Frédéric Boussinot 
email: frederic.boussinot@mines-paristech.fr
  
Bernard Monasse 
email: bernard.monasse@mines-paristech.fr
  
Description of a Molecular Dynamics Simulation System -AA Scale

A Molecular Dynamics system is presented which is based on Java. A reactive programming framework is used for expressing logical parallelism. The way to dene and implement atoms and molecules is described, with some results of simulations showing the stability of the resolution method.

(7) Actually, we always consider the simpler form of dihedral potential, where A4 and the Fi are null, but the system accepts the general triple-cosine form.

Class Dihedral denes dihedrals. The control of the torsion angle is performed by action ControlAngle dened as follows: V e c t o r 3 d ba = new V e c t o r 3 d ( ) ; 2 V e c t o r 3 d c d = new V e c t o r 3 d ( ) ; V e c t o r 3 d b c = new V e c t o r 3 d ( ) ; 4 V e c t o r 3 d c b = new V e c t o r 3 d ( ) ; 6 V e c t o r 3 d p e r p 1 = new V e c t o r 3 d ( ) ; V e c t o r 3 d p e r p 2 = new V e c t o r 3 d ( ) ; 8 c l a s s C o n t r o l A n g l e implements J a v a A c t i o n 10

Introduction

This report describes a Molecular Dynamics (MD) [START_REF] Allen | Computer Simulation of Liquids[END_REF] system which is currently under development at CEMEF 1 . The system has some particularities, unusual with standard MD systems:

• The implementation language is the object-oriented programming language Java [START_REF] Arnold | The Java Programming Language[END_REF].

• Parallelism is used at the logical level: complex objects are coded as parallel combinations of more elementary components. For example, molecules are expressed as combinations of atoms, bonds, angles, etc. and atoms are themselves made of several parallel components.

This kind of parallelism, that we call logical parallelism, is a syntactic means for modular programming, and has to be distinguished from the real parallelism (for example, the one obtained with a multiprocessor computer) which concerns execution. The logical parallelism we use is available through a reactive programming (RP) framework 2 , based on Java and called SugarCubes [START_REF] Boussinot | The SugarCubes Tool Box -A Reactive Java Framework[END_REF].

• The MD simulations are visualised during execution using the Java3D library [START_REF]Java3D[END_REF]. The simulation is actually visualised at each step of the resolution method.

1 With support from ANR-08-EMER-010 project PARTOUT.

2 Please note that reactive as used here is not at all related to its standard meaning in chemistry.
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Rationale for Using Java

A MD system should be interfaced with a 3D visualisation system and with the network (for example, to use clusters of machines), using a communication API (for example, MPI). Moreover, to make the programming task easier, the implementation language should be object-oriented. Our approach requires the possibility to express the behaviour of complex components as parallel combinations of smaller and simpler components. For that purpose, we use a reactive programming approach (see below) and thus we choose a language in which such a RP approach is available. Our choice of Java is motivated by the following reasons: the fact that Java is object-oriented, the existence of Java3D, for 3D visualisation, and the Java-based SugarCubes framework for RP in Java.

The choice of Java is not standard for MD systems, which are usually implemented in FORTRAN (e.g. [1]) or C/C++. Actually, we mainly consider our system as a proof of concept system.

Provided the existence of a layer for reactive programming in it, we guess that almost any other general-purpose programming language could be used to implement a system similar to ours.

Rationale for Using Reactive Programming

Reactive programming [START_REF]Reactive Programming[END_REF] oers a simple framework, with a clear and sound semantics, for expressing logical parallelism. In the RP approach, systems are made of parallel components that share the same instants. Instants thus dene a logical clock, shared by all components. Parallel components synchronise at each end of instant, and thus execute at the same pace. During instants, components can communicate using instantaneously broadcast events, which are seen in the same way by all components. There exists several variants of RP, which extend general purpose programming languages (for example, ReactiveC [START_REF] Boussinot | Reactive C: An Extension of C to Program Reactive Systems[END_REF] which extends C, and ReactiveML [START_REF] Mandel | A Reactive Extension to ML[END_REF] which extends the ML language). Among these reactive frameworks is SugarCubes, which extends Java.

In SugarCubes, the parallel operator is very specic: it is totally deterministic, which means that, at each instant, a SugarCubes program has a unique output for each possible input. Actually, in SugarCubes parallelism isimplemented in a sequential way.

The choice of RP, and more specically of SugarCubes, is motivated by the following reasons:

• MD systems are composed of separate, interacting components (atoms and molecules). It seems natural to consider that these components execute in parallel. In standard approaches, there is generally a big loop which considers components in turn (components are placed in an array). This structuration is rather articial and does not easily support dynamic changes of the system (for example, additions of new components or removals of old ones, things that one can nd in modeling chemical reactions).

• In MD simulations, time is discrete, and the resolution method which is at the heart of simulations is based on this discrete time. In RP, time is basically discrete, as it is decomposed in instants. Thus, RP makes the discretisation of time which is at the basis of MD very simple.

Note however that resolution steps and instants do not necessarily coincide (actually, with the Velocity-Verlet resolution method [START_REF] Verlet | Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules[END_REF] used in our system, one resolution step corresponds to two consecutive instants).

• MD is based on classical (Newtonian) physics which is deterministic. The strict determinism of the parallel operator provided by SugarCubes reects the fundamental determinism of Newtonian physics. At implementation level, it simplies debugging (a faulty situation can be simply reproduced). At the physical level, it is mandatory to make simulations reversible in time.

• In classical physics, interactions are instantaneous (this is not the case in Relativity). In RP, interactions are naturally expressed using instantaneously broadcast events. For example, each atom signals its existence to others atoms by generating at each instant an event holding its state. Instantaneity of events means that an event is received in the very same instant it is generated. This is the way instantaneous interactions are coded.

