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Introduction to some basic random morphological

models

Dominique Jeulin

December 21, 2012

Abstract

The Boolean RF are a generalization of the Boolean RACS. Their
construction based on the combination of a sequence of primary RF by
the operation _ (supremum) or ^ (in�mum), and their main properties
(among which the supremum or in�mum in�nite divisibility) are given
in the case of scalar RF built on a Poisson point process.

1 Introduction

This text reviews a family of random functions (RF) which is an extension
of the binary Boolean model, and is of wide use for applications, the Boolean
RF.

This family owns the interesting property of supremum (or in�mum, ac-
cording to the chosen type of construction) in�nite divisibility. These models
are particularly interesting for applications in physics, such as in fracture
statistics [6, 9, 10]. The basic idea of the Boolean RF (BRF) was born about
the modelling of rough surfaces by D. Jeulin (1979), by a generalization of
the Boolean model of G. Matheron. The �rst presentations and applications
are given in [3, 25]. In [4] an anisotropic version is developed. Out of the �eld
of materials, other examples of applications are given for biomedical images
[19, 21, 22], for Scanning Electron Microscope images [28], and for solving
problems of exploitation of oceanographic reserves [1]. The �rst theoretical
studies of the BRF are given in [3, 25, 4, 26]. In [27, 28], J. Serra introduces
a general BRF model, connected to a non stationary Poisson point process
in Rn+1. In [20, 21], F. Preteux and M. Schmitt proved some characteristic
properties of the BRF, useful for the identi�cation of a model from images.
Finally, a generalization of the BRF at two levels was proposed and devel-
oped by D. Jeulin [7, 6]: introduction of Boolean varieties RF (including the
Poisson point process as a particular case), and of the multivariate case.

In what follows, a reminder on random closed sets and on semi-continuous
RF is given. Then we review the properties of the Boolean RF model.
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2 Reminder on random closed sets and on semi-

continuous random functions

The heterogeneity of materials can be handled through a probabilistic ap-
proach, which enables us to generate models and simulation of the mi-
crostructures. Two-phase media can be modelled by realizations of ran-
dom closed sets. More general microstructures involve the use of random
functions.

2.1 Random closed sets

When considering two-phase materials (for instance a set of particles A
embedded in a matrix Ac), we use a model of random closed set (RACS)
A [16, 18, 25, 8], fully characterized from a probabilistic point of view by
its Choquet capacity T (K) de�ned on the compact sets K, from (1) below,
where P denotes a probability:

T (K) = P (K \A 6= ;) = 1�Q(K) = 1� P (K � Ac): (1)

In the Euclidean space Rn, the Choquet capacity is related to the dilation
operation of Mathematical Morphology A� �K. We have:

T (Kx) = PfKx \A 6= ;g = Pfx 2 A� �Kg

In practice, T (K) can be estimated by area fraction measurements on 2D
images, or from volume fraction estimation on 3D images (from true mi-
crostructures, or from simulations), after a morphological dilation of the set
A by the set K [16, 18, 25, 8], or calculated for a given theoretical model.
Equation (1) is used for the identi�cation of a model (estimation of its para-
meters, and test of its validity). Particular cases of morphological properties
deduced from (1) are the volume fraction Vv, the covariance (a useful tool to
detect the presence of scales or anisotropies), the distribution of distances
of a point in Ac to the boundary of A. The access to 3D images of mi-
crostructures by means of X-ray microtomography [23] makes it possible to
use 3D compact sets K (like balls B(r) with various radii r) to characterize
the random set.

2.2 Upper semi-continuous random functions

We consider semi-continuous (upper, lower) random functions, for which the
changes of supports by _ or by ^ provide random variables [17]:

Z_(K) = _x2KfZ(x)g

Z^(K) = ^x2KfZ(x)g

Random Functions (RF) and Random Sets are related by means of their
subgraph and of their overgraph [2].

2



De�nition 1 The subgraph �' of the function ' is made of the pairs {x; zg,
x 2 E, z 2 R, with z � '(x). The overgraph �' is made of the pairs {x; zg,
x 2 E, z 2 R, with z � '(x).

We have the following result connecting semi-continuous functions and
closed sets [2]:

Proposition 2 The function ' is lsc , its overgraph �' is a closed set in
E �R; ' is usc , its subgraph �' is a closed set in E �R.

