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Abstract 

Drill pipe in a curved section of the drilled well is considered as a rotating hollow cylinder 
subjected to bending and tension loads. So in this paper, the stress intensity factors and the fatigue 
growth of a circumferential semi-elliptical surface crack in a hollow cylinder subjected to rotary 
bending and tension are studied. A stress intensity factor database for three loading cases is build for 
numerous configurations using 3D Finite Element Models. The crack propagation model employs 
the Walker fatigue growth rate law. Using this model, we can study the evolution of parameters 
characterizing the process of crack propagation. 
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1. Introduction  

It is well known that drill pipe fatigue in oil-gas drilling operations represents more than 30% of 
the drill pipe damage. The recent development of drilling techniques allowed wells with more and 
more complex trajectory to be drilled: horizontal well, extended-reach well, deep well in very 
aggressive environments. The complex trajectory of the wells induces a high mechanical stress in 
the drill string, which contributes to the severity of drill pipe fatigue. The rotation of drill pipe in a 
curved section of well in which there is a change of hole angle and/or hole direction, commonly 
called “dog-leg”, creates a rotary bending moment and produces the cyclic bending loading in the 
drill pipe. This is the main cause of drill pipe fatigue during the drilling operation. 

In this paper, the fatigue growth of a circumferential semi-elliptical surface crack of a rotating 
hollow cylinder subjected to bending moment and tension is studied. The semi-elliptical crack is 
characterized by two parameters: the relative crack depth /A T  (crack depth/cylinder thickness) and 
the ellipse aspect ratio B/A (ratio of the two ellipse radii). The ellipse center is assumed to be on the 
cylinder external surface (Fig. 1a and 1b). 3D finite element simulations of the cracked structure 
were carried out using the CASTEM code (developed by the Commissariat à l'Energie Atomique, 
France). These simulations allow the stress intensity factors (SIFs) along the crack front to be 
determined. A large number of simulations use various values of the ratio of int /R T  (internal 

radius/thickness of cylinder) from 1 to 10, /A T  from 0.05 to 0.95 and /B A from 0.75 to 20. This 
allows us to build a SIF database for three loading cases: bending moments (1xM  about 1xO  axis and 

1yM  about 1yO  axis) and tension (eT ) (fig. 2). 
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Due to the stress and strain singularity at the intersection points of the crack front with the 
cylinder external surface, the assumptions of the linear elastic fracture mechanics (LEFM) is not 
valid at these points. However, this discontinuity is limited to a very small region around the points 
on the cylinder surface, and the stress intensity factor can be calculated using an asymptotic 
approach: that is, the SIF at the point on the cylinder external surface can be calculated from the 
results related to the nearest node in the structure. 

The semi-elliptical crack shape is the most used to study a hollow cylinder surface crack. Lin 
and Smith [6], using a 3D finite element model, showed that all the defects of any initial shape get 
semi-elliptical shape after some cycles of loading in a process of fatigue crack propagation. The 
simulations used a two-parameter theoretical model (the center of the crack ellipse is fixed on the 
cylinder external surface). Carpinteri and Brighenti [1] used a three-parameter theoretical model of 
semi-elliptical crack (where the crack ellipse center moves along the cylinder diameter) to analyze 
the fatigue crack propagation in a pipe subjected to cyclic bending. Their results showed that the 
ellipse crack center is rapidly approaching the surface. Therefore, a three-parameter model is not 
needed and a two-parameter model is quite enough to describe the process. 

Carpinteri et al. have published a list of papers [1-4] on crack propagation in a pipe for several 
cases: cyclic tension, cyclic bending moment and rotary bending moment. In the case of rotary 
bending moment, they have given the results for a thick pipe ( int / 1R T = ). Furthermore, the 

influence of the combination of the rotary bending moment and the tension on the crack propagation 
has not been studied.  

In the present paper, we will present the solutions for a more general problem. A program was 
written to determine the crack propagation when the geometries of the cylinder and the initial crack 
are known as well as the loadings. This model is very easy to adjust the input parameters to study 
different cases. Furthermore, the model allows all parameters during the crack propagation (crack 
geometry, SIFs, changes of parameters after a computation step) to be exported. Crack propagation 
is determined considering the following points: 
� The problem is studied using the Walker law (it is identical to the Paris law in the “pulsating 

tension” case 0R= ). The coefficients of Paris law for commercial drill pipe steels are found in 
the SPE 25775 paper [5]. The mean stress can affect the crack propagation by two following 
ways: the first way is that the mean stress changes the effective range of the SIF in the case of 
negative stress ratio by assuming that the crack just propagates with the positive value of the 
SIF; the second one relates to stress ratio term in the Walker law formula in the positive stress 
ratio case. 

� The crack shape is assumed to remain semi-elliptical during the crack growth. Therefore, two 
points on the crack front are selected for iterative calculations of crack propagation. Obviously, 
the first is the deepest point (point D ), and the second is any point on the crack front (point P ). 
The influence of the choice of the second point on the crack propagation can be studied. 

� The initial crack shape (0A  and 0B ) is assumed before calculating the crack growth. 
Consequently, the influence of the initial crack shape and the evolution of the parameters during 
the crack growth are also studied. 

� In practice, a large part of the crack growth life is due to the growth of a very small crack. 
Therefore, the choice of the final crack size (final crack depth) does not affect much the 
prediction of crack growth life. We consider the fatigue crack growth life as the number of 
loading cycles during which the crack depth grows up from 0A  to the cylinder thickness. The 
influences of initial crack size, the cylinder dimensions and the tension on the fatigue crack 
growth life are also studied. 
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This relationship allows the stress intensity factor KI to be calculated from the results of the G-
theta procedure. 

