.

3 Geostatistical hierarchical clustering

In this section, we describe a novel geostatistical clustering algorithm that
ensures the spatial connexity of resulting clusters. It is based on a slight modi-
fication of the hierarchical clustering algorithm described above. It practically
consists of two steps: first, the data are structured on a graph according to
their location; second, a hierarchical clustering algorithm is conducted where
the merging of two clusters is conditioned by their connection in the graph
structure. This enforce the spatial connexity of the clusters while respecting
the dissimilarities between pairs of observation.
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3.1 Algorithm

The first step of the proposed algorithm consists in building a graph over the
data to structure them with respect to their proximity. In two dimensions,
this task is straightforward as we can consider the Delaunay triangulation,
associated to the sampling scheme of the data. Powerful algorithms exist to
carry out this task efficiently. Figure [l b. presents an example of a Delaunay
triangulation associated to the sampling performed for the next section ex-
ample. We can see that each point is connected to surrounding points, not
necessarily to its nearest neighbours. Some branches of that graph may seem
too long, particularly on the borders of the field. The graph can be post pro-
cessed by pruning the longest edges so as to avoid spurious connections.

In a geological 3-dimensional context however, the Delaunay tetrahedraliza-
tion, apart from being tricky to compute, may not be relevant for the purpose
of domaining. As an example, consider a vein-type deposit. We would like one
vein to belong to a unique cluster, which implies the samples belonging to
the vein to be connected. Suppose that samples are located along parallel
cores. The tetrahedralization will produce flat horizontal tetrahedra and the
subsequent connections between points will be irrelevant with the geological
configuration. Therefore, we propose to proceed in two steps to build the
connections between sample points:

1. compute the Delaunay graph for one or several 2D surrogates of the deposit
(linking the cores), possibly post process it,

2. extend the connections in the third dimension along the cores and between
the cores by taking into account the geology (e.g. orientation), as far as
possible.

Once the graph has been built, the second step of our method consists in run-
ning a slightly modified version of the hierarchical clustering algorithm (see
section Z3), the trick being to authorize two clusters to merge only if they are
connected (two clusters are considered connected if there exists a connected
pair of points between the two clusters). This will ensure the connexity of
the resulting clusters. We chose to perform complete linkage clustering upon
numerical experiments results, as it tends to produce more compact clus-
ters. Finally, the user can choose the hierarchical level of clustering to be
considered in the final classification.

3.2 Example

Here, we describe a 2D example on which we have evaluated the performances
of some previously exposed methods. We consider a random function on
the unit square which is made of a Gaussian random function with mean
2 and a cubic covariance with range 0.3 and sill 1 on the disk of radius 0.3
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and center (0.5,0.5) and a Gaussian random function with mean 0 and an
exponential covariance with range 0.1 and sill 1. A realization is shown in
figure [ a. while figure Ol b. corresponds to Delaunay graph associated to
the sampling performed by picking 650 points out of the 2601 points of the
complete realization.

a. b.

Fig. 1 Example dataset: full realization a. and Delaunay triangulation corresponding to
the sampling performed b.

While we can clearly see a smooth surface with high values in the central
disk in figure [ a., it is much more difficult to distinguish between the two
areas in figure [ b., which makes this example challenging. We now test the
performances of four different methods for this task: the K-means algorithm,
the complete linkage hierarchical clustering algorithm (HC), Oliver and Web-
ster’s method (O&W) and our geostatistical hierarchical clustering (GHC)
algorithm.

Figure B shows the results obtained by each four methods. Each subpicture
represents the dataset on scatterplots with respect to the coordinates (X
and Y') and the sampled value (Z). K-means (a.) does quite a good job, as it
identifies well the central area. The result however lack of connexity. It can be
seen that the method discriminates between low and high values: the limiting
value between the two clusters can be read as 0.5. HC (b.) also discriminates
between low and high value but the limiting value is lower. To sum up,
those two classical methods in an independent observations context fail to
produce spatially connected clusters. O & W’s approach has been tested with
various variograms and variogram parameter values but it never showed any
structured result (c.). The interpretation that we give is that multiplying the
dissimilarity matrix by a variogram may erase some dissimilarities, inducing a
loss in the structure of the data. The GHC algorithm succeeded in providing
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Fig. 2 Results of K-means a., hierarchical clustering b., Oliver and Webster’s method c.
and geostatistical hierarchical clustering d.

a clustering with spatial connexity (d.). A part of the disk is misclassified
however. If we turn back to the complete realization in figure [l a, we can see
that the misclassified area corresponds to the low values of the realization
around the border of the disk that are very close to the values taken outside
the disk and are thus difficult to classify well.