Theorem 3 A random function Z(x) de�ned in Rn, upper semi continuous
(usc), is characterized by its Choquet capacity T (g) de�ned over lower semi
continuous functions (lsc) g with a compact support K

T (g) = Pfx 2 DZ(g)g = 1�Q(g) (2)

DZ(g)
c = fx; Z(x+ y) < g(y);8y 2 Kg

Particular cases of the Choquet capacity are obtained from Equation (2),
depending on the choice of the test function g.

F When g(xi) = zi for xi (i = 1; 2; :::; n), else g(x) = +1:

T (g) = 1� PfZ(x1) < z1; :::; Z(xn) < zng

1 � T (g) gives the spatial law. In what follows we note AZ(z) the
random closed set obtained by thresholding the RF Z(x) at level z:

AZ(z) = fx, Z(x) � zg

F For the function g(x) = z if x 2 K, and g(x) = +1 if x =2 K,

DZ(g)
c = fx; Z(x+ y) < z;8y 2 Kg =

�
AZ_(K)(z)

�c

We have:

Z_(K)(x) < z , Kx � (AZ(z))
c , x 2 AZ(z)

c 	 �K

and
Z_(K)(x) � z , x 2 (AZ(z)

c 	 �K)c = AZ(z)� �K

and therefore
AZ_(K)(z) = DZ(g) = AZ(z)�

�K

For this type of test function g, we have:

T (g) = Pfx 2 DZ(g)g = 1�Q(g) = 1� PfZ_(K) < zg

The Choquet capacity gives the probability distribution of the RF
Z(x) after a change of support by _ over the compact set K.
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Let Z1(x) and Z2(x) be two usc RF and Z(x) = Z1(x)_Z2(x). We have

(DZ1_Z2(g))
c = DZ(g)

c = fx; Z1(x+ y) _ Z2(x+ y) < g(y);8y 2 Kg

= fx; Z1(x+ y) < g(y) and Z2(x+ y) < g(y) ;8y 2 Kg

= DZ1(g)
c \DZ2(g)

c

Therefore
DZ1_Z2(g) = DZ1(g) [DZ2(g) (3)

and

TZ1_Z2(g) = Pfx 2 DZ(g)g = 1�Q(g) = Pfx 2 DZ1(g) [DZ2(g)g(4)

and Q(g) = Pfx 2 DZ1(g)
c \DZ2(g)

cg (5)

Furthermore we have:

AcZ(z) = fx; Z(x) < zg = fx; Z1(x) _ Z2(x) < zg

= fx; Z1(x) < z and Z2(x) < zg = A
c
Z1
(z) \AcZ2(z)

AZ1_Z2(z) = AZ1(z) [AZ2(z) (6)

If the two RF Z1(x) and Z2(x) are independent, the two random sets
DZ1(g) and DZ2(g) are independent, and the relation 5 writes:

Q(g) = Pfx 2 DZ(g)
cg = Pfx 2 DZ1(g)

c \DZ2(g)
cg

= Pfx 2 DZ1(g)
cgPfx 2 DZ2(g)

cg = Q1(g)Q2(g)

More generally, if Z(x) = _i=ni=1Yi(x) and if the Yi(x) are independent real-
izations of the same RF Y (x) with Pfx 2 DY (g)

cg = QY (g), we get:

QZ(g) = Pfx 2 DZ(g)
cg = Pfx 2 \i=ni=1DY i(g)

cg = QY (g)
n (7)

2.3 Principle of random sets and of random function mod-

eling

The main steps to follow when designing a random model of structure are
as follows:

1. Choice of basic assumptions

2. Computation or estimation of the Choquet�s capacity functionnal
T (K)

The functional T (K); T (g) is obtained as a function of
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1. the assumptions

2. the parameters of the model

3. the compact K or the function g:

For a given model, the functionnal T is obtained by theoretical calcula-
tion or by estimation, either on simulations, or on real structures. This gives
access to a possible estimation of the parameters from the �experimental�
T , and to tests of the validity of assumption for model identi�cation.

3 The Boolean random functions

In what follows, we review the main properties of the BRF built on the
Poisson point process.

