
HAL Id: hal-00773174
https://minesparis-psl.hal.science/hal-00773174

Submitted on 11 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Description of a Molecular Dynamics Simulation System
- AA Scale -

Frédéric Boussinot, Bernard Monasse

To cite this version:
Frédéric Boussinot, Bernard Monasse. Description of a Molecular Dynamics Simulation System - AA
Scale -. 2013. �hal-00773174�

https://minesparis-psl.hal.science/hal-00773174
https://hal.archives-ouvertes.fr

Description of a

Molecular Dynamics Simulation System

- AA Scale -

Technical Report

Frédéric Boussinot

Mines-ParisTech, Cemef

frederic.boussinot@mines-paristech.fr

Bernard Monasse

Mines-ParisTech, Cemef

bernard.monasse@mines-paristech.fr

January 11, 2013

Abstract

A Molecular Dynamics system is presented which is based on Java. A reactive programming
framework is used for expressing logical parallelism. The way to de�ne and implement atoms and
molecules is described, with some results of simulations showing the stability of the resolution
method.

1 Introduction

This report describes a Molecular Dynamics (MD) [5] system which is currently under development
at CEMEF1. The system has some particularities, unusual with standard MD systems:

• The implementation language is the object-oriented programming language Java [6].

• Parallelism is used at the logical level: complex objects are coded as parallel combinations
of more elementary components. For example, molecules are expressed as combinations of
atoms, bonds, angles, etc. and atoms are themselves made of several parallel components.
This kind of parallelism, that we call logical parallelism, is a syntactic means for modular
programming, and has to be distinguished from the real parallelism (for example, the one
obtained with a multiprocessor computer) which concerns execution. The logical parallelism
we use is available through a reactive programming (RP) framework 2, based on Java and
called SugarCubes [8].

• The MD simulations are visualised during execution using the Java3D library [2]. The simu-
lation is actually visualised at each step of the resolution method.

1With support from ANR-08-EMER-010 project PARTOUT.
2Please note that �reactive� as used here is not at all related to its standard meaning in chemistry.

1

mailto:frederic.boussinot@mines-paristech.fr
mailto:bernard.monasse@mines-paristech.fr

Rationale for Using Java

AMD system should be interfaced with a 3D visualisation system and with the network (for example,
to use clusters of machines), using a communication API (for example, MPI). Moreover, to make the
programming task easier, the implementation language should be object-oriented. Our approach
requires the possibility to express the behaviour of complex components as parallel combinations of
smaller and simpler components. For that purpose, we use a reactive programming approach (see
below) and thus we choose a language in which such a RP approach is available. Our choice of Java
is motivated by the following reasons: the fact that Java is object-oriented, the existence of Java3D,
for 3D visualisation, and the Java-based SugarCubes framework for RP in Java.

The choice of Java is not standard for MD systems, which are usually implemented in FORTRAN
(e.g. [1]) or C/C++. Actually, we mainly consider our system as a �proof of concept� system.
Provided the existence of a layer for reactive programming in it, we guess that almost any other
general-purpose programming language could be used to implement a system similar to ours.

Rationale for Using Reactive Programming

Reactive programming [3] o�ers a simple framework, with a clear and sound semantics, for ex-
pressing logical parallelism. In the RP approach, systems are made of parallel components that
share the same instants. Instants thus de�ne a logical clock, shared by all components. Parallel
components synchronise at each end of instant, and thus execute at the same pace. During in-
stants, components can communicate using instantaneously broadcast events, which are seen in the
same way by all components. There exists several variants of RP, which extend general purpose
programming languages (for example, ReactiveC [7] which extends C, and ReactiveML [10] which
extends the ML language). Among these reactive frameworks is SugarCubes, which extends Java.
In SugarCubes, the parallel operator is very speci�c: it is totally deterministic, which means that,
at each instant, a SugarCubes program has a unique output for each possible input. Actually, in
SugarCubes parallelism isimplemented in a sequential way.

The choice of RP, and more speci�cally of SugarCubes, is motivated by the following reasons:

• MD systems are composed of separate, interacting components (atoms and molecules). It
seems natural to consider that these components execute in parallel. In standard approaches,
there is generally a �big loop� which considers components in turn (components are placed in
an array). This structuration is rather arti�cial and does not easily support dynamic changes
of the system (for example, additions of new components or removals of old ones, things that
one can �nd in modeling chemical reactions).

• In MD simulations, time is discrete, and the resolution method which is at the heart of
simulations is based on this discrete time. In RP, time is basically discrete, as it is decomposed
in instants. Thus, RP makes the discretisation of time which is at the basis of MD very simple.
Note however that resolution steps and instants do not necessarily coincide (actually, with the
Velocity-Verlet resolution method [11] used in our system, one resolution step corresponds to
two consecutive instants).

• MD is based on classical (Newtonian) physics which is deterministic. The strict determinism
of the parallel operator provided by SugarCubes re�ects the fundamental determinism of
Newtonian physics. At implementation level, it simpli�es debugging (a faulty situation can

2

be simply reproduced). At the physical level, it is mandatory to make simulations reversible
in time.

• In classical physics, interactions are instantaneous (this is not the case in Relativity). In RP,
interactions are naturally expressed using instantaneously broadcast events. For example,
each atom signals its existence to others atoms by generating at each instant an event holding
its state. Instantaneity of events means that an event is received in the very same instant it
is generated. This is the way instantaneous interactions are coded.

In conclusion, the use of RP for MD simulations is motivated by its following characteristics: mod-
ularity of logical parallelism, intrinsic discretisation of time due to instants, strict determinism of
the parallel operator, instantaneity of events used to code interactions.

Objectives of the System

The �rst objective is to design a MD system, with a clear and simple structure, in which users
can enter and possibly introduce or change parts. In our system, molecules are built via Java
programming (our basic examples are alkane carbon-chains). The object-oriented character of Java
is essential to simplify the de�nition of new molecules by programming.

The second objective is to get a system with a minimum of approximations, in reference to the
well-established notions that are found in the litterature (for example, the notion of a potential).
In this respect, great care is put on the stability of the resolution method which we choose to be, as
it is generally the case in MD systems, the Velocity-Verlet method.

The third, longer-term, objective is to extend the current system to a multi-scale, multi-time

system, in which molecules at di�erent scales of description - �all-atom� (AA), �united-atom�(UA),
and �coarse-grain� (CG) - can be simultaneously simulated. Multi-scale approaches [4] are a way
to simulate during long periods of time molecular systems composed of loosely-coupled components
(with rare interactions). Our objective is to allow scale changes that preserve fundamental quantities
(e.g. energy), putting the focus on the de�nition of potentials.

In this report, we do not consider anymore multi-scale aspects which are left for future work,
and we limit ourselves to the AA scale.

Structure of the Paper

The report is structured as follows: Section 2 to 9 describe the system. Examples are given in
Section 10. Finally, Section 11 gives some tracks for future work and concludes the report.

Remarks that can be skipped in a �rst reading are put between symbols I and J.

2 General Structure of the System

The system is implemented as a set of Java classes structured as follows:

• Constants. The 3 basic internal physical units of the system are: nanometer (10−9 meter),
picosecond (10−12 second), and dalton (1.6× 10−27 kilogram). The Java Interface Constants
contains a set of de�nitions shared everywhere in the system. The constants of the OPLS force
�eld [9] are used through several functions (e.g. OPLSBond) de�ned in Utils. The constants
de�ning the maximum distance to which atoms belonging to the same molecule are not subject

3

to LJ potential (maxDistanceAA) is also de�ned in Constants. The events associated to LJ
potential (e.g. CSignal) are de�ned as SugarCubes events.

