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Abstract

Drill pipe in a curved section of the drilled wed considered as a rotating hollow cylinder
subjected to bending and tension loads. So inpder, the stress intensity factors and the fatigue
growth of a circumferential semi-elliptical surfaceack in a hollow cylinder subjected to rotary
bending and tension are studied. A stress intefesttpr database for three loading cases is baild f
numerous configurations using 3D Finite Element MedThe crack propagation model employs
the Walker fatigue growth rate law. Using this mipdee can study the evolution of parameters
characterizing the process of crack propagation.

Keywords: Fatigue; Crack growth; Stress intensity factorsic@iferential semi-elliptical surface crack;
Hollow cylinder; FEM; Drill pipe; Damage;

1. Introduction

It is well known that drill pipe fatigue in oil-gafilling operations represents more than 30% of
the drill pipe damage. The recent development irdy techniques allowed wells with more and
more complex trajectory to be drilled: horizontaélly extended-reach well, deep well in very
aggressive environments. The complex trajectorthefwells induces a high mechanical stress in
the drill string, which contributes to the severitfydrill pipe fatigue. The rotation of drill pipe a
curved section of well in which there is a chanfdhae angle and/or hole direction, commonly
called “dog-leg”, creates a rotary bending momertt produces the cyclic bending loading in the
drill pipe. This is the main cause of drill pipgifpe during the drilling operation.

In this paper, the fatigue growth of a circumfei@nsemi-elliptical surface crack of a rotating
hollow cylinder subjected to bending moment andsitam is studied. The semi-elliptical crack is
characterized by two parameters: the relative cdagkth A/ T (crack depth/cylinder thickness) and
the ellipse aspect ratio B/A (ratio of the two@dle radii). The ellipse center is assumed to béhen
cylinder external surface (Fig. 1a and 1b). 3Dtérelement simulations of the cracked structure
were carried out using the CASTEM code (developgdhle Commissariat a I'Energie Atomique,
France). These simulations allow the stress interfactors (SIFs) along the crack front to be
determined. A large number of simulations use verivalues of the ratio oR, /T (internal
radius/thickness of cylinder) from 1 to 18,/ T from 0.05 to 0.95 andB/ A from 0.75 to 20. This
allows us to build a SIF database for three loadages: bending moments!(, aboutO,, axis and

M,, aboutO,, axis) and tensionT{) (fig. 2).
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Due to the stress and strain singularity at thersgiction points of the crack front with the
cylinder external surface, the assumptions of theal elastic fracture mechanics (LEFM) is not
valid at these points. However, this discontinustyimited to a very small region around the points
on the cylinder surface, and the stress intensgtof can be calculated using an asymptotic
approach: that is, the SIF at the point on thendgr external surface can be calculated from the
results related to the nearest node in the streictur

The semi-elliptical crack shape is the most usestiioy a hollow cylinder surface crack. Lin
and Smith [6], using a 3D finite element model,w&d that all the defects of any initial shape get
semi-elliptical shape after some cycles of loadim@ process of fatigue crack propagation. The
simulations used a two-parameter theoretical m@tel center of the crack ellipse is fixed on the
cylinder external surface). Carpinteri and Brighé¢h} used a three-parameter theoretical model of
semi-elliptical crack (where the crack ellipse eenhoves along the cylinder diameter) to analyze
the fatigue crack propagation in a pipe subjectedytlic bending. Their results showed that the
ellipse crack center is rapidly approaching thdasm@. Therefore, a three-parameter model is not
needed and a two-parameter model is quite enoudésicribe the process.

Carpinteri et al. have published a list of papérg] on crack propagation in a pipe for several
cases: cyclic tension, cyclic bending moment artdryobending moment. In the case of rotary
bending moment, they have given the results fohiektpipe (R, /T=1). Furthermore, the

influence of the combination of the rotary bendingment and the tension on the crack propagation
has not been studied.