3.1 Construction of the BRF

We are concerned in this section by Boolean RF with support in the Euclid-
ean space Rn, and note �n(dx) and �(dt) the Lebesgue measure in R

n and a
� �nite measure on R (such that

R
B
�(dt) remains �nite for every bounded

Borel set B in R). We consider:

F i) a Poisson point process P, with the intensity measure �n(dx) A
�(dt) in Rn �R;

F ii) a family of independent lower semi continuous primary RF Z 0t(x),
with a subgraph �Z

0
t = A0(t) having almost surely compact sections

AZ0t(z).

De�nition 4 The Boolean random function (BRF) with the primary func-
tion Z 0t(x) and with the intensity �n(dx) A �(dt) is the RF Z(x) obtained
by

Z(x) = _(tk;xk)2PfZ
0
tk
(x� xk)g (8)

We can notice the following points.

F i) This de�nition, given in [6], is more general than the one proposed
by J. Serra in [27, 28]; it covers the previous de�nitions:

� the Boolean islands, for which the measure �(dt) is the Dirac
distribution concentrated in a point t of R: �(dt) = �E0(t) [3, 25,
4];
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� the �generalized� BRF, where we have Z 0t(x) = Y
0
t (x) + t, where

Y 0t (x) is a family of primary RF. The addition of t comes from
a de�nition of the BRF as a non stationary Boolean RACS in
Rn+1 with Poisson germs in Rn+1 and with primary random sets
A0(t) de�ned at the origin (0; 0) of the coordinates of Rn+1. To
introduce BRF on more general lattices, where the addition is
not necessarily de�ned, this construction process cannot be used.

F ii) The parameter t, that can be assimilated to z in the de�nition
[27, 28], as for examples given in section 3.8, can also be interpreted
as a time, leading to the notion of sequential RF. In these conditions,
for the time interval (t; t+ dt) is de�ned an in�nitesimal BRF.

F iii) It is possible to parametrize the primary functions by t 2 Rk; with a
���nite measure �(dt) on Rn�k.This enables us to introduce a primary
function depending on several indexes. Instead of Rk, an abstract
space E and a measure � de�ned on E can be chosen. Similarly,
the Lebesgue measure on Rn, �n(dx), can be replaced by a ���nite
measure �(dx) on Rn, dropping the stationarity in Rn. This process
can be used to build multiscale RF, as illustrated in section 4.

F iv) From the de�nition (8), the ��oor� value of Z(x) is �1. This value
can be bounded (z0) by use of primary functions such that AZ0t(z0) =
Rn, or by taking Y (x) = z0 _ Z(x).

F v) From lower semi-continuous primary functions Z 0(t) (with over-
graph �Z0t), it is possible to build a ^ BRF [6], by replacing in Eq. (8)
the operation _ by ^, and starting from a +1 ceiling value of Z(x). It
is equivalent to build a _ BRF Y from the primary RF Y 0t (x) = �Z

0
t(x)

and to consider as a ^ BRF Z(x) = �Y (x). For this reason, we limit
this presentation mainly to the _ BRF given by Eq. (8).

F vi) From the point of view of subgraphs (closed in Rn+1 for lower
semi-continuous functions), the relation (8) involves:

�Z = [(tk;xk)2PA
0(tk)xk (9)

By de�nition, �Z is a Boolean RACS in Rn with primary grain A0(t).

For illustration, simulations of BRF are shown on �gure 1.
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Figure 1: Examples of realizations of a Boolean random function with
cone primary functions (left), and built from Poisson lines (right)

3.2 Boolean Random function and Boolean model of random

sets

Using the de�nition 8 and the property 6, we have for the BRF Z(x):

AZ(z) = [(tk;xk)2PAZ0tk
(z)xk

As a consequence,

Proposition 5 Every random closed set AZ(z) obtained by thresholding a
BRF Z(x) at level z is a Boolean random set with primary grain A

Z
0

t
(z).

This property will be useful for the identi�cation of a model of BRF,
since available tools for the Boolean model can be used for this purpose.