• Basic de�nitions. The basic de�nitions used for simulation components are grouped in
Icobj3D. The physical state of the component is described by several �elds: coordinates
x,y,z, velocity sx,sy,sz, and mass mass, which are all of the Java double numeric type.
Three double �elds fx,fy,fz are de�ned to collect the forces exerted on the component (il
any). The �eld behavior of type Program holds the SugarCubes program associated to the
component. Fields for Java3D are also present (e.g. appearance and scene) and are used if
the component is drawn on screen. Two events are de�ned: killSignal to kill the component
and constraintSignal to constrain it. Atoms and molecule components extend Icobj3D.

Workspace3D extends the basic class Applet of Java and de�ne basic simulations, called
workspaces. Components of workspaces are held in stack icobjStack. The basic Java3D
scene, universe, and canvas are �elds of the workspace. A workspace also contains an en-
gine (class Engine3D) which embeds a SugarCubes reactive machine (SC.machine) to execute
SugarCubes programs. The typical instruction to make a SugarCubes program p run by the
machine is to call getMachine().addProgram(p).

Class Simulation extends Workspace3D by introducing several means to control simulations;
we consider these means as secondary and do not describe them further.

• Resolution. Two basic interfaces Method and Equations speci�e the general way to use
resolution in the system. Class Newton implements Newton's second law in the system. The
Velocity-Verlet method is coded by class VerletV.

• Atoms. The general structure of atoms is described by class Atom. Classes C, H, and O corre-
sponds to speci�c atoms (carbon, hydrogen, oxygene). Class CollectInteractions describes
the way Lennard-Jones interactions between atoms are collected. Class Constraints exerted
on atoms (produced by the molecules components, bonds, angles, and dihedrals) are collected
using CollectConstraints. To use the Velocity-Verlet method, an atom must perform action
Compute.

• Lennard-Jones. The Lennard-Jones potentials are de�ned by interface Potential and class
LJPotential.

• Bonds, valence angles, and dihedrals. Bonds are de�ned through classes Bond and
Spring. Speci�c harmonic bonds are de�ned by HarmonicSpring. Valence angles are de�ned
by the two classes Angle and HarmonicAngle. Finally, class Dihedral de�nes dihedrals.

• Molecules. General template of molecules is de�ned in class Molecule. Carbon chains are
speci�c molecules, made of a backbone of carbon atoms to which hydrogen atoms are linked.
They are called alkanes, and their linear structure is CH3-(CH2)*n-CH3. Construction of
alkane is described in class CarbonChain. Acid molecules are carbon chains in which the
bottom part is changed in a CO2 group of atoms (CH3-(CH2)*n-CO2). They are de�ned in
class Acid obtained from CarbonChain by just rede�ning the building of the bottom part.

• Auxiliary classes. Class Units contains several functions related to physical units. Class
Utils de�nes a set of auxiliary functions, among which are the ones to manipulate 3D vectors,

4

of Java3D class Vector3d. Class MDContext de�nes context for simulation: time-step, reso-
lution method, and scale. Appeareance on screen is controlled by Paint3D. Rotation related
methods are de�ned in class Rotation. Class Self is used by atoms to communicate their
state to others. Class Printer contains function to print various kind of information. Class
Value3 describes triples of double values.

The force �eld used is resumed in Fig. 1. It is based on the OPLS force �eld [9] , with three
changes, in red in the �gure. The rationale for these changes is to minimise the energy of the carbon
chains built in Sec. 9.1.

I

The genuine OPLS values are:
C-C-H 0.1569 109.5
H-C-H 0.138072 107.8
C-C-C-O -1.336 0.0 0.0

J

Bond strength length

C-C 112.13119999999999 0.15289999999999998
C-H 142.256 0.10900000000000001
C-O 133.888 0.141

Valence strength angle

C-C-C 0.2441364 112.7
C-C-H 0.1569 108.40891312174834
H-C-H 0.138072 110.51231628706842
C-C-O 0.20920000000000002 109.50000000000001
O-C-O 0.3874384 111.5

Dihedral A1 A2 A3

C-C-C-C 0.007280160000000001 -6.56888E-4 0.0011673360000000002
C-C-C-H 0.0 0.0 0.001531344
H-C-C-H 0.0 0.0 0.0013305120000000003
C-C-C-O 0.0 0.0 -0.0018632746666666668
H-C-C-O 0.0 0.0 0.001958112

LJ ε σ

ljC-C 2.7614400000000003E-4 0.35
ljH-H 1.2552E-4 0.25
ljO-O 7.112800000000001E-4 0.307
ljC-H 1.86188E-4 0.2958
ljC-O 4.43504E-4 0.3278
ljO-H 2.97064E-4 0.277

Figure 1: OPLS-based AA force �eld (internal units)

3 Resolution Method

Interface Method speci�es a unique method step which has to be called to perform resolution. Note
that the resolution method used in the system (Velocity-Verlet) needs two calls of step to compute
one time-step:

5

1public interface Method
{

3public abstract void s tep () ;
}

Interface Equations speci�es two methods to obtain the state and the accelaration of an atom:

public interface Equations
2{

public abstract double [] g e tS ta t e () ;
4public abstract double [] g e tAcc e l e r a t i on () ;

}

The class Newton implements Newton's law F = ma, where F is the force applied to an atom,
m its mass, and a its acceleration:

1public class Newton implements Equations
{

3f ina l Icobj3D i c ob j ;
f ina l double [] s t a t e = new double [6] ;

5f ina l double [] a c c e l e r a t i o n = new double [3] ;
public Newton (Icobj3D i c ob j)

7{
this . i c o b j = i c ob j ;

9}
public double [] g e tS ta t e ()

11{
s t a t e [0] = i c o b j . x ;

13s t a t e [1] = i c o b j . sx ;
s t a t e [2] = i c o b j . y ;

15s t a t e [3] = i c o b j . sy ;
s t a t e [4] = i c o b j . z ;

17s t a t e [5] = i c o b j . sz ;
return s t a t e ;

19}
public double [] g e tAcc e l e r a t i on ()

21{
double mass = i c ob j . mass ;

23a c c e l e r a t i o n [0] = i c o b j . fx / mass ;
a c c e l e r a t i o n [1] = i c o b j . fy / mass ;

25a c c e l e r a t i o n [2] = i c o b j . f z / mass ;
return a c c e l e r a t i o n ;

27}
}

I We use Java interfaces because one could imagine to implement other resolution methods. Actually, this
has been done for Euler and Runge-Kutta methods, but, for simplicity, we do not consider them here. J

3.1 Velocity-Verlet Method

Let r be the position (depending of the time) of an atom, v its velocity, and a its acceleration. The
Velocity-Verlet resolution method is de�ned by the following equations, where ∆t is a time interval:

r(t + ∆t) = r(t) + v(t)∆t + 1/2a(t)∆t2 (1)

6

v(t + ∆t) = v(t) + 1/2(a(t) + a(t + ∆t))∆t (2)

Implementation is possible in two steps:

1. Compute velocity at half of the time-step, from previous position and acceleration, by: v(t +
1/2∆t) = v(t) + 1/2a(t)∆t. Then, use the result to compute position at full time-step by:
r(t + ∆t) = r(t) + v(t + 1/2∆t)∆t.

2. Get acceleration a(t + ∆t) from forces applied to the atom, and compute velocity at full
time-step using velocity at half time-step by: v(t + ∆t) = v(t + 1/2∆t) + 1/2a(t + ∆t)∆t

Our implementation of Velocity-Verlet uses two instants: �rst step is performed during the �rst
instant, and second step during the second instant. At the end of the second step, velocity and
acceleration are saved for the next step. Acceleration is actually obtained (by Newton's law) from
the sum of the forces applied to the atom during the second step only.