In the present paper, we will present the solutimnsa more general problem. A program was
written to determine the crack propagation whengdemetries of the cylinder and the initial crack
are known as well as the loadings. This model iy easy to adjust the input parameters to study
different cases. Furthermore, the model allowgpatemeters during the crack propagation (crack
geometry, SIFs, changes of parameters after a daimnuu step) to be exported. Crack propagation
Is determined considering the following points:

= The problem is studied using the Walker law (itdentical to the Paris law in the “pulsating
tension” caseR=0). The coefficients of Paris law for commerciallldpipe steels are found in
the SPE 25775 paper [5]. The mean stress can dffeatrack propagation by two following
ways: the first way is that the mean stress chattgeeffective range of the SIF in the case of
negative stress ratio by assuming that the craskgtopagates with the positive value of the
SIF; the second one relates to stress ratio tertheénWValker law formula in the positive stress
ratio case.

» The crack shape is assumed to remain semi-ellipfieang the crack growth. Therefore, two
points on the crack front are selected for itemtalculations of crack propagation. Obviously,
the first is the deepest point (poibt), and the second is any point on the crack frpaing P).
The influence of the choice of the second pointhencrack propagation can be studied.

» The initial crack shape AO and BO) is assumed before calculating the crack growth.
Consequently, the influence of the initial craclksé and the evolution of the parameters during
the crack growth are also studied.

= In practice, a large part of the crack growth igedue to the growth of a very small crack.
Therefore, the choice of the final crack size (fieeack depth) does not affect much the
prediction of crack growth life. We consider theigae crack growth life as the number of
loading cycles during which the crack depth growsfram AO to the cylinder thickness. The
influences of initial crack size, the cylinder dins&ons and the tension on the fatigue crack
growth life are also studied.



2. Problem description

The passage of a drpipe in a dog-leg (well trajectory curvatureduses a bending moment &
the rotation produces theyclic loading in the drill pipeThis is the maircause odrill pipe fatigue.
Further, the drill pipas subjcted to a tensile or compressive mean is(for a drill pipe close to
the drill bit). The drill pipebody is considered as a hollow cylindTherefore, our problem wi
focus on a rotatingollow cyinder subjected to bending moment andsten.

In general,the crack isjyowing perpendicular to the principatress. For a hollow cylinde
subjected to bending and tion loads, thprincipal stress direction the cylinder axis. Thus, the
crack is supposed to be irc@inder cross sectio
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Fig. 1.(a) Cracked ylinder and loading (b) Crack geetry and paramete

Crack plan
Fig. 2. Decomposition of the bending moment

Fig. 1a and 1b shasthe cylinder circular cross section wittgeomerical representation of tt
crack.The crack shape is aimecto be semi-elliptic with the ellipsgentei on the cylinder external
surface (twoparameter mocl). The geometries of hollow cylied and :raclt are described by the
following dimensionless pameters: the dimensionless radius of the>w cylinder (R, / T), the
aspect ratio of the ccl ellipse B/ A) and the relative depth of the ck (A/T). A generic point
P on the crack fronis identiied by the “normalized coordinate” (fig. 1b)

f=—"; -1<&<1 1)



3. Stressintensity factor assessment using numerical simulation

3.1. FE-mesh
According to thesymmery of the problen we model only ajuarte of the cylinder with two

planes of symmetry: cyline axis plane (y,0,z) and crack planeXQy,). This is in the cases
where thecylinder is loadedyy ¢ bending momenM , about thehorizonal axis O, x, and a tension
(T.) (fig. 3a). In the case dfending momer M, aboutthe vertical ais O,y;, we have just one
plane of symmetry: crack ane (x0O,y,), and we must model a halff the structur¢ 20-node

hexahedral solid element€y20) are employe(The structure mesis composed of tw parts: the
crack front mesh (most densend the emaining structure (coarse).

In this finite element moel, the isotropic linear elasticity is usadth the Poisson's rav =0.3
and the Young's modulus =2.0E11 Pa.