In conclusion, the use of RP for MD simulations is motivated by its following characteristics: modularity of logical parallelism, intrinsic discretisation of time due to instants, strict determinism of the parallel operator, instantaneity of events used to code interactions.

Objectives of the System

The rst objective is to design a MD system, with a clear and simple structure, in which users can enter and possibly introduce or change parts. In our system, molecules are built via Java programming (our basic examples are alkane carbon-chains). The object-oriented character of Java is essential to simplify the denition of new molecules by programming.

The second objective is to get a system with a minimum of approximations, in reference to the well-established notions that are found in the litterature (for example, the notion of a potential).

In this respect, great care is put on the stability of the resolution method which we choose to be, as it is generally the case in MD systems, the Velocity-Verlet method.

The third, longer-term, objective is to extend the current system to a multi-scale, multi-time system, in which molecules at dierent scales of description -all-atom (AA), united-atom(UA), and coarse-grain (CG) -can be simultaneously simulated. Multi-scale approaches [START_REF]Multiscale Simulation Methods in Molecular Sciences[END_REF] are a way to simulate during long periods of time molecular systems composed of loosely-coupled components (with rare interactions). Our objective is to allow scale changes that preserve fundamental quantities (e.g. energy), putting the focus on the denition of potentials.

In this report, we do not consider anymore multi-scale aspects which are left for future work, and we limit ourselves to the AA scale.

Structure of the Paper

The report is structured as follows: Section 2 to 9 describe the system. Examples are given in Section 10. Finally, Section 11 gives some tracks for future work and concludes the report.

Remarks that can be skipped in a rst reading are put between symbols and .

General Structure of the System

The system is implemented as a set of Java classes structured as follows:

• Constants. The 3 basic internal physical units of the system are: nanometer (10 -9 meter), picosecond (10 -12 second), and dalton (1.6 × 10 -27 kilogram). The Java Interface Constants contains a set of denitions shared everywhere in the system. The constants of the OPLS force eld [START_REF] Damm | OPLS All-Atom Force Field for Carbohydrates[END_REF] are used through several functions (e.g. OPLSBond) dened in Utils. The constants dening the maximum distance to which atoms belonging to the same molecule are not subject to LJ potential (maxDistanceAA) is also dened in Constants. The events associated to LJ potential (e.g. CSignal) are dened as SugarCubes events.

• Basic denitions. we consider these means as secondary and do not describe them further.

• Resolution. Two basic interfaces Method and Equations specie the general way to use resolution in the system. Class Newton implements Newton's second law in the system. The Velocity-Verlet method is coded by class VerletV.

• Atoms. The force eld used is resumed in Fig. 1. It is based on the OPLS force eld [START_REF] Damm | OPLS All-Atom Force Field for Carbohydrates[END_REF] , with three changes, in red in the gure. The rationale for these changes is to minimise the energy of the carbon chains built in Sec. 9.1. We use Java interfaces because one could imagine to implement other resolution methods. Actually, this has been done for Euler and Runge-Kutta methods, but, for simplicity, we do not consider them here.

Velocity-Verlet Method

Let r be the position (depending of the time) of an atom, v its velocity, and a its acceleration. The Velocity-Verlet resolution method is dened by the following equations, where ∆t is a time interval:

r(t + ∆t) = r(t) + v(t)∆t + 1/2a(t)∆t 2 (1) v(t + ∆t) = v(t) + 1/2(a(t) + a(t + ∆t))∆t (2) 
Implementation is possible in two steps:

1. Compute velocity at half of the time-step, from previous position and acceleration, by: v(t + 1/2∆t) = v(t) + 1/2a(t)∆t. Then, use the result to compute position at full time-step by: r(t + ∆t) = r(t) + v(t + 1/2∆t)∆t.

2. Get acceleration a(t + ∆t) from forces applied to the atom, and compute velocity at full time-step using velocity at half time-step by: v(t

+ ∆t) = v(t + 1/2∆t) + 1/2a(t + ∆t)∆t
Our implementation of Velocity-Verlet uses two instants: rst step is performed during the rst instant, and second step during the second instant. At the end of the second step, velocity and acceleration are saved for the next step. Acceleration is actually obtained (by Newton's law) from the sum of the forces applied to the atom during the second step only.

The Velocity-Verlet resolution method is coded by the class VerletV dened as: public c l a s s V e r l e t V implements Method , C o n s t a n t s 2 { f i n a l Atom atom ; 4 f i n a l E q u a t i o n s e q s ; int c u r r e n t S t e p = 0 ; 6 double s t a t e [ ] = new double [START_REF] Arnold | The Java Programming Language[END_REF] ; double a c c e l e r a t i o n [ ] ;

8 boolean i n i t i a l i s e d = f a l s e ; double p r e v S t a t e [ ] = new double [START_REF] Arnold | The Java Programming Language[END_REF] ; 10 double p r e v A c c e l e r a t i o n [ ] = new double [START_REF]Reactive Programming[END_REF] ; public V e r l e t V ( E q u a t i o n s e q s , Atom atom ) 12 { this . e q s = e q s ; 14 this The two method step1 and step2 corresponds to the two steps of the resolution method. Note that the forces applied to the atom are simply reset at the end of the rst step; actually, only the forces collected during the second step (with positions of atoms computed during rst step) are used to compute atom velocity.

The time-step used during resolution is evaluated at each resolution step, by calling the timeStep method,

and not xed at construction. This is to allow time-steps to dynamically change, which is a necessity for multi-scale approaches.

Atoms

In this section, one rst considers the class Atom that denes generic atoms. The processing of LJ potentials is not dened for generic atoms. Second, one considers the class C of carbon atoms, which extends Atom by dening the way LJ potentials are processed. Denitions of hydrogen and oxygen atoms are very similar and thus not described here.