The Velocity-Verlet resolution method is coded by the class VerletV de�ned as:

public class VerletV implements Method , Constants
2{

f ina l Atom atom ;
4f ina l Equations eqs ;

int currentStep = 0 ;
6double s t a t e [] = new double [6] ;

double a c c e l e r a t i o n [] ;
8boolean i n i t i a l i s e d = fa l se ;

double prevState [] = new double [6] ;
10double prevAcce l e ra t i on [] = new double [3] ;

public VerletV (Equations eqs ,Atom atom)
12{

this . eqs = eqs ;
14this . atom = atom ;

}
16double t imeStep ()

{
18return atom . molecule . context . t imeStep ;

}
20void i n i t i a l i s e ()

{
22i n i t i a l i s e d = true ;

prevState [0] = atom . x ;
24prevState [1] = atom . sx ;

prevState [2] = atom . y ;
26prevState [3] = atom . sy ;

prevState [4] = atom . z ;
28prevState [5] = atom . sz ;

cur rentStep = 0 ;
30}

public void s tep ()
32{

i f (! i n i t i a l i s e d) i n i t i a l i s e () ;
34currentStep++;

i f (cur rentStep == 1) step1 () ;
36else i f (cur rentStep == 2) {

step2 () ;
38currentStep = 0 ;

}
40}

void s tep1 ()
42{

double dt = timeStep () ;

7

44s t a t e = eqs . ge tS ta t e () ;
// s e t in termed ia te speed sx , sy , s z

46for (int i = 1 , k = 0 ; i < 6 ; i += 2 , k++) {
s t a t e [i] = prevState [i]+0.5∗ prevAcce l e ra t i on [k]∗ dt ;

48}
// s e t p o s i t i on x , y , z

50for (int i = 0 , k = 0 ; i < 6 ; i += 2 , k++) {
s t a t e [i] = prevState [i] + s t a t e [i +1] ∗ dt ;

52}
atom . r e s e tFo r c e () ;

54}
void s tep2 ()

56{
double dt = timeStep () ;

58a c c e l e r a t i o n = eqs . g e tAcc e l e r a t i on () ;
// s e t speed sx , sy , s z

60for (int i = 1 , k = 0 ; i < 6 ; i += 2 , k++) {
s t a t e [i] = s t a t e [i] + 0 .5 ∗ a c c e l e r a t i o n [k] ∗ dt ;

62}
// memorise f o r next s t ep

64prevState = s t a t e ;
p r evAcce l e ra t i on = a c c e l e r a t i o n ;

66}
}

The two method step1 and step2 corresponds to the two steps of the resolution method. Note
that the forces applied to the atom are simply reset at the end of the �rst step; actually, only the
forces collected during the second step (with positions of atoms computed during �rst step) are used
to compute atom velocity.

I The time-step used during resolution is evaluated at each resolution step, by calling the timeStep method,
and not �xed at construction. This is to allow time-steps to dynamically change, which is a necessity for
multi-scale approaches. J

4 Atoms

In this section, one �rst considers the class Atom that de�nes generic atoms. The processing of LJ
potentials is not de�ned for generic atoms. Second, one considers the class C of carbon atoms, which
extends Atom by de�ning the way LJ potentials are processed. De�nitions of hydrogen and oxygen
atoms are very similar and thus not described here.

4.1 Generic Atoms

The class Atom extends Icobj3D and de�nes generic atoms. It de�nes a �eld molecule instance of
Molecule which is the molecule to which the atom belongs. The kill event of the atom is set to
the event which kills the molecule. The behavior of the atom is de�ned as a loop which cyclically
collects the constraints sent to the atom (by generating constraintSignal), computes the new
state of the atom (class Compute), and paint the atom on screen (Paint3D). The cyclical behavior is
aborted when the molecule is killed (by generating killSignal). The constructor of the class Atom
is:

8

1public Atom (Molecule molecule , S t r ing base ,
double x , double y , double z ,

3double sx , double sy , double sz)
{

5super (base , x , y , z , sx , sy , sz) ;
this . molecule = molecule ;

7k i l l S i g n a l = molecule . k i l l S i g n a l ;
this . behavior =

9SC. un t i l (k i l l S i g n a l ,
SC . loop (

11SC. seq (
SC . c a l l b a ck (con s t r a i n tS i gna l ,

13new Co l l e c tCon s t r a i n t s (this)) ,
SC . ac t i on (new Compute (this)) ,

15SC. ac t i on (new Paint3D (this))))) ;
}

I The loop in de�nition of behavior is not instantaneous. This results from the presence of a callback in it,
as callback instructions never terminate instantly. J

CollectConstraints is an action which simply adds to the atom the force sent to it:

public class Co l l e c tCon s t r a i n t s implements JavaCal lback
2{

f ina l Icobj3D me ;
4public void execute (f ina l React iveEngine _, f ina l Object args)

{
6Value3 v = (Value3) args ;

me . fx += v . x ;
8me. fy += v . y ;

me . f z += v . z ;
10}

public Col l ec tConst ra int s3D (Icobj3D me)
12{

this .me = me ;
14}

}

Class Paint3D is, for simplicity, not described here.
At construction, Compute creates a new instance of class VerletV to use the Velocity-Verlet

resolution method, and a new instance of class Newton to hold the atom state. Each time it is
executed, the Compute action applies one step of the resolution method and changes the atom state:

1public class Compute implements JavaAction , Constants
{

3f ina l Atom atom ;
f ina l Newton newton ;

5Method method ;
public void execute (f ina l React iveEngine _)

7{
method . s tep () ;

9// s e t speed
atom . sx = newton . s t a t e [1] ;

11atom . sy = newton . s t a t e [3] ;
atom . sz = newton . s t a t e [5] ;

13// s e t coord ina te s
atom . x = newton . s t a t e [0] ;

9

15atom . y = newton . s t a t e [2] ;
atom . z = newton . s t a t e [4] ;

17}
public Compute (Atom atom)

19{
this . atom = atom ;

21this . newton = new Newton (atom) ;
method = new VerletV (newton , atom) ;

23}
}

4.2 Carbon Atom

A speci�c atom is a generic atom to which one adds the processing of LJ potentials, introduced
in Section 5. One considers the case of a carbon atom. The mass, color, and radius of a carbon
atom are de�ned in interface Constants. Basically, class C extends Atom by adding in parallel a new
behavior which cyclically generates the event CSignal and process the three events corresponging
to atoms C, H, and O. A value is associated to the generation of CSignal: it is the atom itself, which
is returned by an object of the class Self described bellow. De�nition of class C is:

public C (Molecule mol , double x , double y , double z ,
2double sx , double sy , double sz)

{
4super (mol , "C" ,x , y , z , sx , sy , sz) ;

c o l o r = BLACK;
6mass = massC ;

rad iu s = radiusC ;
8

behavior =
10SC. un t i l (k i l l S i g n a l ,

SC . merge (
12behavior ,

SC . loop (
14SC. seq (

SC . generate (CSignal ,new S e l f (this)) ,
16SC. merge (

c o l l e c t (CSignal ,new LJPotent ia l (ljC_C)) ,
18c o l l e c t (HSignal ,new LJPotent ia l (ljC_H)) ,

c o l l e c t (OSignal ,new LJPotent ia l (ljC_O))))))) ;
20

mol . addAtom (this) ;
22}

I Assignment to �eld behavior, in class C, is by no mean a recursive de�nition. behavior appears both
at the right and at the left of the sign �=�, but in Java this sign does not denotes equality, but assignment.
Actually, the statement should be reads as �evaluate the right part, and assign the result to the left part, which
is behavior�. Thus, the occurence of behavior appearing at right denotes the standard behavior of Atom, and
the behavior of a carbon extends it by adding in parallel (merge) a speci�c behavior consisting in signaling
itself and reacting to other atoms, according to their nature. J

Self de�nes a JavaObjectExpression always returning the object assigned to it at construction:

public class S e l f implements JavaObjectExpress ion
2{

10

Object s e l f ;
4public Object eva luateObject (f ina l React iveEngine _)

{
6return s e l f ;

}
8public S e l f (Object s e l f)

{
10this . s e l f = s e l f ;

}
12}

Parameters of the potentials corresponding to the various atoms are hold in variables ljC_C,
ljC_H, and ljC_O de�ned in Constants. The call collect(s,p) collects all the values sent with
event s, and applies the potential p to them (that is, calls the execute method of Collect-

Interactions, with p as parameter).