 

3.3. Stress intensity factor calculation method 
In our problem, the rotation of the cylinder is replaced by the rotation of the bending moment 

vector M . And this is represented by the variation of the angle ψ  between the bending moment M 

and the horizontal axis 1 1O x  (fig. 2). The bending moments 1xM  and 1yM  are related to the total 

bending moment M  by the equations: 
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where aS  is the maximum stress on the cross-section of the cylinder subjected to pure bending. 

Considering a rotating hollow cylinder subjected to bending moment M and tension Te, KI is 
given by the following formula: 
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KI reaches the maximum and minimum values with the angle ψ  below (in the case the point P is 
in the left half of the crack front): 
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A disadvantage of the Paris law is that it does not take account of the mean stress. Thus, in this 
paper, we consider the commonly used empirical relationship Walker law given by Eq. : 

 
(1 )(1 )
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C
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where C and n are Paris law coefficient and slope for 0R=  respectively, λ  is a material coefficient 
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The Walker law is valid for R � 0. The effect of negative R ratios, which includes compression 
in the cycle, has received less investigation and is less understood. The compressive load part of 
fatigue is not taken into consideration on most of fatigue codes. It is not included in the calculation 
of the stress intensity factor range, �K.  As a matter of fact, it is assumed that when the load is 
negative the crack is closed and there is no growth of the crack when it is not open. So in the 
negative stress ratio case, we consider R equal to 0 in the Walker law formula and the SIF range 
calculation is shown in Section 4.3 (in the tension-compression loading case, the �K is equal to Kmax 
shown in Eq. (24)-(26)). 
 0R=  if 0R<  (17b) 

4.2. Stress Intensity Factor solution 
The SIF is given by expressions including the F-factors corresponding to a given configuration 

of geometry and loading. These F-factors are based on three variables (Rint/T, A/T and B/A). From 
the results of finite element simulations, we constructed an F-factor database with discrete values 
corresponding to wide range of Rint/T, A/T and B/A. Using this table, we apply the linear 
interpolation method of three variables in order to assess the F-factors for arbitrary values of Rint/T, 
A/T and B/A using Eq. 18: 
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4.3. Crack growth calculating algorithm 
Crack propagation is determined for each �N loading cycle. The crack shape is assumed to 

remain semi-elliptical during the propagation. Hence, two points on the crack front are selected for 
iterative calculations: the first is the deepest point D, and the second is any point P on the crack 
front. The influence of the choice of the second point on the crack propagation is taken into account 
in the following.  
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5.4. Crack propagation algorithm for rotary drilling operation 
A crack growth model in drill pipe has been developed in section 4.3. As a part of its research 

program on Oil&Gas drilling, the Mines-ParisTech University has developed a numerical code 
(ABIS) [8] that can predict the mechanical behavior of a stiff drill string inside the drilled well with 
any complex shape including tortuosity and micro-tortuosity. The operational model of crack 
propagation uses the ABIS code that allows to calculate the drill string deformation inside the well 
and to predict accurately the stresses in the drill pipes as well as the contact forces between drill 
pipes and the borehole. 

The algorithm of the crack propagation model during rotary drilling operation is shown in Fig. 
13. The calculations are performed step by step, and we consider that drilling operation evolves by 
steps of length �Li. In each computation step, the ABIS code is used to determine accurately the 
stresses in the drill string. Next, the crack propagation code is implemented to determine the crack 
evolution. 

6. Conclusions 

The behavior of a circumferential semi-elliptical crack on the external surface of a hollow 
cylinder subjected to a combination of rotary bending and tension is studied. Various finite element 
simulations were performed under three loading modes: bending moments Mx1, My1 and tension Te. 
The results are used to build a SIF database from which the SIF is calculated by using a polynomial 
interpolation method. 

The Paris law widely used in the literature does not take into account the mean stress effect (or 
the tension). In order to overcome this limitation, we used the Walker law for computing crack 
propagation. The numerical results using the developed model show a very important role of the 
tension on the fatigue crack growth. 

The simulation indicates that crack has a tendency to converge to a final geometry whatever its 
initial geometry, as described by other studies in which only initial crack geometry has been varied. 
Studies of the final crack geometry were conducted using as a parameter the final value of the 
ellipse crack aspect ratio (B/A)final. This study shows that the tension may decrease the (B/A)final 
value, and there is a transition point on the curve (B/A)final-Sa. Additionally, (B/A) does not depend 
on the bending stress in the alternating symmetrical case (R =-1 or Te = 0), and it seems that 
(B/A)final is a function of the ratio (Sa/Te) for a given cylinder geometry. 

It is well accepted that a large part of crack propagation life is due to the propagation of a very 
small crack. Thus, we considered that the life of crack propagation corresponds to the number of 
cycles at which the crack develops from the initial depth A0 to the cylinder thickness. This 
definition allows us to construct the S-N curves of drill pipes using this developed model. Studies of 
S-N curves resulting from this model show the important influences of the initial crack size and the 
tension on the crack propagation life, while the effect of the cylinder dimension and the choice of 
second crack propagation point are low. 

This crack growth model requires the knowledge of the Walker law coefficients. Therefore, it is 
necessary to perform fatigue crack growth rate tests to determine these coefficients for different 
steel grades used in drill pipes. Using these results, it is possible to simulate the crack evolution in a 
drill pipe. 
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