® crack
(@) (b)

Fig. 3. Finite elemnt models (a) A quarter of the cylinder (k&= mesh of crac

3.2. G-theta procedure

Bending moment and teion cause the mode | loading of the detl crack in the cylinde So
we are interested inalculatng the stress intensity factoK,. CASTEM code offers a number of
procedures to perforifinacture mechan analysis applicable to two- three-dimensional modeling.
In our case, the proceduretfete [9] is used. This procedulculatesthe energy relea rate on
the crack front by the @iete methoi [10, 11]. It helps to calculate tldentegral of a contour in the
vicinity of the crack frontegion (in the case of linear elasticity, itégsjud to the energy release rate
G) and to extract thetress ntensit: factors K, , K, , K, . Usingthe solution ol Westergaard for
stress and displacememtgh the linea elasticity andplane strain condins, theJ-integraland the
strain energy release rate Ce related to the stress intensity faK in the following equatio:

_ 1,2
1=6=1""k’ @)

E.J E.G
K, = = 3
' \/l—v2 \/l—v2 ®)

Hence:




This relationship allows the stress intensity fad{pto be calculated from the results of the G-
theta procedure.

3.3. Stressintensity factor calculation method
In our problem, the rotation of the cylinder is legged by the rotation of the bending moment
vector M . And this is represented by the variation of thglay between the bending moment M

and the horizontal axi©, x (fig. 2). The bending momentsl,, and M, are related to the total
bending momenM by the equations:
{M 4 =M.cosy

M, =M.siny @)

The SIF, K, is determined for three loading cases: bendingnemts M, M, and tensiorl,

for each finite element model considered. The tesare expressed by three dimensionless factors
FI,Te’ FI,M . FI,M .

F o =— 5
I,T Te\/ﬂ_a ( )
I:I My — Kl e~ Sa - ex (6)
BRRCRN ma’
I'<I M M
I,M S \/_a EI ext ( )

where S, is the maximum stress on the cross-section ofyheder subjected to pure bending.

Considering a rotating hollow cylinder subjectedbending moment M and tension, K is
given by the following formula:

Ky =| FreTo+ Fiu, (Suu-cow) + Ry (S siw) [V e 8)
with:
M
Suw = g7 Ron ©

The dimensionless factoF, for the case of a rotating hollow cylinder subgecto a pure
bending moment M (Without the tensiog 1s:

F. =
" e

The maximum and minimum values of When the cylinder makes one rotation (one loading
cycle) are:

K max = [F|TeTe+S \/F 12+F|,MVIZJV7T8- (11)
KI,mln_|:|:ITeTe S \’ 12+FI,M),12:|V]Ta (12)

K, reaches the maximum and minimum values with tlggeap below (in the case the point P is
in the left half of the crack front):

or Ry =Fu,cox+F, .siny (10)



I:I M
Y. = arcta L (13)
FI rM x1

I:I M
Y., =arcta F’ ~\+T (14)

1 .My

3.4. Results of stressintensity factor calculations
Figs. 4a and b show thesult: of SIF calculations for the bending ment cas (M, in Fig. 2)

and the tension casegspecively. The ordinate axis represents thienensionless fact F and the
horizontal axis represents tpesition of the point on the crack tiphe calculations are made wi
R,/ T=10 and dfferent valies of the ratis A/ T and B/ A reportedn the figures

On the same figures, w represent the results of Shal and Habii [7] using the 3D finite
element ANSYS 7.0 cod&he analysis of Shahe et al. is performedsing the su-model method;
first the structure is modeldyy ¢ large mesh, then the region of inter@wsre it is the region around
the crack), which need&ry line mesh, is cut from the large mesh mo@etl analyzed with another

high-density meshComparions shown irFig. 4 indicate thabur result: using CASTEM code are
close to those of Shahaeti al.

F Factor of SIF for bendmg case Mxl R /T=10 F Factor of SIF for tension case T ., R;,,(/T =10

A/T:0.800; B/A 0.830 — A/T:0.800; B/A 0.830 —— )
Shahani 1  + Shahani 1 4+

A/T:0.800; B/A:1.000 ——2 A/T:0.800; B/A:1.000 ——2)

Shahani 2  x
15 ) A/T:0.200; B/A:2.500 —0)|

Shahani 2 x
A/T:0.200; B/A 2.500 —0]

L5 1 “) hahani 3 %
AJT:0.700; B/A 5.000 —)

o Shahani4 p

Ki/(Sp.(Pia)'?)
Ki/(Sm.(Pi.a)/?)