3.3 Choquet capacity of the BRF

As mentioned in theorem 3, we can characterize a BRF by means of the
functional T (g) de�ned on lower semi-continuous functions g with a compact
support K :

T (g) = Pfx 2 DZ(g)g;DZ(g)
c = fx; Z(y) < g(y � x);8y 2 Kg

Since DZ1_Z2(g) = DZ1(g) [DZ2(g), we get for a BRF Z(x) :

DZ(g) = [(tk;xk)2PDZ0tk
(g)xk (10)

and DZ(g) is a Boolean RACS with the primary grain DZ0t(g). Since DZ(g)
corresponds to the event Ac(Z) = f9y 2 Rn; Z(y) � g(x � y)g, the two
following theorems result.

Theorem 6 Consider a BRF Z(x) and a lower semi continuous function
g translated in x. The number of primary functions Z 0t for which the event

Ac(Z 0t) is satis�ed, follows a Poisson distribution with parameter

Z

R

�n(DZ0t(g)) �(dt).
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Theorem 7 The Choquet capacity of the BRF Z(x) is given by:

1� T (g) = Q(g) = exp

�
�

Z

R

�n(DZ0t(g)) �(dt)

�
(11)

For the Boolean islands model �(dt) = �E0(t) and Z
0
0 = Z

0

1� T (g) = Q(g) = exp (���n(DZ0(g)) ) (12)

As particular functions g, let us examine the following cases:

F i) If g(xi) = zi for points xi (i = 1; 2; :::; n), and else g(x) = +1, we
obtain the spatial law of the BRF:

1� T (g) = PfZ(x1) < z1; :::; Z(xn) < zng

= exp

�
�

Z

R

�n(AZ0t(z1)x1 [ ::: [AZ0t(zn)xn) �(dt)

�
(13)

For a single point x, is obtained the cumulative distribution function
F (z)

F (z) = PfZ(x) < zg = exp

�
�

Z

R

�n(AZ0t(z)) �(dt)

�
(14)

For two points x and x + h, Eq. (13) gives the bivariate distribu-
tion F (h; z1; z2) as a function of the cross geometrical covariogram
K(h; z1; z2; t) between the two sets AZ0t(z1) and AZ0t(z2) :

F (h; z1; z2) = PfZ(x) < z1; Z(x+ h) < z2g

= exp

�
�

Z

R

�n(AZ0t(z1) [AZ0t(z2)�h) �(dt)

�

= F (z1)F (z2) exp

�Z

R

�n(AZ0t(z1) \AZ0t(z2)�h) �(dt)

�

= F (z1)F (z2) exp

�Z

R

K(h; z1; z2; t) �(dt)

�

(15)

From Eq. (15), it is clear that for the BRF we always have F (h; z1; z2) �
F (z1)F (z2), so that no negative correlation can occur.

F ii) If g(x) = z for x 2 K and else g(x) = +1, K being a compact
set, Eq. (11) enables us to calculate the distribution of Z(x) after a
change of support by the operator _ taken over the compact set K
(Z_(x) = _x2KfZ(x)g); we have in that case DZ0t(g) = AZ0t(z) �

�K
and

PfZ_(K) < zg = exp

�
�

Z

R

�n(AZ0t(z)�
�K) �(dt)

�
(16)

From the de�nition (8) and from Eq. (10), the following result is
obtained:
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Proposition 8 The RF Z_(x) is a BRF with the primary function Z
0
_(x).

All previous results can be specialized to the Boolean island version of
the model, when �(dt) = �E0(t) and Z

0
0 = Z 0. Starting form the Choquet

capacity 12, the spatial law becomes:

1� T (g) = PfZ(x1) < z1; :::; Z(xn) < zng
= exp (���n(AZ0(z1)x1 [ ::: [AZ0(zn)xn) �(dt))

The bivariate distribution is given by

F (h; z1; z2) = F (z1)F (z2) exp (�K(h; z1; z2))

and the change of support by the operator _ follows

PfZ_(K) < zg = exp
�
���n(AZ0(z)� �K)

�

3.4 Supremum stability and in�nite divisibility

Let Z1(x) and Z2(x) be two independent BRF with the primary functions
Z 01t and Z

0
2t, and the intensities �1(t) and �2(t). From Eq. (9) is obtained:

�Z = �Z1 [ �Z2 = [(tk;xk)2P1A
0
1(tk)xk [(tk;xk)2P2 A

0
2(tk)xk

and therefore �Z is a Boolean model in Rn+1; as a consequence, Z(x) is
a BRF with intensity �(t) = �1(t) + �2(t) and with a mixture of primary
functions.