We applied each four algorithms to 100 realizations of the same geostatistical
model each with a different uniform random sampling. Then we computed the
mean, median and 10% percentile of the rate of misclassified points. Results
are summarized in table [I

GHC exhibits the best performances overall whith 11% misclassified points
in average while K-means is not so far, O & W performing the worst with
the HC in between. If we look at the median however, GHC has the lowest
one with a larger margin. The 10% percentile indicates that in the 10%
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K-means|HC|O & W|GHC
Mean 0.13 0.23| 0.35 0.11
Median 0.12 0.2 0.34 0.09
10% percentile| 0.08 ]0.08| 0.28 0.01

Table 1 Rates of misclassified points for the 4 algorithms

most favorables cases, GHC misclassified only 0.01% of the points, while all
the other algorithms performs a largely worse job. It can also be seen that
the 10% percentile are similar for the K-means and the HC. This can be
explain by the fact that the HC, and GHC (its worse result in this task
was a misclassification of almost 50%), can sometimes perform really bad,
whereas the K-means algorithm gives more stable results. In the favorable
cases however, this algorithm works as well as the K-means. Concerning
GHC, it performed worse than the K-means in less than 10% of the cases.

4 Application to an ore deposit

In this section, we present a preliminary study for the application of statistical
clustering methods on a ore deposit. We describe the different steps and
exhibits some results.

The first step has been to select the data that will be used for the domaining.
The following variables have been chosen:

e coordinates, X, Y and Z

e uranium grades

e a geological factor describing the socle
e the hematization degree

This choice has been made upon an exploratory analysis of the data and
discussion with geologists. Some transformations of the data have been per-
formed:

e the coordinates have been normalized,

e uranium grades have been log-transformed and normalized,

e the degree of hematization has been transformed into a continuous vari-
able, then normalized.

Then, the connections between close samples have been designed. As the
mineralization envelop of the deposit exhibit a horizontal shape, we chose to
build a 2D Delaunay triangulation first. To do that, we have selected for each
core the observation closest to the median altitude of the whole sample. Then
we performed the Delaunay triangulation on that subsample. Some branches
of the graph were very long and did not correspond to vicinity. Consequently,
the longest branches have been pruned and we obtained the graph pictured
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in figure Bl a. Then, for each core, the adjacent observations are connected

Fig. 3 Pruned Delaunay triangulation at median altitude a. and adjacency matrix b.

along the core. Close observations from two connected cores are connected
as well. In this way, we built the adjacency matrix, an n x n lower diagonal
matrix whose entries are one if the points are connected and zero otherwise.
This matrix is plotted in figure Bl b. Note that the black points near the di-
agonal line corresponds to the connections along the cores. The diagonal of
this matrix contains only zero.

The next step has been to build the dissimilarity matrix. This has been done
using all the variables listed above and considering a particular distance for
the geological factor: it has been chosen to be 1 when the samples have differ-
ent factor values and 0 otherwise. Weights have been set by trial and error:
we finally set the weights to 1 for the coordinates, 4 for the grade, 2 for the
hematization degree and 10 for the geological factor.

Finally, we were able to run the geostatistical hierarchical algorithm described
in section Bl We chose to consider 6 clusters and obtained the results de-
picted in figure @l The cyan cluster corresponds to an area located in the top
of the middle part of the deposit, with large values of uranium grades and
medium to large values for the degree of hematization. It is mainly made of
sandstone. The purple cluster has lesser values for the grade than the cyan
one and low hematization degree and is located in the south east of the de-
posit, again at the top. It does not belong to the socle of the deposit, in the
sense of the geological factor. The red and black clusters are both located in
the socle in an area that extends from the middle part to the south east of
the deposit. The degree of hematization plays no role in their differentiation.
They appear quite melted but they differentiate by the grade values as the
black one exhibit higher grades. Finally, the blue and green clusters corre-
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Fig. 4 Results of the algorithm with 6 clusters: in 3d a. and scatterplots b.

spond to the north west area of the deposit. They appear also quite melted
and distinguish by the grade values.