F Factor : F
b
F Factor : F

02 04 06 03 02 0 06 08
Point position on crack tip X ,/H Point position on crack tip X ,/H
Fig. 4. Numertal results- comparisonsvith the results ofShahani 7]
(a) Bending case (b) Tension case

In Figs. 5 and 6 e resuk for the rotary bending casadlid curves) nd thecyclic bending case
(dotted curves) are presentddhe rotary bending case represemtsylindel subjected to a constant
bending moment anthis cyinder is rotating, while the cyclic bendincase represer a cylinder
subjected to a cyclibendiry momen (the cylinder does not rotataut the bending moment is
cyclic). Thedimensionless ctor F of the rotary bending case detemined fron the results of
CASTEM code model usingqg. 10. In the case of a cyclleending monen, the effect of bending
momentM,, is excluded. Seve can us Eq. 10 without theF, , term.

Figs. 5 and 6show therelationshi of the SIF dimensionless far F with the normalized
coordinateX  / H . The paraneters of the calculations Fig. 5 areA/T=0.5, B/ A=5 or 1, and

various values ofy . For the “esults shown iFig. 6, we consideA/ T =0.2 or 0.8, =30° or 60°,

and various values oB/ A. In some cases, the gap between robmmwdinc and cyclic bending is
very important. Howeverthe difference irthe SIF range completeyepend on the factorF, M



shown in Egs. 11 and 1@epending o the cylinder and crack geomes and the position of the

point considered on therackfront).
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F factor : rotary bending and cyclic bending cases
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Fig. 5. Numerial results- comparisons with the results oarpinteri [3]

Carpinteri et al. [3] presited results related to a tr-wall pipe (R* =R,/ T =1) for the same

rotary bending cases (figuresa the right). In the results by Carpinteri2 crack ellipse aspect ra
a is equal toA/ B, Z represents the angle of bendimoment and i equal to(360°—¢ ). The

normalized coordinates<,/H =-1 and X,/ H =1 in the case of ur calculation correspo

respectively to{* =0 and {* =2 in Carpinteri’s results. There is a all difference between ot
results and those b@arpinteri, and that can be caused by the diffe mesh and the used fin
element code. However oLesults for the rotary bending case gene agree with the results
Carpinteri et al.

4. Determination of fatigue crack growth

4.1. Crack growth rate law
The Paris laws the sinvlest and the most commonly used law ernin¢ crack propagation.
This law assumes linear reltionshif of da/ dNwith AK in the logarithn coordinat:
da_ C(AK)"
dN
where C and n arethe codficient and the slope of t crack growthrate, respectivel Table 1

shows these coefficients fearious commercial drill pipe materials (witda/ dN in in./cycle and
AK in ksiin?) [10].

(15)



F factor : rotary bending and cyclic bending cases
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A disadvantage of the Paris law is that it doestake¢ account of the mean stress. Thus, in this
paper, we consider the commonly used empiricatioglship Walker law given by Eq. :

da AK Y
dN C((l— R)“‘“j 4o

where C and n are Paris law coefficient and slopeRf=0 respectively,/A is a material coefficient
and R is the stress ratio:
K
R = —min 17a
- (172)

max

The Walker law is valid for R 0. The effect of negative R ratios, which includesnpression
in the cycle, has received less investigation anbtkss understood. The compressive load part of
fatigue is not taken into consideration on mosfatijue codes. It is not included in the calculatio
of the stress intensity factor rangeK. As a matter of fact, it is assumed that whem lbad is
negative the crack is closed and there is no graMitthe crack when it is not open. So in the
negative stress ratio case, we consider R equalitothe Walker law formula and the SIF range
calculation is shown in Section 4.3 (in the tenstompression loading case, thK is equal to Kax
shown in Eq. (24)-(26)).