Generic Atoms

The is the depth of the potential at distance σ. The potential energy U(r ij ) between two atoms i and j placed at distance r ij is dened by:

U(r ij ) = 4 (( σ r ij ) 12 -( σ r ij ) 6 ) (3) 
Class LJPotential implements Potential with method computeForce dened as: Vector zero is returned if atoms source and target belong to the same molecule and are linked by at most maxDistanceAA bonds (isLinked). Otherwise, the distance r between the two atoms is computed, using the method distance dened in Utils. Vector zero is returned if r is 0, actually meaning that source and target are the same. Otherwise, energy is computed according to equation 3. Then, the module of the force (flj) is computed by deriving the energy. The result is the vector λ v, where λ = f lj and v is the vector from source to target. The stop appearing in the loop of behavior denition prevents it to be instantaneous. This is one of the very few places where stop is mandatory.

Harmonic Bond Potential

A harmonic bond potential denes the energy between two atoms i and j, with distance r ij between them, as:

U(r ij ) = k(r ij -r 0 ) 2 (4) 
where k is the bond strength and r 0 is the constaint (equilibrium distance). The force associated to a harmonic potential has form 2k(r ij -r 0 ). 

Harmonic Valence Potential

A harmonic valence potential denes the energy between three atoms i, j, and k, forming an angle θ, as:

U(θ) = k(θ -θ 0 ) 2 (5)
where k is the angle strength and θ 0 is the constaint (equilibrium angle). The force associated to an harmonic angle potential is 2k(θ -θ 0 ). 

Molecules

A molecule of class Molecule is a container for its components which are stored in several vector data structures. For example, atoms are stored in atomContent and added in the molecule by method addAtom (see its use in Section 4.2). The context eld contains the resolution time-step associated with the molecule (and also the resolution method and scale; we do not consider these points in more detail). The build method is the entry point to build the molecule; it should be redened for specic molecules extending class Molecule. The molecule is registered in the simulation using method registerIn. The class Molecule has the form: 

Stability

In this section, one considers the stability of the resolution method, with the aid of several simulations. One must keep in mind that simulations do not contain means to control (kinetic) energy (for example, thermostat); dynamics of molecules only depends of the force eld and initial conditions.

Simulation 1

We rst simulate an alkane molecule during 300 ps with a resolution time-step of 1 fs (the simulation thus takes 600,000 instants). One traces the various sources of potential energy: bonds, valence angles, dihedrals, and LJ potential (samples are taken every ps). The result is shown on Fig. 8.

One sees that energy is globally stable during the rst 300 ps.

Energy start growing after 300 ps, with valence angles, and the increase propagates to dihedrals while bond and LJ energies stay stable. This is shown on Fig. 9.

Energy up to 700 ps is shown on Fig. 10. One sees that divergence reaches bonds and LJ energies near 0.5 nano-second. 

Simulation 4

We now simulate a system made of three 8-acid molecules (time-step is 1 fs). The system after 300 ps is shown on Fig. 13 and the energy evolution is shown on Fig. 14. Energy evolution during 0.5 ns is shown on Fig. 15; divergence comes very soon after this time.

Conclusion

We have presented a MD system based on Java and using the RP framework SugarCubes for logical parallelism. Denion and implemention of atoms and molecules have been described in detail, and some results of simulations showing the stability of the resolution method were given.

The use of RP for MD simulations increases modularity: while object-orientation gives means 29 Instantaneous interactions which are at the basis of classical physics can be naturally expressed in RP through instantaneously broadcast events. Finally, full determinism of the merge parallel operator of SugarCubes makes simulations totally deterministic. This corresponds to the deterministic nature of classical physics and is mandatory to obtain simulations reversible in time.

In a future work, we plan to extend our system to multi-scale, multi-time-step simulations. We also plan to study ways to benet from real parallelism (issued from multicores, multiprocessors, or clusters of machines) to get more ecient simulations. 
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 43 abstract double [ ] g e t A c c e l e r a t i o n ( ) ; } The class Newton implements Newton's law F = ma, where F is the force applied to an atom, m its mass, and a its acceleration: 1 public c l a s s Newton implements E q u a t i o n s { i n a l I c o b j 3 D i c o b j ; f i n a l double [ ] s t a t e = new double [ 6 ] ; 5 f i n a l double [ ] a c c e l e r a t i o n = new double [ 3 ] ; public Newton ( I c o b j 3 D i c o b j ) t e [ 0 ] = i c o b j . x ; 13 s t a t e [ 1 ] = i c o b j . s x ; s t a t e [ 2 ] = i c o b j . y ; 15 s t a t e [ 3 ] = i c o b j . s y ; s t a t e [ 4 ] = i c o b j . z ; 17 s t a t e [ 5 ] = i c o b j . s z ; return s t a t e ; 19 } public double [ ] g e t A c c e l e r a t i o n ( ) 21 { double mass = i c o b j . mass ; 23 a c c e l e r a t i o n [ 0 ] = i c o b j . f x / mass ; a c c e l e r a t i o n [ 1 ] = i c o b j . f y / mass ; 25 a c c e l e r a t i o n [ 2 ] = i c o b j . f z / mass ; return a c c e l e r a t i o n ; 27 } }