5 Conclusions

In this paper, we presented an insight towards geostatistically adapted clus-
tering procedures. We presented an hierarchical algorithm conditioned to a
connexity structure imposed on the data. Two applications have been pro-
vided, the first one on a toy example and the second on the deposit data.
The results shown on the toy example clearly assess the superiority of our
method over tested ones as it is able to produce compact, connected clus-
ters. The results obtained for the application where also satisfactory as they
depicted a synthesised description of the deposit. Moreover, thanks to the
sequential nature of the algorithm, our method generates a whole ensemble
of clusterings that can be useful to the user: he can visualize the results at
different hierarchical levels which leads to different interpretation levels. Fur-
thermore, the user can also play with the weights of each variable to produce
different clusterings, according to its knowledge of the geology.

Still, some improvements can be done. The first point is the way how we con-
nect the observations in 3D. Performing the Delaunay to a 2D surrogate can
be extended to non horizontal deposits by e.g. transforming the mineraliza-
tion envelop into a flat manifold. Then the observations between connected
cores should be connected if and only if they are not to distant away. Second,
ways to define properly the weights associated to each variable according to
the desired results should be investigated. Then, we could think of a more
adapted linkage criterion than the complete linkage in the hierarchical algo-
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rithm. This new criterion would account for instance for the homogeneity of
the cluster.

Finally, implementing a K-medoids algorithm based on the connection rela-
tions may be interesting, as it has more appealing theoretical properties than
hierarchical algorithms.

References

1]
2]

ALLARD, D., AND GuIiLLOT, G. Clustering geostatistical data. In
Proceedings of the sixth geostatistical conference (2000).

AMBROISE, C., DANG, M., AND GOVAERT, G. Clustering of spatial
data by the EM algorithm. In geoENV I Geostatistics for Environmental
Applications (1995), A. S. et al., Ed., Kluwer Academic Publishers, p. pp.
493504.

CELEUX, G., AND GOVAERT, G. A Classification EM Algorithm for
Clustering and Two Stochastic versions. Computational Statistics and
Data Analysis, 14 (1992), 315-332.

DEMPSTER, A. P., LAIRD, N. M., AND RuUBIN, D. B. Maximum
likelihood from incomplete data via EM algorithm (with discussion).
Journal of the Royal Statistical Society, Ser. B, 39 (1977), 1-38.
EMERY, X., AND ORTIZ, J. M. Defining geological units by grade
domaining. Technical report, Universidad de Chile (2004).

GuYON, X. Random fields on a network. Springer, 1995.

Hastie, T., TIBSHIRANI, R., AND FRIEDMAN, J. The elements of
statistical learning, 2nd edition, ed. Springer, 2009.

OLIVER, M., AND WEBSTER, R. A geostatistical basis for spatial
weighting in multivariate classification. Mathematical Geology 21 (1989),
15-35. 10.1007/BF00897238.

R DEVELOPMENT CORE TEAM. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2010. ISBN 3-900051-07-0.

SAPORTA, G. Probabilités, analyses des données et statistiques, 2nd
edition ed. Technip, 2006.

STEINLEY, D., AND BRUScO, M. J. Initializing k-means batch cluster-
ing: A critical evaluation of several techniques. Journal of Classification
24 (2007), 99-121. 10.1007/300357-007-0003-0.



	Domaining by clustering multivariate geostatistical data
	Thomas Romary, Jacques Rivoirard , Jacques Deraisme, Cristian Quinones and Xavier Freulon
	Introduction
	Review of some methods for independent observations
	Dissimilarity matrix
	Partitioning clustering
	Hierarchical clustering
	Model-based clustering

	Geostatistical hierarchical clustering
	Algorithm
	Example

	Application to an ore deposit
	Conclusions
	References