R=0if R<O (17b)

4.2. Stress I ntensity Factor solution

The SIF is given by expressions including the Refexccorresponding to a given configuration
of geometry and loading. These F-factors are basettiree variables (RT, A/T and B/A). From
the results of finite element simulations, we conged an F-factor database with discrete values
corresponding to wide range ofif/, A/T and B/A. Using this table, we apply the dar
interpolation method of three variables in ordeassess the F-factors for arbitrary values gf IR
A/T and B/A using Eq. 18:

2 2 2
FOCY, =222 X(AY(Y 2Ok Bx ¥ .2 (18)
i=1 j=1k=1
where x, y, z are the variables replacing/R A/T and B/A, respectivelyX;(x), Y,(y), Z,(2) are
the interpolation polynomials of degree equal te dmear interpolation):

xi(x){x‘“ (19)

)ﬁ - Xn m=1,2; m#i

Y,(y) :(M (20)
yj B ym m=1,2; m# j

zk<z):[ 2~ % (21)
Zk - Z’” m=1,2; m# k

4.3. Crack growth calculating algorithm

Crack propagation is determined for eatlN loading cycle. The crack shape is assumed to
remain semi-elliptical during the propagation. Hentwvo points on the crack front are selected for
iterative calculations: the first is the deepesnp®, and the second is any point P on the crack
front. The influence of the choice of the seconthpon the crack propagation is taken into account
in the following.



[ a0Bo;N=0 |

i - Yes Finish
vty Bt Ko >—. N_fatigue =N
v No =
| AK |
¥ After AN cycles X
[ AA AP : Walker law | <
¢ 7
W = > No Finish -
< \Ult"‘ﬁ 1 N_fatigue =N B
Yes
AA AP — A, 5B, the crack propagates after one
N:=N+AN calculation iteration of AN cycles
(@) (b

Fig. 7.(a) Histogram f crack growth calculating algorithm (b) /alcultation iteration

After AN cycles, the ciack develops and the points D, propajatt to the points D', P’
respectively.The propagatia direction of a poil is perpendicular to thellipse asymptote on this
point. The craclshape befor and afte the calculation iteration is givésy the followingEq. 22 and

23:
XV (YY)
(Ej +(_Aj =1 (22)

2 2
X + Y =1 (23)
B' A
where A, B and A', Bare he two crack ellipse radius before and 1 the calculation iteration
respectively. Therefore, if ®© know the coordinates of points Rhd P'.thecrack shape aftetN

cycles is determined throudgihre A' and B' values (fig. 7b)

Knax @nd K. values arealculated using Eq. 11 and 12eVelssum tha the crack propagates

when the SIF is positivdzurthermor, in this study, we do not take inaccount the crack closu
effect because we do not le enough data for the studied mate Hence, the SIF range during a
loading cyclebeing introducd intc the crack growth rate law equatiorcedculated by tf following
Egs. (24)-(26).

If the calculatedK ,, is negéive we replace the SIF rang¥ by zero:

Kox<0 = AK =0 (24)
If the K, is positive andK .. is negative:

Kix>0: K, <0 = AK =K, (25)
else:

Koo Knin20 = AK =K —K . (26)

The criteria by stresstipulate that the crack becomes unstableen the SIF exceeds a certain
limit value which is calledhe fracture toughne. Thereforejf we know the fracture toughness K
of the material studiedye mustcompare the calculated SIF with timaterial fracture toughness in a
calculating iteration. If thealculate SIF exceeds the toughnesg, Kve consider thi the structure
is failed and we stophe calalations Fig. 7a illustrates the algorithm deloped to assess the cr:
growth.

10



5. Crack propagation under combined loading

Aspect ratio of the crack front ellipse B/A

ﬁ

Aspect ratio of the crack front ellipse B/A

ﬁ/

The purpose is to asseb®e propagation of semi-elliptical externasurface crack in a hollow
cylinder under @ombinatior of rotary bending moment and tensidime cylinderis made of grade
E drill pipe steelWalker law coefficientsare those given in Table Mo value of he constank in
Walker's formula igound in the literatur for the grade E drill pipe steéNe consider a value of
equal to 0.5 withouadditional dati for studying the mean stress effect.