Program c o l l e c t (I d e n t i f i e r s i gna l , Po t en t i a l p o t e n t i a l)
2{

return SC. ca l l ba ck (s i gna l ,
4new Co l l e c t I n t e r a c t i o n s (po t en t i a l , this)) ;

}

The de�nition of CollectInteractions is:

1public class Co l l e c t I n t e r a c t i o n s implements JavaCallback , Constants
{

3f ina l Atom me ;
f ina l Poten t i a l p o t e n t i a l ;

5public void execute (f ina l React iveEngine _, f ina l Object args)
{

7Atom other = (Atom) args ;
i f (me == other) return ;

9Value3 f = po t en t i a l . computeForce (other ,me) ;
me . fx += f . x ;

11me. fy += f . y ;
me . f z += f . z ;

13}
public Co l l e c t I n t e r a c t i o n s (Po t en t i a l po t en t i a l ,Atom me)

15{
this .me = me ;

17this . p o t e n t i a l = po t e n t i a l ;
}

19}

Two points are to be noticed: �rst, the equality test forbids the processing of the atom, named
me, by itself; second, only me is transformed, not the atoms sent as values of events.

5 Lennard-Jones Potentials

Interface Potential speci�es Lennard-Jones potentials, modeling van der Waals interactions be-
tween atoms. It de�nes a unique method computeForce which computes the vector representing
the force issued from the potential existing between two atoms.

1public interface Poten t i a l extends Constants

11

{
3public abstract Value3 computeForce (Atom source ,Atom ta rg e t) ;

}

A Lennard-Jones potential is de�ned by two parameters σ and ε. σ is the distance to which
the potential is null, and ε is the depth of the potential at distance σ. The potential energy U(rij)
between two atoms i and j placed at distance rij is de�ned by:

U(rij) = 4ε((
σ

rij
)
12
− (

σ

rij
)
6
) (3)

Class LJPotential implements Potential with method computeForce de�ned as:

public Value3 computeForce (Atom source ,Atom ta rg e t)
2{

energy = 0 ;
4i f (source . i sL inked (target , maxDistanceAA)) return zero ;

double r = Ut i l s . d i s t anc e (target , source) ;
6i f (r == 0) return zero ;

double sigma_on_r = sigma / r ;
8double sigma_on_r_pow6 = Math . pow (sigma_on_r , 6) ;

double sigma_on_r_pow12 = sigma_on_r_pow6 ∗ sigma_on_r_pow6 ;
10energy = 4 ∗ eps ∗ (sigma_on_r_pow12 − sigma_on_r_pow6) ;

double f l j =
12−24.0 ∗ eps / r ∗ (2∗ sigma_on_r_pow12 − sigma_on_r_pow6) ;

U t i l s . setVector3d (v12 , source , t a r g e t) ;
14v12 . normal ize () ;

U t i l s . setVector3d (f , U t i l s . extProd (− f l j , v12)) ;
16r e s . x = f . x ; r e s . y = f . y ; r e s . z = f . z ;

return r e s ;
18}

Vector zero is returned if atoms source and target belong to the same molecule and are
linked by at most maxDistanceAA bonds (isLinked). Otherwise, the distance r between the two
atoms is computed, using the method distance de�ned in Utils. Vector zero is returned if r is 0,
actually meaning that source and target are the same. Otherwise, energy is computed according
to equation 3. Then, the module of the force (flj) is computed by deriving the energy. The result
is the vector λ~v, where λ = flj and ~v is the vector from source to target.

Energies of the various Lennard-Jones potentials are shown on Fig. 2.

6 Bonds

A bond is basically implemented by the abstract class Spring which extends Icobj3D. In this class,
vector f holds the force applied to the two atoms a and b by means of two internal classes GenA and
GenB. The module of the force is computed by the abstract method controlLength which is de�ned
by concrete classes extending Spring. The behavior of Spring cyclically executes controlLength
at each instant, and generates a constraint for a and b. The de�nition of Spring is:

public abstract class Spring extends Icobj3D
2{

f ina l Atom a , b ;
4Vector3d vab = new Vector3d () ;

Vector3d f = new Vector3d () ;

12

Figure 2: Lennard-Jones potentials

6double energy ;
public Spring (Molecule mol ,Atom a ,Atom b)

8{
super (" s " , 0 , 0 , 0) ;

10this . a = a ;
this . b = b ;

12

this . behavior =
14SC. un t i l (mol . k i l l S i g n a l ,

SC . loop (
16SC. seq (

SC . ac t i on (new ControlLength ()) ,
18SC. generate (a . c on s t r a i n tS i gna l ,new GenA ()) ,

SC . generate (b . c on s t r a i n tS i gna l ,new GenB ()) ,
20SC. stop ()))) ;

}
22public void applyForce (double f o r c e ,Atom a ,Atom b)

{
24Ut i l s . setVector3d (vab , a , b) ;

vab . normal ize () ;
26Ut i l s . extProd (f , f o r c e , vab) ;

}
28abstract void contro lLength () ;

public class ControlLength implements JavaAction
30{

public void execute (f ina l React iveEngine engine)
32{

contro lLength () ;
34}

}
36public class GenA implements JavaObjectExpress ion

{
38Value3 r e s = new Value3 () ;

public Object eva luateObject (f ina l React iveEngine engine)
40{

r e s . s e t (f . x , f . y , f . z) ;
42return r e s ;

}
44}

13

public class GenB implements JavaObjectExpress ion
46{

Value3 r e s = new Value3 () ;
48public Object eva luateObject (f ina l React iveEngine engine)

{
50r e s . s e t (− f . x,− f . y,− f . z) ;

return r e s ;
52}

}
54}

Method applyForce assigns to f a vector of the form λ~v, where ~v is the (normalised) vector betwen
a and b and λ is obtained by deriving the potential. Note that the forces exerced on the two atoms
are opposed, as shown on the following �gure:

I The stop appearing in the loop of behavior de�nition prevents it to be instantaneous. This is one of the
very few places where stop is mandatory. J

6.1 Harmonic Bond Potential

A harmonic bond potential de�nes the energy between two atoms i and j, with distance rij between
them, as:

U(rij) = k(rij − r0)2 (4)

where k is the bond strength and r0 is the constaint (equilibrium distance). The force associated
to a harmonic potential has form 2k(rij − r0). The class HarmonicSpring extends Spring by
implementing method controlLength.

public class HarmonicSpring extends Spring
2{

double s t rength , l ength ;
4public HarmonicSpring (Molecule mol ,Atom a ,Atom b ,

double s t rength , double l ength)
6{

super (mol , a , b) ;
8this . s t r ength = st r ength ;

this . l ength = length ;
10}

public void contro lLength ()
12{

double d i s t = Ut i l s . d i s t anc e (b , a) ;
14double d i f f = d i s t − l ength ;

energy = st r ength ∗ d i f f ∗ d i f f ;
16double f o r c e = 2 .0 ∗ s t r ength ∗ d i f f ;

applyForce (f o r c e , a , b) ;
18}

}

14

I The use of an intermediary abstract class is justi�ed because the modeling of scales larger than AA may
need de�nitions of non-harmonic springs. These di�erent springs could however still extend class Spring. J

Energies of the various bond potentials are shown on Fig. 3.