  class Atom extends Icobj3D and denes generic atoms. It denes a eld molecule instance of Molecule which is the molecule to which the atom belongs. The kill event of the atom is set to the event which kills the molecule. The behavior of the atom is dened as a loop which cyclically collects the constraints sent to the atom (by generating constraintSignal), computes the new state of the atom (class Compute), and paint the atom on screen (Paint3D). The cyclical behavior is aborted when the molecule is killed (by generating killSignal). The constructor of the class Atom is: public Atom ( M o l e c u l e m o l e c u l e , S t r i n g b a s e , double x , double y , double z , double s x , double s y , double s z ) { super ( b a s e , x , y , z , s x , s y , s z ) ; this . m o l e c u l e = m o l e c u l e ; k i l l S i g n a l = m o l e c u l e . k i l l S i g n a l ; this . b e h a v i o r = SC . u n t i l ( k i l l S i g n a l , SC . l o o p ( SC . s e q ( SC . c a l l b a c k ( c o n s t r a i n t S i g n a l , new C o l l e c t C o n s t r a i n t s ( this ) ) , SC . a c t i o n (new Compute ( this ) ) , SC . a c t i o n (new P a i n t 3 D ( this ) ) ) ) ) ; } The loop in denition of behavior is not instantaneous. This results from the presence of a callback in it, as callback instructions never terminate instantly. CollectConstraints is an action which simply adds to the atom the force sent to it: public c l a s s C o l l e c t C o n s t r a i n t s implements J a v a C a l l b a c k { f i n a l I c o b j 3 D me ; public void e x e c u t e ( f i n a l R e a c t i v e E n g i n e _, f i n a l O b j e c t a r g s ) { V a l u e 3 v = ( V a l u e 3 ) a r g s ; me . f x += v . x ; me . f y += v . y ; me . f z += v . z ; } public C o l l e c t C o n s t r a i n t s 3 D ( I c o b j 3 D me ) { this . me = me ; } } Class Paint3D
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 379 public C ( M o l e c u l e mol , double x , double y , double z , 2 double s x , double s y , double s z ) { 4 super ( mol , "C" , x , y , z , s x , s y , s z ) ; e n e r a t e ( C S i g n a l , new S e l f ( this ) ) , 16 SC . m e r g e ( c o l l e c t ( C S i g n a l , new L J P o t e n t i a l ( ljC_C ) ) , 18 c o l l e c t ( H S i g n a l , new L J P o t e n t i a l ( ljC_H ) ) , c o l l e c t ( O S i g n a l , new L J P o t e n t i a l ( ljC_O ) ) ) ) ) ) ) ; 20 mol . addAtom ( this ) ; 22 } Assignment to eld behavior, in class C, is by no mean a recursive denition. behavior appears both at the right and at the left of the sign =, but in Java this sign does not denotes equality, but assignment.Actually, the statement should be reads as evaluate the right part, and assign the result to the left part, which is behavior. Thus, the occurence of behavior appearing at right denotes the standard behavior of Atom, and the behavior of a carbon extends it by adding in parallel (merge) a specic behavior consisting in signaling itself and reacting to other atoms, according to their nature.Self denes a JavaObjectExpression always returning the object assigned to it at construction: public c l a s s S e l f implements J a v a O b j e c t E x p r e s s i o n O b j e c t s e l f ; 4 public O b j e c t e v a l u a t e O b j e c t ( f i n a l R e a c t i v e E n g i n e _) potentials corresponding to the various atoms are hold in variables ljC_C, ljC_H, and ljC_O dened in Constants. The call collect(s,p) collects all the values sent with event s, and applies the potential p to them (that is, calls the execute method of Collect-Interactions, with p as parameter).Program c o l l e c t ( I d e n t i f i e r s i g n a l , P o t e n t i a l p o t e n t i a l ) 2 { return SC . c a l l b a c k ( s i g n a l , 4 new C o l l e c t I n t e r a c t i o n s ( p o t e n t i a l , this ) ) ; } The denition of CollectInteractions is: 1 public c l a s s C o l l e c t I n t e r a c t i o n s implements J a v a C a l l b a c k , C o n s t a n t s { i n a l Atom me ; f i n a l P o t e n t i a l p o t e n t i a l ; 5 public void e x e c u t e ( f i n a l R e a c t i v e E n g i n e _, f i n a l O b j e c t a r g s ) { Atom o t h e r = ( Atom ) a r g s ; i f ( me == o t h e r ) return ; a l u e 3 f = p o t e n t i a l . c o m p u t e F o r c e ( o t h e r , me ) ; me . f x += f . x ;
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 113 abstract V a l u e 3 c o m p u t e F o r c e ( Atom s o u r c e , Atom t a r g e t ) ; } A Lennard-Jones potential is dened by two parameters σ and . σ is the distance to which the potential is null, and

public V a l u e 3

 3 c o m p u t e F o r c e ( Atom s o u r c e , Atom t a r g e t ) s o u r c e . i s L i n k e d ( t a r g e t , maxDistanceAA ) ) return z e r o ; double r = U t i l s . d i s t a n c e ( t a r g e t , s o u r c e ) ; 6 i f ( r == 0 ) return z e r o ; double sigma_on_r = s i g m a / r ; 8 double sigma_on_r_pow6 = Math . pow ( sigma_on_r , 6 ) ; double sigma_on_r_pow12 = sigma_on_r_pow6 * sigma_on_r_pow6 ; 10 e n e r g y = 4 * e p s * ( sigma_on_r_pow12 -sigma_on_r_pow6 ) ; double f l j = 12 -24.0 * e p s / r * ( 2 * sigma_on_r_pow12 -sigma_on_r_pow6 ) ; U t i l s . s e t V e c t o r 3 d ( v12 , s o u r c e , t a r g e t ) ; 14 v 1 2 . n o r m a l i z e ( ) ; U t i l s . s e t V e c t o r 3 d ( f , U t i l s . e x t P r o d (-f l j , v 1 2 ) ) ; 16 r e s . x = f . x ; r e s . y = f . y ; r e s . z = f . z ; return r e s ; 18 }

2 {

 2 Energies of the various Lennard-Jones potentials are shown on Fig. 2. 6 Bonds A bond is basically implemented by the abstract class Spring which extends Icobj3D. In this class, vector f holds the force applied to the two atoms a and b by means of two internal classes GenA and GenB. The module of the force is computed by the abstract method controlLength which is dened by concrete classes extending Spring. The behavior of Spring cyclically executes controlLength at each instant, and generates a constraint for a and b. The denition of Spring is: public abstract c l a s s S p r i n g extends I c o b j 3 D f i n a l Atom a , b ; 4 V e c t o r 3 d vab = new V e c t o r 3 d ( ) ; V e c t o r 3 d f = new V e c t o r 3 d ( ) ;