An example of crack ppagation is illustrated in Fig.. The cylinder dimensions areey =
4.500 in. and [ = 3.640 in The crack propagates from timatial size (A0 = 0.025 in.) to the fine
size (the crack depth A reazs the cylinder thicknes with the loadings $5= 50 ksi and T= 10 ksi.
The initial crack geometry igiver by BO/AO = 1 in Fig. 8a anBO/A0 = 1Cin Fig 8b.

10
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Fig. 8. Crack propagation example (BO/AO = 1(b) BO'AO = 1(
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5.1. Convergence of the crack ellipse aspect ratio B/A

Crack propagationnder :ombination orotary bending momemind t2nsior has been studied by
using the twagearameter theretical crack mod¢ This study shows thator a given cylinder, the
crack geometry tend® converge to a unique final geometry (B/#\ during the propagation,
whatever the initial cracgeometry defined by the BO/AO valu&his condusior is illustrated in Fig.
9 giving crack propagatioal different values of initial aspect ratB®0/AO of crack ellipse. The
curves represent thevolutior of the crack ratio B/A as a function tfe relativecrack depth A/T
under various loading corinations (4 Te). The cylinder dimensios are 4.5in for the out
diameter and 3.640in for thnner diamete X/H is thenormalized coorinate¢ (Eq. 1) of the second
point P chosen faecrack propgation calculatiot.
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Fig. 10. Converged value ¢he crack ellipse aspect o B/A

Let’s focus on thearamters whicl can influence the value of (B/f\). For these calculations,
the initial crack geometry i®%0=B0=0.005in (Fig. 10a) an&0=0.005in, BO=2A0=0.01in(Fig.
10b). Figures 10a and 1@bpresent the evolution of (B/A)a with thebending stres amplitude §
for variousvalues of tensione.

We note that the tensionay decreas the value of (B/Aga. There ar wo different parts on the
(B/A)final - bending stress Saurve This function seems to havelscontiwity at a value of bending
stressclose to the applied tsion,which may make the ¥, in Eq. 12equal to zer at certain crack
geometry.This is due to theact tha, in the case of negative (e.g. conpressior— tension cycle),
the SIF range is taken equo Kmax In this study, we consider R=0 d AK=K s« for the Walker
law formula when R<QTherefore the part of compressive stress in liedcycle is neglected in the
crack propagationatculation

We find that he curve ¢ the fully reversed case.d0 (R=-1)is horizontal That is, (B/Ajnal
does not depend on thendig stress , in this case. The curvés the ficures 1( seem to show that
(B/A)sinal Is a function othe ratio (SJ/Te) for a given cylinder geometrfzor example, ‘e can see the
square points in figures 18t these points, th(SJ/Te) value isequal to zand (BA)sina Nearly takes
the same value. In ¢hcaseof T=0, (S/Te) tends to infinity for all $values; thus (B/A)a is
constant.

5.2. Crack depth - number of cycles

Fig. 11 represents thevolution ofthe relative crack depth A/T agaiibe number of cycles. We
may note that the greater theack depth, the highehe crack growth ite The number of cycles
required for the crack tpropagat through a distance equal to a haffcylinder thickness takes
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most of fatigue propagatidife. This confirms the well-knownonclusio that a large part of crack
propagation life is due tthe propagation of very small crack.Thus, we consider the crack
propagatiorlife N as the nuiber ol cycles at which the crack develdpsm the initial depth AO to
the cylinder thickness. Theamk propagation lives N for varic cases arpresented below.
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5.3. SN curve computation

We study the effect afylinder anc initial crack geometrieas well asthe applied tension on the
crack propagation lifeThe ciack propagation life curvefor variouscases of cylinder geometry a
presented in Fig. 12a. We dke initial crack geometry to AO=B0=0.0%, the tension to &FOksi,
the normalized coordinate tie second propagation point P t¢/K=0.S. Three cylinders with the
same outer diameter bdifferent thickness: are consideretbr calculatbns. We may note that the
cylinder dimensions almosdb not affect th crack propagation life.

The effect of initialcrack geometries is reported in Fig. 12b wBl®/A0 varying from 1 to 5.
The results indicate thalhe greater the initial crack ra BO/AO, thelower thecrack propagation
life. The initial crack deptls se constant at AO.