Figure 3: Bond potentials

7 Valence Angles

A valence angle is implemented by the abstract class Angle. The angle formed by three atoms
is computed by method valenceAngle of Angle which returns a value in the interval 0, 2π and is
de�ned as follows:

1Vector3d ba = new Vector3d () ;
Vector3d bc = new Vector3d () ;

3Vector3d perp = new Vector3d () ;
Vector3d perp2 = new Vector3d () ;

5

public f ina l double valenceAngle (Atom a ,Atom b ,Atom c)
7{

U t i l s . setVector3d (ba , b , a) ;
9Ut i l s . setVector3d (bc , b , c) ;

double ang le = ba . ang le (bc) ;
11Ut i l s . perp (perp , bc , ba) ;

U t i l s . perp (perp2 , perp , bc) ;
13// are perp2 and ba in the same d i r e c t i on ?

double dot = ba . dot (perp2) ;
15// ang le in [0 ,2 p i]

i f (dot < 0) ang le = angle + Math . PI ;
17return ang le ;

}

Method applyForce of Angle applies a force on the three atoms:

15

Vector3d tanga = new Vector3d () ;
2Vector3d tangc = new Vector3d () ;

Vector3d sum = new Vector3d () ;
4Vector3d inv = new Vector3d () ;

6public void applyForce (double f o r c e ,Atom a ,Atom b ,Atom c)
{

8Ut i l s . setVector3d (ba , b , a) ;
U t i l s . setVector3d (bc , b , c) ;

10// perpend icu lar to p lane p de f ined by ba and bc
Ut i l s . perp (perp , ba , bc) ;

12// perpend icu lar to −ba and perp in p
Ut i l s . perp (tanga , perp , U t i l s . oppos i t e (inv , ba)) ;

14tanga . normal ize () ;
// perpend icu lar to bc and perp in p

16Ut i l s . perp (tangc , perp , bc) ;
tangc . normal ize () ;

18// f o r c e s on atoms
Ut i l s . extProd (fa , f o r c e , tanga) ;

20Ut i l s . extProd (fc , f o r c e , tangc) ;
U t i l s . oppos i t e (fb , U t i l s . sum (sum , fa , f c)) ;

22}

A drawing illustrates the application of the force:

7.1 Harmonic Valence Potential

A harmonic valence potential de�nes the energy between three atoms i, j, and k, forming an angle
θ, as:

U(θ) = k(θ − θ0)2 (5)

where k is the angle strength and θ0 is the constaint (equilibrium angle). The force associated to
an harmonic angle potential is 2k(θ − θ0).

Class HarmonicAngle implements the abstract class Angle by de�ning the controlAnglemethod
as:

void contro lAng le ()
2{

double ang le = valenceAngle (a , b , c) ;
4// d i f f e r e n c e betweeen ang le and consign

double d i f f = ang le − cons ign ;
6// compute energy : U(ang le) = k (ang le − consign)∗∗2

energy = st r ength ∗ d i f f ∗ d i f f ;
8// compute f o r ce : − d/ dt energy

double f o r c e = − 2 .0 ∗ s t r ength ∗ d i f f ;
10// app ly f o r ce

applyForce (f o r c e , a , b , c)
12}

16

Energies of the various valence angle potentials of the force �eld used by the system are shown
on Fig. 4.

Figure 4: Valence potentials

8 Dihedrals

Dihedral potentials have the �triple cosine� form. The dihedral potential U(θ) corresponding to a
dihedral (torsion angle) θ is de�ned by:

U(θ) = 1/2((A1(1 + cos(θ + F1)) + A2(1− cos(2θ + F2)) + A3(1 + cos(3θ + F3)) + A4) (6)

The force is thus de�ned by

dU(θ)/dt = 1/2(A1sin(θ + F1)− 2A2sin(2θ + F2) + 3A3sin(3θ + F3)) (7)

I Actually, we always consider the simpler form of dihedral potential, where A4 and the Fi are null, but the
system accepts the general triple-cosine form. J

Class Dihedral de�nes dihedrals. The control of the torsion angle is performed by action
ControlAngle de�ned as follows:

Vector3d ba = new Vector3d () ;
2Vector3d cd = new Vector3d () ;

Vector3d bc = new Vector3d () ;
4Vector3d cb = new Vector3d () ;

6Vector3d perp1 = new Vector3d () ;
Vector3d perp2 = new Vector3d () ;

8

class ControlAngle implements JavaAction
10{

public void execute (f ina l React iveEngine _)

17

12{
U t i l s . setVector3d (bc , b , c) ;

14Ut i l s . setVector3d (cb , c , b) ;
U t i l s . setVector3d (ba , b , a) ;

16Ut i l s . setVector3d (cd , c , d) ;
// vec tor perpend icu lar to plane1 : a1 , p1 , p2

18Ut i l s . perp (perp1 , bc , ba) ;
perp1 . normal ize () ;

20// vec tor perpend icu lar to plane2 : a2 , p1 , p2
Ut i l s . perp (perp2 , cb , cd) ;

22perp2 . normal ize () ;
// measure d i h ed ra l ang le [0 , p i]

24double ang le = perp1 . ang le (perp2) ;
// are perp1 and cd in the same d i r e c t i on ?

26double dot = cd . dot (perp1) ;
// ang le in [−pi ,+ pi]

28i f (dot < 0) ang le = −ang le ;
// Math . PI i s the consign

30ang le = Math . PI + angle ;
// compute f o r ce

32double f o r c e = − computeForce (ang le) ;
// f o r c e s on atoms

34Ut i l s . extProd (fa , f o r c e , perp1) ;
U t i l s . extProd (fd , f o r c e , perp2) ;

36Ut i l s . oppos i t e (fb , f a) ;
U t i l s . oppos i t e (fc , fd) ;

38}
}

The control of the dihedral angle can be described by the drawing:

Method computeForce implements equations 6 and 7:

1double computeForce (double theta)
{

3// energy
energy = 0 .5 ∗ (

5A1 ∗ (1 + Math . cos (theta + F1)) +
A2 ∗ (1 − Math . cos (2∗ theta + F2)) +

7A3 ∗ (1 + Math . cos (3∗ theta + F3))
) + A4 ;

9S t a t i s t i c s . incremDihedralEnergy (energy) ;
// fo rce

11double f o r c e = − 0 .5 ∗ (
A1 ∗ Math . s i n (theta + F1) −

13(2 ∗ A2 ∗ Math . s i n (2∗ theta + F2)) +

18

Figure 5: Dihedral potentials

(3 ∗ A3 ∗ Math . s i n (3∗ theta + F3))
15) ;

return f o r c e ;
17}

Energies of the various dihedral potentials used in the system are shown on Fig. 5.