Figure 2 :

 2 Figure 2: Lennard-Jones potentials

  s t = U t i l s . d i s t a n c e ( b , a ) ; 14 double d i f f = d i s tl e n g t h ; e n e r g y = s t r e n g t h * d i f f * d i f f ; 16 double f o r c e = 2 . 0 * s t r e n g t h * d i f f ; a p p l y F o r c e ( f o r c e , a , b ) ; 18 } } The use of an intermediary abstract class is justied because the modeling of scales larger than AA may need denitions of non-harmonic springs. These dierent springs could however still extend class Spring. Energies of the various bond potentials are shown on Fig. 3.
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 28 Class HarmonicAngle implements the abstract class Angle by dening the controlAngle method as: void c o n t r o l A n g l e ( ) double a n g l e = v a l e n c e A n g l e ( a , b , c ) ; 4 // d i f f e r e n c e b e t w e e e n a n g l e and c o n s i g n double d i f f = a n g l ec o n s i g n ; 6 // compute e n e r g y : U( a n g l e ) = k ( a n g l ec o n s i g n ) * * 2 e n e r g y = s t r e n g t h * d i f f * d i f f ; / compute f o r c e :d / d t e n e r g y double f o r c e = -2 . 0 * s t r e n g t h * d i f f ; 10 // a p p l y f o r c e a p p l y F o r c e ( f o r c e , a , b , c ) 12 } { U t i l s . s e t V e c t o r 3 d ( bc , b , c ) ; U t i l s . s e t V e c t o r 3 d ( cb , c , b ) ; U t i l s . s e t V e c t o r 3 d ( ba , b , a ) ; U t i l s . s e t V e c t o r 3 d ( cd , c , d ) ; // v e c t o r p e r p e n d i c u l a r t o p l a n e 1 : a1 , p1 , p2 U t i l s . p e r p ( p e r p 1 , bc , ba ) ; p e r p 1 . n o r m a l i z e ( ) ; // v e c t o r p e r p e n d i c u l a r t o p l a n e 2 : a2 , p1 , p2 U t i l s . p e r p ( p e r p 2 , cb , c d ) ; p e r p 2 . n o r m a l i z e ( ) ; // measure d i h e d r a l a n g l e [ 0 , p i ] double a n g l e = p e r p 1 . a n g l e ( p e r p 2 ) ; // a r e p e r p 1 and cd i n t h e same d i r e c t i o n ? double d o t = c d . d o t ( p e r p 1 ) ; // a n g l e i n [-p i ,+ p i ] i f ( d o t < 0 ) a n g l e = -a n g l e ; // Math . PI i s t h e c o n s i g n a n g l e = Math . PI + a n g l e ; // compute f o r c e double f o r c e =c o m p u t e F o r c e ( a n g l e ) ; // f o r c e s on atoms U t i l s . e x t P r o d ( f a , f o r c e , p e r p 1 ) ; U t i l s . e x t P r o d ( f d , f o r c e , p e r p 2 ) ; U t i l s . o p p o s i t e ( f b , f a ) ; U t i l s . o p p o s i t e ( f c , f d ) ; } } The control of the dihedral angle can be described by the drawing: Method computeForce implements equations 6 and 7: double c o m p u t e F o r c e ( double t h e t a ) { // e n e r g y e n e r g y = 0 . 5 * ( A1 * ( 1 + Math . c o s ( t h e t a + F1 ) ) + A2 * ( 1 -Math . c o s ( 2 * t h e t a + F2 ) ) + A3 * ( 1 + Math . c o s ( 3 * t h e t a + F3 ) ) ) + A4 ; S t a t i s t i c s . i n c r e m D i h e d r a l E n e r g y ( e n e r g y ) ; // f o r c e double f o r c e = -0 . 5 * ( A1 * Math . s i n ( t h e t a + F1 ) -( 2 * A2 * Math . s i n ( 2 * t h e t a + F2 ) ) +
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 5 Figure 5: Dihedral potentials

1 public c l a s s M o l e c u l e implements C o n s t a n t s { 3 S// i n i t i a l c o o r d i n a t e s 5 doublee a c t i v e w o r k s p a c e 11 S