Proposition 9 Every supremum of a family of independent BRF Zi(x) is
a BRF with intensity �(t) =

P
i �i(t). The BRF is stable with respect to the

supremum.

The supremum stability property 9 of the BRF is shared with more
recent RF models, namely so-called max-stable processes.

As a consequence of the in�nite divisibility of the Boolean model for [,
we get:

Theorem 10 Every BRF Z(x) is in�nite divisible for _ : 8n;Z(x) �
_k=nk=1Zk(x) where the Zk are independent BRF with the same law.

This results immediately from the expression of the Choquet capacity
of the BRF 11 and from the Choquet capacity of _k=nk=1Zk(x) derived from
equation 7: for any integer n, we have

1� T (g) = Q(g) = exp

�
�

Z

R

�n(DZ0t(g))
�(dt)

n

�n
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3.5 Characteristics of the primary functions

Some characteristics of the pair (intensity, primary function) can be deter-
mined from information on the BRF Z(x). These characteristics are directly
deduced from the Choquet capacity (11) and from the derived properties
(13-15).

3.5.1 Transformation by anamorphosis

Let ' an anamorphosis transformation (namely a monotonous non-decreasing
transformation applying R into R). Let Y = '(Z).

Proposition 11 Every anamorphosis of a BRF, '(Z), is a BRF obtained
with the same intensity �(t) and with the primary function Y 0 = '(Z 0).

Proof. We have

A'(Z)(z) = fx;'(Z(x)) � zg = fx;Z(x) � '
�1(z)g

= AZ('
�1(z)) = [(tk;xk)2PAZ0tk

('�1(z))xk
= [(tk;xk)2PAY 0tk

(z)xk = AY (z)

This result enables us to restrict our study to strictly positive BRF, since
it is always possible to transform any function Z into a positive function Y =
'(Z) (consider for instance the anamophosis obtained by an exponential
transformation).

3.5.2 Moments of Z 0_(K) and mathematical expectation of the

anamorphosed of Z 0_(K)

We consider now positive BRF.

Proposition 12 We have:

M(i;K) = �

Z

R

zi�1 log (PfZ_(K) < zg) dz

=
1

i

Z

R+
E

�Z

Rn
(Z 0t_(K)(x))

i dx

�
�(dt)

(17)

Let �(z) a strictly positive function with �(z) =

Z z

0
'(u) du. We have:

�

Z

R

'(z) log (PfZ_(K) < zg) dz

=

Z

R+
E

�Z

Rn
�(Z 0t_(K)(x)) dx

�
�(dt)

(18)
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Proof. We note 1Z0t�z(x) the indicator function of the set AZ0t(z) at point
x (1Z0t�z(x) = 1 if Z

0
t(x) � z and else 1Z0t�z(x) = 0). For a given realization

of the primary function we have:

�n(AZ0t(z)) =

Z

Rn
1Z0t�z(x) dx

and Z

R+
zi�11Z0t�z(x) dz =

Z Z0t(x)

0
zi�1dz =

(Z 0t(x))
i

i

By integration in Rn we obtain
Z

Rn

(Z 0t(x))
i

i
dx =

Z

R+
zi�1�n(AZ0t(z)) dz

and by taking the mathematical expectation

E

�Z

Rn

(Z 0t(x))
i

i
dx

�
=

Z

R+
zi�1�n(AZ0t(z)) dz

The moment M(i) is deduced by integration of the last expression over the
measure �(dt), and similarly for the moment M(i;K) after replacing Z and
Z 0 by Z_(K) and by Z

0
_(K). Similarly, we have

Z

R+
'(z)1Z0t�z(x) dz =

Z Z0t(x)

0
'(z) dz = �(Z 0t(x))

and by integration in Rn

Z

R+
'(z)�n(AZ0t(z)) dz =

Z

Rn
�(Z 0t(x)) dx

After taking the mathematical expectation and after integration over �(dt)
the expression (18) is immediate for Z and for Z_(K).