9 Molecules

A molecule of class Molecule is a container for its components which are stored in several vector data
structures. For example, atoms are stored in atomContent and added in the molecule by method
addAtom (see its use in Section 4.2). The context �eld contains the resolution time-step associated
with the molecule (and also the resolution method and scale; we do not consider these points in
more detail). The build method is the entry point to build the molecule; it should be rede�ned
for speci�c molecules extending class Molecule. The molecule is registered in the simulation using
method registerIn. The class Molecule has the form:

1public class Molecule implements Constants
{

3St r ing name , baseName , d e s c r i p t i o n ;
// i n i t i a l coord ina te s

5double x , y , z ;
// i n i t i a l speed

7double sx , sy , sz ;
// MD contex t

9MDContext context ;
// React ive workspace

11Simulat ion workspace ;
// l o c a l scene f o r the molecule

13BranchGroup l o ca l S c ene ;
// content o f the molecule

15f ina l Vector<Atom> atomContent = new Vector<Atom> () ;
f ina l Vector<Bond> bondContent = new Vector<Bond> () ;

19

17f ina l Vector<Angle> angleContent = new Vector<Angle> () ;
f ina l Vector<Dihedral> dihedra lContent = new Vector<Dihedral> () ;

19// s i g n a l s
f ina l I d e n t i f i e r k i l l S i g n a l = SC. simpleID () ;

21public Molecule (S t r ing base , double x , double y , double z ,
double sx , double sy , double sz)

23{
this (base , x , y , z , sx , sy , sz ,new MDContext (0 ,VERLETV, Sca l e .AA)) ;

25}
public void addAtom (Atom atom)

27{
atomContent . add (atom) ;

29atom . i n j e c t I n (l o c a l S c ene) ;
}

31public void bu i ld () { }
public void r e g i s t e r I n (S imulat ion workspace)

33{
for (Enumeration e = atomContent . e lements () ; e . hasMoreElements () ;) {

35Atom atom = (Atom) e . nextElement () ;
atom . r e g i s t e r I n (workspace) ;

37}
. . . .

39workspace . r e g i s t e r (this) ;
workspace . scene . addChild (l o c a l S c ene) ;

41}
. . . .

43}

9.1 Carbon Chains

A carbon chain is basically a molecule made of a chain of carbon atoms to which other atoms
are linked. In the rest of this section, we describe the building of carbon chains of the form CH3-
(CH2)*n-CH3. The goal of the construction is to build molecules with minimum of potential energy.
Examples of carbon chains are given in section 10.

The number of carbon atoms is a parameter of the construction, coded in cNum. Carbon atoms
are placed in the array backbone and the other atoms (hydrogen and oxigen atoms) are placed in
the array others. Class CarbonChain is the basic class to model carbon chains:

1public class CarbonChain extends Molecule
{

3int cNum;
Atom backbone [] ;

5Atom [] o the r s [] ;

7double lCH = bondC_H [1] ;
double aHCH = angleH_C_H [1] ;

9double aCCH = angleC_C_H [1] ;

11public CarbonChain (S imulat ion workspace , int cNum,
double x , double y , double z ,

13double sx , double sy , double sz)
{

15super (" carbonChain" ,x , y , z , sx , sy , sz) ;
this . workspace = workspace ;

17this . cNum = cNum;
this . backbone = new Atom [cNum] ;

19this . o the r s = new Atom [cNum] [] ;
for (int k = 0 ; k < cNum; k++) othe r s [k] = new Atom [0] ;

21}

20

23. . . .
}

The build method of CarbonChain consists in a sequence of steps: buildBackbone �lls the array
backbone; three hydogen atoms are added by method addTop to the �rst carbon; two hydogens
atoms are added to each carbon, except the �rst and the last, by method addH2; three hydrogens
are added to the last carbon by addBottom; �nally, bonds, valence angles, and dihedrals are added,
using createBonds, createAngles, and createDihedrals; despite the fact that the same technique
is used for the 3 methods, we give their complete de�nition, for the sake of completeness. De�nition
of build is:

public void bu i ld ()
2{

buildBackbone () ;
4addTop () ;

for (int k = 1 ; k < cNum−1; k++) addH2 (k) ;
6addBottom () ;

createBonds () ;
8c reateAng l e s () ;

c r e a t eD ihed ra l s () ;
10}

Filling the backbone is performed by:

double incrX = bondC_C [1] ∗ Math . cos (angleC_C_C [1] / 2) ;
2double incrY = bondC_C [1] ∗ Math . s i n (angleC_C_C [1] / 2) ;

4void buildBackbone ()
{

6double currentY = y ;
double currentX = x ;

8for (int k = 0 ; k < cNum; k++) {
i f (k%2 == 0) currentX −=incrX ; else currentX += incrX ;

10backbone [k] = new C (this , currentX , currentY , z , sx , sy , sz) ;
currentY −= incrY ;

12}
}

9.2 Hydrogen Atoms

The three methods addTop, addH2, and addBottom are used to place hydrogen atoms. As addTop
and addBottom are very similar, we only describe the last one (it is rede�ned in Section 10.2). The
addH2 method attaches two hydogen atoms to a carbon atom (CH2):

1double cos = lCH ∗ Math . cos (aHCH /2) ;
double s i n = lCH ∗ Math . s i n (aHCH /2) ;

3

void addH2 (int k)
5{

Atom A = backbone [k−1] ;
7Atom B = backbone [k] ;

Atom C = backbone [k+1] ;
9Vector3d BA = Ut i l s . vect (B,A) ;

21

Vector3d BC = Ut i l s . vect (B,C) ;
11Vector3d P = Ut i l s . normal ize (U t i l s . sum (BA,BC)) ;

Vector3d N = Ut i l s . normal ize (U t i l s . perp (BA,BC)) ;
13

Vector3d u = Ut i l s . extProd (−cos ,P) ;
15Vector3d v = Ut i l s . extProd (− s in ,N) ;

Vector3d w = Ut i l s . sum (u , v) ;
17Vector3d q = Ut i l s . sum (u , U t i l s . oppos i t e (v)) ;

19Atom h1 = new H (this ,B. x+w. x , B. y+w. y , B. z+w. z , B. sx ,B. sy ,B. sz) ;
Atom h2 = new H (this ,B. x+q . x , B. y+q . y , B. z+q . z , B. sx ,B. sy ,B. sz) ;

21othe r s [k] = new Atom [2] ;
o the r s [k] [0] = h1 ;

23othe r s [k] [1] = h2 ;
}

I For vector manipulations, we prefer here to use direct methods (e.g. Utils.vect) instead of in-place
methods (e.g. Utils.setVector3d). This is because there is no need for optimisation, as we are just building
molecules, not executing them. J

The addBottom method places 3 hydrogen atoms attached to the last carbon atom (CH3):

double cos2 = lCH ∗ Math . cos (aCCH/2) ;
2double s i n2 = lCH ∗ Math . s i n (aCCH/2) ;

4void addBottom ()
{

6Atom A = backbone [cNum−3] ;
Atom B = backbone [cNum−2] ;

8Atom C = backbone [cNum−1] ;
Vector3d AB = Ut i l s . vect (A,B) ;

10Vector3d P = Ut i l s . normal ize (U t i l s . oppos i t e (U t i l s . sum (AB, U t i l s . vect (C,B)))) ;
Vector3d N = Ut i l s . normal ize (U t i l s . perp (AB,P)) ;

12

Vector3d u = Ut i l s . extProd (cos ,P) ;
14Vector3d v = Ut i l s . extProd (s in ,N) ;

Vector3d w = Ut i l s . sum (u , v) ;
16Vector3d q = Ut i l s . sum (u , U t i l s . oppos i t e (v)) ;

18Atom h1 = new H (this ,C. x+w. x , C. y+w. y , C. z+w. z , C. sx ,C. sy ,C. sz) ;
Atom h2 = new H (this ,C. x+q . x , C. y+q . y , C. z+q . z , C. sx ,C. sy ,C. sz) ;

20Vector3d perp = Ut i l s . normal ize (U t i l s . perp (u , v)) ;
Vector3d r =

22Ut i l s . sum (Ut i l s . extProd (−cos2 , U t i l s . normal ize (u)) ,
U t i l s . extProd (s in2 , perp)) ;

22

24Atom h3 = new H (this ,C. x+r . x , C. y+r . y , C. z+r . z , C. sx ,C. sy ,C. sz) ;
o the r s [cNum−1] = new Atom [3] ;

26othe r s [cNum−1] [0] = h1 ;
o the r s [cNum−1] [1] = h2 ;

28othe r s [cNum−1] [2] = h3 ;
}

9.3 Creation of Bonds

Harmonic bonds are created between backbone atoms, and between a carbon and the hydrogen or
oxygen atoms on the same plane.