 13511 t r i n g name , baseName , d e s c r i p t i o n ; i m u l a t i o n w o r k s p a c e ; // l o c a l s c e n e f o r t h e m o l e c u l e 13 BranchGroup l o c a l S c e n e ; // c o n t e n t o f t h e m o l e c u l e 15 f i n a l V e c t o r <Atom> a t o m C o n t e n t = new V e c t o r <Atom> ( ) ; f i n a l V e c t o r <Bond> b o n d C o n t e n t = new V e c t o r <Bond> ( ) ; f i n a l V e c t o r <A n g l e> a n g l e C o n t e n t = new V e c t o r <A n g l e> ( ) ; f i n a l V e c t o r <D i h e d r a l > d i h e d r a l C o n t e n t = new V e c t o r <D i h e d r a l > ( ) ; // s i g n a l s f i n a l I d e n t i f i e r k i l l S i g n a l = SC . s i m p l e I D ( ) ; public M o l e c u l e ( S t r i n g b a s e , double x , double y , double z , double s x , double s y , double s z ) { this ( b a s e , x , y , z , s x , s y , s z , new MDContext ( 0 ,VERLETV, S c a l e . AA ) ) ; } public void addAtom ( Atom atom ) { a t o m C o n t e n t . add ( atom ) ; atom . i n j e c t I n ( l o c a l S c e n e ) ; } public void b u i l d ( ) { } public void r e g i s t e r I n ( S i m u l a t i o n w o r k s p a c e ) { for ( E n u m e r a t i o n e = a t o m C o n t e n t . e l e m e n t s ( ) ; e . h a s M o r e E l e m e n t s ( ) ; ) { Atom atom = ( Atom ) e . n e x t E l e m e n t ( ) ; atom . r e g i s t e r I n ( w o r k s p a c e ) ; } . . . . w o r k s p a c e . r e g i s t e r ( this ) ; w o r k s p a c e . s c e n e . a d d C h i l d ( l o c a l S c e n e ) ; is basically a molecule made of a chain of carbon atoms to which other atoms are linked. In the rest of this section, we describe the building of carbon chains of the form CH3-(CH2)*n-CH3. The goal of the construction is to build molecules with minimum of potential energy. Examples of carbon chains are given in section 10. The number of carbon atoms is a parameter of the construction, coded in cNum. Carbon atoms are placed in the array backbone and the other atoms (hydrogen and oxigen atoms) are placed in the array others. Class CarbonChain is the basic class to model carbon chains: public c l a s s C a r b o n C h a i n extends M o l e c u l r b o n C h a i n ( S i m u l a t i o n w o r k s p a c e , int cNum , double x , double y , double z , double s x , double s y , double s z ) { super ( " c a r b o n C h a i n " , x , y , z , s x , s y , s z ) ; this . w o r k s p a c e = w o r k s p a c e ; this . cNum = cNum ; this . b a c k b o n e = new Atom [ cNum ] ; this . o t h e r s = new Atom [ cNum ] [ ] ; for ( int k = 0 ; k < cNum ; k++ ) o t h e r s [ k ] = new Atom [ 0 ] ; } 20 V e c t o r 3 d BC = U t i l s . v e c t ( B , C ) ; V e c t o r 3 d P = U t i l s . n o r m a l i z e ( U t i l s . sum (BA, BC ) ) ; V e c t o r 3 d N = U t i l s . n o r m a l i z e ( U t i l s . p e r p (BA, BC ) ) ; V e c t o r 3 d u = U t i l s . e x t P r o d (-c o s , P ) ; V e c t o r 3 d v = U t i l s . e x t P r o d (-s i n , N ) ; V e c t o r 3 d w = U t i l s . sum ( u , v ) ; V e c t o r 3 d q = U t i l s . sum ( u , U t i l s . o p p o s i t e ( v ) ) ; Atom h1 = new H ( this , B . x+w . x , B . y+w . y , B . z+w . z , B . s x , B . s y , B . s z ) ; Atom h2 = new H ( this , B . x+q . x , B . y+q . y , B . z+q . z , B . s x , B . s y , B . s z ) ; o t h e r s [ k ] = new Atom [ 2 ] ; o t h e r s [ k ] [ 0 ] = h1 ; o t h e r s [ k ] [ 1 ] = h2 ; } For vector manipulations, we prefer here to use direct methods (e.g. Utils.vect) instead of in-place methods (e.g. Utils.setVector3d). This is because there is no need for optimisation, as we are just building molecules, not executing them. The addBottom method places 3 hydrogen atoms attached to the last carbon atom (CH3): double c o s 2 = lCH * Math . c o s (aCCH / 2 ) ; double s i n 2 = lCH * Math . s i n (aCCH / 2 ) ; void addBottom ( ) { Atom A = b a c k b o n e [ cNum-3 ] ; Atom B = b a c k b o n e [ cNum-2 ] ; Atom C = b a c k b o n e [ cNum-1 ] ; V e c t o r 3 d AB = U t i l s . v e c t (A , B ) ; V e c t o r 3 d P = U t i l s . n o r m a l i z e ( U t i l s . o p p o s i t e ( U t i l s . sum (AB, U t i l s . v e c t ( C , B ) ) ) ) ; V e c t o r 3 d N = U t i l s . n o r m a l i z e ( U t i l s . p e r p (AB, P ) ) ; V e c t o r 3 d u = U t i l s . e x t P r o d ( c o s , P ) ; V e c t o r 3 d v = U t i l s . e x t P r o d ( s i n , N ) ; V e c t o r 3 d w = U t i l s . sum ( u , v ) ; V e c t o r 3 d q = U t i l s . sum ( u , U t i l s . o p p o s i t e ( v ) ) ; Atom h1 = new H ( this , C . x+w . x , C . y+w . y , C . z+w . z , C . s x , C . s y , C . s z ) ; Atom h2 = new H ( this , C . x+q . x , C . y+q . y , C . z+q . z , C . s x , C . s y , C . s z ) ; V e c t o r 3 d p e r p = U t i l s . n o r m a l i z e ( U t i l s . p e r p ( u , v ) ) ; V e c t o r 3 d r = U t i l s . sum ( U t i l s . e x t P r o d (-c o s 2 , U t i l s . n o r m a l i z e ( u ) ) , U t i l s . e x t P r o d ( s i n 2 , p e r p ) ) ; Atom h3 = new H ( this , C . x+r . x , C . y+r . y , C . z+r . z , C . s x , C . s y , C . s z ) ;Harmonic bonds are created between backbone atoms, and between a carbon and the hydrogen or oxygen atoms on the same plane.