Fig 1z illustrates the etct of the normalized coordini X,/H of the second propagation point
P on the S-N cueywhen thi parameter varies from 0.5 to O\Me havealmos the same curves of
crack propagation life stress amplitud for five different cases of poimt. Therefore, the choice of
the second propagation pogdes not influenc much on the cracgropaation life.

In our model, thdension influences the crack propagation duethe stres ratio term in the
Walker law formulan the cese of tensic-tension loading (positive Ratio). In the case of tension-
compression loadingensior change the effective range of Slwhich is introduce in the crack
propagation calculation§Ve consider that the part of compressive s inthe loading cycle does
not affect the crack propagion Fig. 12d represents crack propagatiba for various values of
tension. It is obvioughat tensior decreases the crack propagation M& may notehe existence of
a transition point on the N-curve. This corresponds to the value of thending stre< which may
make the minimum value @IF equal to zel (transition between the tisior-tension case and the
tension-compression cas€yornr this value, the tension does not chatigeSIF rang anymore, and
thecrack propagation is oninfluencec by the stress ratio term Walkerlaw formula
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™ \Opcmtiona] parameters I——l—[ Null‘l“l;e;_(nlz;)slle[z(ﬁ;]glzit;p' ] : A0, B0 ,I
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Fig. 13 Crack propagation algorithm for rotary drillinpperatiol
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5.4. Crack propagation algorithm for rotary drilling operation

A crack growth model in drill pipe has been develbpn section 4.3. As a part of its research
program on Oil&Gas drilling, the Mines-ParisTech ignsity has developed a numerical code
(ABIS) [8] that can predict the mechanical behawba stiff drill string inside the drilled well \th
any complex shape including tortuosity and micndetmsity. The operational model of crack
propagation uses the ABIS code that allows to ¢afewthe drill string deformation inside the well
and to predict accurately the stresses in the pipies as well as the contact forces between drill
pipes and the borehole.

The algorithm of the crack propagation model duriogry drilling operation is shown in Fig.
13. The calculations are performed step by steg,van consider that drilling operation evolves by
steps of length\Li. In each computation step, the ABIS code is usedetermine accurately the
stresses in the drill string. Next, the crack pggien code is implemented to determine the crack
evolution.

6. Conclusions

The behavior of a circumferential semi-ellipticabck on the external surface of a hollow
cylinder subjected to a combination of rotary begdand tension is studied. Various finite element
simulations were performed under three loading rapdending moments ¥ My; and tension &
The results are used to build a SIF database frorohwthe SIF is calculated by using a polynomial
interpolation method.

The Paris law widely used in the literature doestake into account the mean stress effect (or
the tension). In order to overcome this limitatiove used the Walker law for computing crack
propagation. The numerical results using the de@ezlomodel show a very important role of the
tension on the fatigue crack growth.

The simulation indicates that crack has a tendém@onverge to a final geometry whatever its
initial geometry, as described by other studiewlrch only initial crack geometry has been varied.
Studies of the final crack geometry were conducieshg as a parameter the final value of the
ellipse crack aspect ratio (B/f\). This study shows that the tension may decreas&BM)ina
value, and there is a transition point on the cyB/@&):na-S.. Additionally, (B/A) does not depend
on the bending stress in the alternating symmeétdaae (R =-1 or 4= 0), and it seems that
(B/A)sinal Is a function of the ratio (5¢) for a given cylinder geometry.

It is well accepted that a large part of crack pugadion life is due to the propagation of a very
small crack. Thus, we considered that the life raick propagation corresponds to the number of
cycles at which the crack develops from the initigpth AO to the cylinder thickness. This
definition allows us to construct the S-N curvesioll pipes using this developed model. Studies of
S-N curves resulting from this model show the intatrinfluences of the initial crack size and the
tension on the crack propagation life, while thiedf of the cylinder dimension and the choice of
second crack propagation point are low.

This crack growth model requires the knowledgehefWalker law coefficients. Therefore, it is
necessary to perform fatigue crack growth ratestéstdetermine these coefficients for different
steel grades used in drill pipes. Using these tsitiis possible to simulate the crack evoluiio@
drill pipe.
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