1void createBonds ()
{

3for (int k = 0 ; k < cNum − 1 ; k++) {
new HarmonicBond (this , backbone [k] , backbone [k+1] ,bondC_C) ;

5}
for (int k = 0 ; k < cNum; k++) {

7Atom c = backbone [k] ;
for (int l = 0 ; l < othe r s [k] . l ength ; l++) {

9Atom a = othe r s [k] [l] ;
i f (a instanceof H) new HarmonicBond (this , c , a ,bondC_H) ;

11else i f (a instanceof O) new HarmonicBond (this , c , a ,bondC_O) ;
}

13}
}

9.4 Creation of Valence Angles

Creation of valence angles is done by createAngles method:

void c reateAng l e s ()
2{

// backbone ang l e s
4for (int k = 0 ; k < cNum − 2 ; k++) {

new HarmonicAngle (this , backbone [k] ,
6backbone [k+1] , backbone [k+2] ,angleC_C_C) ;

}
8for (int k = 0 ; k < cNum; k++) {

Atom c = backbone [k] ;
10int l en = othe r s [k] . l ength ;

for (int l = 0 ; l < l en ; l++) {
12Atom a = othe r s [k] [l] ;

for (int m = l +1; m < len ; m++) {

23

14Atom b = othe r s [k] [m] ;
i f (a instanceof H)

16new HarmonicAngle (this , a , c , b , angleH_C_H) ;
else i f (a instanceof O)

18new HarmonicAngle (this , a , c , b , angleO_C_O) ;
}

20}
}

22for (int k = 0 ; k < cNum − 1 ; k++) {
Atom c1 = backbone [k] ;

24Atom c2 = backbone [k+1] ;
int l en = othe r s [k] . l ength ;

26for (int l = 0 ; l < l en ; l++) {
Atom a = othe r s [k] [l] ;

28new HarmonicAngle (this , a , c1 , c2 , angleC_C_H) ;
}

30}
for (int k = 1 ; k < cNum; k++) {

32Atom c1 = backbone [k−1] ;
Atom c2 = backbone [k] ;

34int l en = othe r s [k] . l ength ;
for (int l = 0 ; l < l en ; l++) {

36Atom a = othe r s [k] [l] ;
i f (a instanceof H)

38new HarmonicAngle (this , c1 , c2 , a , angleC_C_H) ;
else i f (a instanceof O)

40new HarmonicAngle (this , c1 , c2 , a , angleC_C_O) ;
}

42}
}

9.5 Creation of Dihedrals

Creation of dihedrals is done by createDihedrals method:

1void c r ea t eD ihed ra l s ()
{

3for (int k = 0 ; k < cNum−3; k++) {
new Dihedra l (this , backbone [k] , backbone [k+1] ,

5backbone [k+2] , backbone [k+3] ,dihedralC_C_C_C) ;
}

7for (int k = 0 ; k < cNum−2; k++) {
Atom c1 = backbone [k] ;

9Atom c2 = backbone [k+1] ;
Atom c3 = backbone [k+2] ;

11int l en = othe r s [k] . l ength ;
for (int l = 0 ; l < l en ; l++) {

13Atom a = othe r s [k] [l] ;
new Dihedra l (this , a , c1 , c2 , c3 , dihedralC_C_C_H) ;

15}
}

17for (int k = 0 ; k < cNum−2; k++) {
Atom c1 = backbone [k] ;

19Atom c2 = backbone [k+1] ;
Atom c3 = backbone [k+2] ;

21int l en = othe r s [k+2] . l ength ;
for (int l = 0 ; l < l en ; l++) {

23Atom a = othe r s [k+2] [l] ;
i f (a instanceof H)

25new Dihedra l (this , c1 , c2 , c3 , a , dihedralC_C_C_H) ;
else i f (a instanceof O)

24

27new Dihedra l (this , c1 , c2 , c3 , a , dihedralC_C_C_O) ;
}

29}
for (int k = 0 ; k < cNum−1; k++) {

31Atom c1 = backbone [k] ;
Atom c2 = backbone [k+1] ;

33for (int l = 0 ; l < othe r s [k] . l ength ; l++) {
Atom a = othe r s [k] [l] ;

35for (int m = 0 ; m < othe r s [k+1] . l ength ; m++) {
Atom b = othe r s [k+1] [m] ;

37i f (b instanceof H)
new Dihedra l (this , a , c1 , c2 , b , dihedralH_C_C_H) ;

39else i f (b instanceof O)
new Dihedra l (this , a , c1 , c2 , b , dihedralH_C_C_O) ;

41}
}

43}
}

10 Examples

In this section, we simulate alkane and acid molecules which are speci�c carbon chains. All the
carbon chains considered in this section are made of 8 carbon atoms. In subsection 10.3, we put
the focus on stability of the resolution method.

10.1 Alkane

A typical program extends Simulation (or simply Workspace3D) and de�nes a constructor in which
the createUniverse method is called, to start Java3D. The main entry point of the program calls
the constructor (possibly using the standAlone function, which produces a window at screen).

For example, here is a simulation of an alkane molecule with 8 carbon atoms. The molecule
is made of 25 atoms, 24 bonds, 45 valence angles, and 60 dihedrals. The time-step used is 1
femto-second. A screenshot is shown on Fig. 6. The program is:

public class SimpleApp extends Simulat ion
2{

public SimpleApp ()
4{

super ("SimpleApp") ;
6backgroundColor =CYAN;

c r ea t eUn ive r s e () ;
8CarbonChain mol = new CarbonChain (this , 8 , 0 , 0 . 4 , 0 , 0 , 0 , 0) ;

mol . bu i ld () ;
10mol . context . t imeStep = 0 . 0 0 1 ; // 1 f s

mol . r e g i s t e r I n (this) ;
12}

public stat ic void main (St r ing [] a rgs)
14{

standAlone (new SimpleApp ()) ;
16}

}

25

Figure 6: Alkane carbon chains

10.2 Acid

An Acid molecule is a carbon chain in which the bottom part is changed to CO2 instead of CH3.
It thus extends CarbonChain by rede�ning method addBottom:

1class Acid extends CarbonChain
{

3public Acid (Simulat ion workspace , int cNum,
double x , double y , double z ,

5double sx , double sy , double sz)
{

7super (workspace , cNum, x , y , z , sx , sy , sz) ;
this . d e s c r i p t i o n = "CH3−(CH2)∗ "+(cNum−2)+"−CO2" ;

9}
void addBottom ()

11{
Atom A = backbone [cNum−3] ;

13Atom B = backbone [cNum−2] ;
Atom C = backbone [cNum−1] ;

15

double lCO = bondC_O [1] ;
17double aOCO = angleO_C_O [1] ;

double cos = lCO ∗ Math . cos (aOCO /2) ;
19double s i n = lCO ∗ Math . s i n (aOCO /2) ;

21Vector3d AB = Ut i l s . vect (A,B) ;
Vector3d CB = Ut i l s . vect (C,B) ;

23Vector3d P =
Ut i l s . normal ize (

25Ut i l s . oppos i t e (
U t i l s . sum (AB, U t i l s . vect (C,B)))) ;

27Vector3d N = Ut i l s . normal ize (U t i l s . perp (AB,P)) ;

29Vector3d u = Ut i l s . extProd (cos ,P) ;
Vector3d v = Ut i l s . extProd (s in ,N) ;

31Vector3d w = Ut i l s . sum (u , v) ;

26

Vector3d q = Ut i l s . sum (u , U t i l s . oppos i t e (v)) ;
33

Atom o1 = new O (this ,C. x+w. x , C. y+w. y , C. z+w. z , C. sx ,C. sy ,C. sz) ;
35Atom o2 = new O (this ,C. x+q . x , C. y+q . y , C. z+q . z , C. sx ,C. sy ,C. sz) ;

o the r s [cNum−1] = new Atom [2] ;
37othe r s [cNum−1] [0] = o1 ;

o the r s [cNum−1] [1] = o2 ;
39}

}

Replacing in class SimpleApp CarbonChain by Acid, on obtains the simulation of an acid
molecule. A screenshot is shown on Fig. 7.