  void c r e a t e B o n d s ( ) { for ( int k = 0 ; k < cNum -1 ; k++ ) { new HarmonicBond ( this , b a c k b o n e [ k ] , b a c k b o n e [ k + 1 ] , bondC_C ) ; } for ( int k = 0 ; k < cNum ; k++ ) { Atom c = b a c k b o n e [ k ] ; for ( int l = 0 ; l < o t h e r s [ k ] . l e n g t h ; l++ ) { Atom a = o t h e r s [ k ] [ l ] ; i f ( a instanceof H ) new HarmonicBond ( this , c , a , bondC_H ) ; e l s e i f ( a instanceof O ) new HarmonicBond ( this , c , a , bondC_O ) ; angles is done by createAngles method: void c r e a t e A n g l e s ( ) { // b a c k b o n e a n g l e s for ( int k = 0 ; k < cNum -2 ; k++ ) { new H a r m o n i c A n g l e ( this , b a c k b o n e [ k ] , b a c k b o n e [ k + 1 ] , b a c k b o n e [ k + 2 ] , angleC_C_C ) ; } for ( int k = 0 ; k < cNum ; k++ ) { Atom c = b a c k b o n e [ k ] ; int l e n = o t h e r s [ k ] . l e n g t h ; for ( int l = 0 ; l < l e n ; l++ ) { Atom a = o t h e r s [ k ] [ l ] ; for ( int m = l + 1 ; m < l e n ; m ++ ) { Atom b = o t h e r s [ k ] [ m ] ; i f ( a instanceof H ) new H a r m o n i c A n g l e ( this , a , c , b , angleH_C_H ) ; e l s e i f ( a instanceof O ) new H a r m o n i c A n g l e ( this , a , c , b , angleO_C_O ) ; } } } for ( int k = 0 ; k < cNum -1 ; k++ ) { Atom c 1 = b a c k b o n e [ k ] ; Atom c 2 = b a c k b o n e [ k + 1 ] ; int l e n = o t h e r s [ k ] . l e n g t h ; for ( int l = 0 ; l < l e n ; l++ ) { Atom a = o t h e r s [ k ] [ l ] ; new H a r m o n i c A n g l e ( this , a , c 1 , c 2 , angleC_C_H ) ; } } for ( int k = 1 ; k < cNum ; k++ ) { Atom c 1 = b a c k b o n e [ k -1 ] ; Atom c 2 = b a c k b o n e [ k ] ; int l e n = o t h e r s [ k ] . l e n g t h ; for ( int l = 0 ; l < l e n ; l++ ) { Atom a = o t h e r s [ k ] [ l ] ; i f ( a instanceof H ) new H a r m o n i c A n g l e ( this , c 1 , c 2 , a , angleC_C_H ) ; e l s e i f ( a instanceof O ) new H a r m o n i c A n g l e ( this , c 1 , c 2 , a , angleC_C_O ) ; Creation of dihedrals is done by createDihedrals method: void c r e a t e D i h e d r a l s ( ) { for ( int k = 0 ; k < cNum-3 ; k++ ) { new D i h e d r a l ( this , b a c k b o n e [ k ] , b a c k b o n e [ k + 1 ] , b a c k b o n e [ k + 2 ] , b a c k b o n e [ k + 3 ] , dihedralC_C_C_C ) ; } for ( int k = 0 ; k < cNum-2 ; k++ ) { Atom c 1 = b a c k b o n e [ k ] ; Atom c 2 = b a c k b o n e [ k + 1 ] ; Atom c 3 = b a c k b o n e [ k + 2 ] ; int l e n = o t h e r s [ k ] . l e n g t h ; for ( int l = 0 ; l < l e n ; l++ ) { Atom a = o t h e r s [ k ] [ l ] ; new D i h e d r a l ( this , a , c 1 , c 2 , c 3 , dihedralC_C_C_H ) ; n = o t h e r s [ k + 2 ] . l e n g t h ; for ( int l = 0 ; l < l e n ; l++ ) { Atom a = o t h e r s [ k + 2 ] [ l ] ; i f ( a instanceof H ) new D i h e d r a l ( this , c 1 , c 2 , c 3 , a , dihedralC_C_C_H ) ; e l s e i f ( a instanceof O ) new D i h e d r a l ( this , c 1 , c 2 , c 3 , a , dihedralC_C_C_O ) ; t o r 3 d q = U t i l s . sum ( u , U t i l s . o p p o s i t e ( v ) ) ; 33 Atom o 1 = new O ( this , C . x+w . x , C . y+w . y , C . z+w . z , C . s x , C . s y , C . s z ) ; 35 Atom o 2 = new O ( this , C . x+q . x , C . y+q . y , C . z+q . z , C . s x , C . s y , C . s z ) ; SimpleApp CarbonChain by Acid, on obtains the simulation of an acid molecule. A screenshot is shown on Fig. 7.
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 9 Figure 9: Alkane, 400 ps, time-step 1 fs
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 12441113 Figure 12: Acid, 300 ps, time-step 1 fs

  

  

  

  

  The basic denitions used for simulation components are grouped in Icobj3D. The physical state of the component is described by several elds: coordinates x,y,z, velocity sx,sy,sz, and mass mass, which are all of the Java double numeric type. Three double elds fx,fy,fz are dened to collect the forces exerted on the component (il any). The eld behavior of type Program holds the SugarCubes program associated to the component. Fields for Java3D are also present (e.g. appearance and scene) and are used if the component is drawn on screen. Two events are dened: killSignal to kill the component and constraintSignal to constrain it. Atoms and molecule components extend Icobj3D. Workspace3D extends the basic class Applet of Java and dene basic simulations, called workspaces. Components of workspaces are held in stack icobjStack.

	The basic Java3D
	scene, universe, and canvas are elds of the workspace. A workspace also contains an en-
	gine (class Engine3D) which embeds a SugarCubes reactive machine (SC.machine) to execute
	SugarCubes programs. The typical instruction to make a SugarCubes program p run by the
	machine is to call getMachine().addProgram(p).
	Class Simulation extends Workspace3D by introducing several means to control simulations;

  The general structure of atoms is described by class Atom. Classes C, H, and O corre-Bonds, valence angles, and dihedrals. Bonds are dened through classes Bond and Spring. Specic harmonic bonds are dened by HarmonicSpring. Valence angles are dened by the two classes Angle and HarmonicAngle. Finally, class Dihedral denes dihedrals. Auxiliary classes. Class Units contains several functions related to physical units. Class Utils denes a set of auxiliary functions, among which are the ones to manipulate 3D vectors, of Java3D class Vector3d. Class MDContext denes context for simulation: time-step, resolution method, and scale. Appeareance on screen is controlled by Paint3D. Rotation related methods are dened in class Rotation. Class Self is used by atoms to communicate their state to others. Class Printer contains function to print various kind of information. Class Value3 describes triples of double values.