Figure 7: Acid carbon chain

10.3 Stability

In this section, one considers the stability of the resolution method, with the aid of several simula-
tions. One must keep in mind that simulations do not contain means to control (kinetic) energy (for
example, thermostat); dynamics of molecules only depends of the force �eld and initial conditions.

Simulation 1

We �rst simulate an alkane molecule during 300 ps with a resolution time-step of 1 fs (the simulation
thus takes 600,000 instants). One traces the various sources of potential energy: bonds, valence
angles, dihedrals, and LJ potential (samples are taken every ps). The result is shown on Fig. 8.
One sees that energy is globally stable during the �rst 300 ps.

Energy start growing after 300 ps, with valence angles, and the increase propagates to dihedrals
while bond and LJ energies stay stable. This is shown on Fig. 9.

Energy up to 700 ps is shown on Fig. 10. One sees that divergence reaches bonds and LJ
energies near 0.5 nano-second.

27

Figure 8: Alkane, 300 ps, time-step 1 fs

Simulation explodes just after 700 ps. Here is a trace of total energy at some instants around
explosion (recall that one fs of simulation needs two instants, and that total energy is the sum of
potential and kinetic energies):

instant 1405958: total energy: 12.329925681290062

instant 1405965: total energy: 1194.9563097546588

instant 1406016: total energy: 4285583.1626097085

instant 1406017: total energy: 1.7158277146908313E7

Simulation 2

We consider the same simulation, but with a time-step of 0.5 femto-second to see if a smaller
time-step increases stability. The evolution of energy is shown on Fig. 11. One sees that, for
this simulation, a smaller time-step does not signi�cantly change the evolution of energy. However,
explosion of the simulation is delayed.

28

Figure 9: Alkane, 400 ps, time-step 1 fs

Simulation 3

We now turn to acid molecules and simulates one acid molecule during 300 ps, with a time-step of
1 fs. The result is shown on Fig. 12. Actually, the replacement of the molecule bottom makes the
simulation less stable, as energy start to increase sooner .

Simulation 4

We now simulate a system made of three 8-acid molecules (time-step is 1 fs). The system after 300
ps is shown on Fig. 13 and the energy evolution is shown on Fig. 14. Energy evolution during 0.5
ns is shown on Fig. 15; divergence comes very soon after this time.

11 Conclusion

We have presented a MD system based on Java and using the RP framework SugarCubes for logical
parallelism. De�nion and implemention of atoms and molecules have been described in detail, and
some results of simulations showing the stability of the resolution method were given.

The use of RP for MD simulations increases modularity: while object-orientation gives means

29

Figure 10: Alkane, 700 ps, time-step 1 fs

to re-use data, RP gives means (basically, logical parallelism) to re-use behaviors. RP is based
on a discretisation of time (instants) which appears natural in the resolution mechanism of MD.
Instantaneous interactions which are at the basis of classical physics can be naturally expressed in RP
through instantaneously broadcast events. Finally, full determinism of the merge parallel operator of
SugarCubes makes simulations totally deterministic. This corresponds to the deterministic nature
of classical physics and is mandatory to obtain simulations reversible in time.

In a future work, we plan to extend our system to multi-scale, multi-time-step simulations. We
also plan to study ways to bene�t from real parallelism (issued from multicores, multiprocessors, or
clusters of machines) to get more e�cient simulations.

References

[1] DL_POLY. http://www.cse.scitech.ac.uk/ccg/software/DL_POLY.

[2] Java3D. http://www.java3d.org.

[3] Reactive Programming. http://www-sop.inria.fr/indes/rp.

[4] Multiscale Simulation Methods in Molecular Sciences. NIC Series, Forschungszentrum Julich, Germany,
vol. 42, Winter School, 2-6 March, 2009.

30

http://www.cse.scitech.ac.uk/ccg/software/DL_POLY
http://www.java3d.org
http://www-sop.inria.fr/indes/rp

Figure 11: Alkane, 700 ps, time-step 0.5 fs

[5] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford, 1987.

[6] K. Arnold and J. Goslin. The Java Programming Language. Addison-Wesley, 1996.

[7] F. Boussinot. Reactive C: An Extension of C to Program Reactive Systems. Software Practice and
Experience, 21(4):401�428, april 1991.

[8] F. Boussinot and J-F. Susini. The SugarCubes Tool Box - A Reactive Java Framework. Software
Practice and Experience, 28(14):1531�1550, december 1998.

[9] W. Damm, A. Frontera, J. Rirado-Rives, and W. L. Jorgensen. OPLS All-Atom Force Field for Carbo-
hydrates. Journal of Computational Chemistry, 18(16):1955�1970, 1997.

[10] L. Mandel and M. Pouzet. ReactiveML, A Reactive Extension to ML. In ACM International conference
on Principles and Practice of Declarative Programming (PPDP'05), Lisbon, Portugal, July 2005.

[11] Loup Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-
Jones Molecules. Phys. Rev., 159:98�103, Jul 1967.

31

Figure 12: Acid, 300 ps, time-step 1 fs

Contents

1 Introduction 1

2 General Structure of the System 3

3 Resolution Method 5

3.1 Velocity-Verlet Method . 6

4 Atoms 8

4.1 Generic Atoms . 8
4.2 Carbon Atom . 10

5 Lennard-Jones Potentials 11

6 Bonds 12

6.1 Harmonic Bond Potential . 14

7 Valence Angles 15

7.1 Harmonic Valence Potential . 16

32

Figure 13: Result of a 300 ps simulation of 3 acid molecules

8 Dihedrals 17

9 Molecules 19

9.1 Carbon Chains . 20
9.2 Hydrogen Atoms . 21
9.3 Creation of Bonds . 23
9.4 Creation of Valence Angles . 23
9.5 Creation of Dihedrals . 24

10 Examples 25

10.1 Alkane . 25
10.2 Acid . 26
10.3 Stability . 27

11 Conclusion 29

33

Figure 14: 3 acid molecules, 300 ps, time-step 1 fs

34

Figure 15: 3 acid molecules, 500 ps, time-step 1 fs

35

	Introduction
	General Structure of the System
	Resolution Method
	Velocity-Verlet Method

	Atoms
	Generic Atoms
	Carbon Atom

	Lennard-Jones Potentials
	Bonds
	Harmonic Bond Potential

	Valence Angles
	Harmonic Valence Potential

	Dihedrals
	Molecules
	Carbon Chains
	Hydrogen Atoms
	Creation of Bonds
	Creation of Valence Angles
	Creation of Dihedrals

	Examples
	Alkane
	Acid
	Stability

	Conclusion