	sponds to specic atoms (carbon, hydrogen, oxygene). Class CollectInteractions describes
	the way Lennard-Jones interactions between atoms are collected. Class Constraints exerted
	on atoms (produced by the molecules components, bonds, angles, and dihedrals) are collected
	using CollectConstraints. To use the Velocity-Verlet method, an atom must perform action
	Compute.
	• Lennard-Jones. The Lennard-Jones potentials are dened by interface Potential and class
	LJPotential.
	• Molecules. General template of molecules is dened in class Molecule. Carbon chains are
	specic molecules, made of a backbone of carbon atoms to which hydrogen atoms are linked.
	They are called alkanes, and their linear structure is CH3-(CH2)*n-CH3. Construction of
	alkane is described in class CarbonChain. Acid molecules are carbon chains in which the
	bottom part is changed in a CO2 group of atoms (CH3-(CH2)*n-CO2). They are dened in
	class Acid obtained from CarbonChain by just redening the building of the bottom part.

• •

  is, for simplicity, not described here. At construction, Compute creates a new instance of class VerletV to use the Velocity-Verlet resolution method, and a new instance of class Newton to hold the atom state. Each time it is executed, the Compute action applies one step of the resolution method and changes the atom state: specic atom is a generic atom to which one adds the processing of LJ potentials, introduced in Section 5. One considers the case of a carbon atom. The mass, color, and radius of a carbon atom are dened in interface Constants. Basically, class C extends Atom by adding in parallel a new behavior which cyclically generates the event CSignal and process the three events corresponging to atoms C, H, and O. A value is associated to the generation of CSignal: it is the atom itself, which is returned by an object of the class Self described bellow. Denition of class C is:

		atom . y = n e w t o n . s t a t e [ 2 ] ;
		atom . z = n e w t o n . s t a t e [ 4 ] ;
		}	17
	public Compute ( Atom atom )
		{	19
		this . atom = atom ; this . n e w t o n = new Newton ( atom ) ; method = new V e r l e t V ( newton , atom ) ;	21
		}	23
	}	
	4.2	Carbon Atom
	public c l a s s Compute implements J a v a A c t i o n , C o n s t a n t s
	{	
		f i n a l Atom atom ; f i n a l Newton n e w t o n ;
		Method method ;
		public void e x e c u t e ( f i n a l R e a c t i v e E n g i n e _)
		{
		method . s t e p	( ) ;
		// s e t s p e e d
		atom . s x = n e w t o n . s t a t e [ 1 ] ;
		atom . s y = n e w t o n . s t a t e [ 3 ] ;
		atom . s z = n e w t o n . s t a t e [ 5 ] ;
		// s e t c o o r d i n a t e s
		atom . x = n e w t o n . s t a t e [ 0 ] ;
			9

A

  Two points are to be noticed: rst, the equality test forbids the processing of the atom, named me, by itself; second, only me is transformed, not the atoms sent as values of events. Potential species Lennard-Jones potentials, modeling van der Waals interactions between atoms. It denes a unique method computeForce which computes the vector representing the force issued from the potential existing between two atoms.

		me . f y += f . y ;	11
		me . f z += f . z ;
			13
		{	15
		this . me = me ; this . p o t e n t i a l = p o t e n t i a l ;	17
		}
	}		19
	5	Lennard-Jones Potentials

} public C o l l e c t I n t e r a c t i o n s ( P o t e n t i a l p o t e n t i a l , Atom me ) Interface 1 public interface P o t e n t i a l extends C o n s t a n t s

  The class HarmonicSpring extends Spring by implementing method controlLength.

	public c l a s s H a r m o n i c S p r i n g extends S p r i n g	
	{	2
	double s t r e n g t h , l e n g t h ; public H a r m o n i c S p r i n g ( M o l e c u l e mol , Atom a , Atom b , double s t r e n g t h , double l e n g t h )	4
	{	6
	super ( mol , a , b ) ; this . s t r e n g t h = s t r e n g t h ; this . l e n g t h = l e n g t h ;	8

{

Energies of the various valence angle potentials of the force eld used by the system are shown on Fig. 4. U(θ) = 1/2((A 1 (1 + cos(θ + F 1 )) + A 2 (1 -cos(2θ + F 2 )) + A 3 (1 + cos(3θ

The force is thus dened by dU(θ)/dt = 1/2(A 1 sin(θ + F 1 ) -2A 2 sin(2θ + F 2 ) + 3A 3 sin(3θ + F 3 ))

. . . .

}

The build method of CarbonChain consists in a sequence of steps: buildBackbone lls the array backbone; three hydogen atoms are added by method addTop to the rst carbon; two hydogens atoms are added to each carbon, except the rst and the last, by method addH2; three hydrogens are added to the last carbon by addBottom; nally, bonds, valence angles, and dihedrals are added, using createBonds, createAngles, and createDihedrals; despite the fact that the same technique is used for the 3 methods, we give their complete denition, for the sake of completeness. Denition of build is: 

Hydrogen Atoms

The three methods addTop, addH2, and addBottom are used to place hydrogen atoms. As addTop and addBottom are very similar, we only describe the last one (it is redened in Section 10.2). The addH2 method attaches two hydogen atoms to a carbon atom (CH2): In this section, we simulate alkane and acid molecules which are specic carbon chains. All the carbon chains considered in this section are made of 8 carbon atoms. In subsection 10.3, we put the focus on stability of the resolution method.

Alkane

A typical program extends Simulation (or simply Workspace3D) and denes a constructor in which the createUniverse method is called, to start Java3D. The main entry point of the program calls the constructor (possibly using the standAlone function, which produces a window at screen).