3.5.3 Geometrical covariogram of the primary function

Starting from the bivariate distribution given in Eq. (15), for z = z1 = z2
we obtain for a positive RF Z

Z 1

0
log
�
PfZ(x) < z;Z(x+ h) < zg=(F (z))2

�

=

Z

R

Z 1

0
K(h; z; z; t)�(dt) dz =

Z

R

K(h; t)�(dt)
(19)

with the notation K(h; t) = �n+1(A
0
+(t) \ A

0
+(t)�h) for the geometrical co-

variogram in Rn+1 of the positive part of the subgraph of Z 0t, A
0
+(t). The Eq.

(19) may be useful for the identi�cation of primary functions from K(h; t),
often simpler for calculations than the bivariate distribution deduced from
the cross geometrical covariogram K(h; z1; z2; t).
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3.6 Some stereological aspects of the BRF

As for the Boolean model, a BRF de�ned in Rn generates by section in
Rk (k < n) BRF with induced intensity and primary functions. This is
a property connected to the Poisson point process. For some families of
primary functions (for instance when the positive part of the subgraph is
made in Rn+1 of spheres, similar cylinders, or similar parallelepipeds,...),
it is possible to estimate the properties of the primary functions (up to the
intensity), from the sole bivariate distribution known on pro�les, through the

function

Z

R

K(h; t)�(dt). As far as these primary functions are well suited

to real data, it can be relatively easy to implement them in applications.

3.7 BRF and counting

In this section, we consider digital images with support in R2, modelled by
Boolean island BRF.

As in [27, 28], we assume that the integral V =

Z 1

0
�2(AZ0(z)) dz is

known from a preliminary study. When considering a topographical surface
in R3, V is the volume covered by the primary function Z 0. We wish to
estimate � for images considered as realizations of BRF with intensity �.
From the distribution function F (z), we get:

�

Z 1

0
log (F (z)) dz = �V (20)

This counting algorithm is very convenient, since it does not require any
segmentation or any choice of a threshold. Well suited to Boolean textures,
it is weakly sensitive to noise, but it is sensitive to illumination conditions
(through V ), which should remain strictly constant between a standard
experiment (to estimate V ) and an image acquisition for counting.

3.8 Identi�cation of a BRF model

To identify a BRF from data, both the family of primary function Z 0t(x)
and the measure �(dt) must be known. However, the Choquet capacity
(11), experimentally estimated from realizations of BRF, depends on the
product of two factors: the intensity and a measure on the primary function.
It is therefore not possible to know these two terms separately from their
product, so that we have to face an indetermination. To raise it, we rely on
the following results proved by M. Schmitt and F. Preteux [19, 20, 24]. We
note (Z 0t; �) the BRF de�ned by a choice of the primary function Z

0
t and of

the intensity �(dt).

Proposition 13 Characterization of a BRF. Consider a BRF (Z 0t; �);
i) If �(R) = � < 1, the BRF admits a unique representation as a Boolean
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island (Z 0; �E), where Z 0 is centered on the projection on the plane z = 0
of the center m of the sphere in Rn+1 circumscribing the maxima of the
primary function; ii)If �(R) = +1, the BRF can be uniquely represented by
(Z 0t; �), where the Z

0
t are centered in m and where Z(x) = _(tk;xk)2PfZ

0
tk
(x�

xk) + tkg.

From experimental data, we always access to a bounded range of vari-
ation for Z(x). We can therefore mostly consider Boolean islands. It will
be the same situation for simulations. However, at the level of a theoretical
model, it is often interesting to consider the case ii) with �(R) = +1: For
instance we can use the following BRF:

F TheWeibull model is obtained by implantation of primary functions
Z 0t(x) with a point support (Z

0
t(x) = tE(x), E(x) being the Dirac dis-

tribution in Rn) and �(dt) = �m(z0 � t)
m�1 for t � z0 � 0. With this

de�nition, the BRF di¤ers from �1 on points of a Poisson process. It
cannot be characterized by its spatial law, which is equal to zero. Use
must be made of the Choquet capacity (11) for functions g having a
support with non zero measure in Rn. For instance, the distribution
function of Z_(K) is derived from Eq. (16):

PfZ_(K) < zg = exp�

Z z0

�1

�m(z0 � t)
m�1�n(AZ0t(z)�

�K) dt

with AZ0t(z)�
�K = �K for t � z, else = ;. It comes:

PfZ_(K) < zg = exp��(z0 � z)
m�n(K) (21)

In fracture statistics, the variable of interest is Z > 0 (the fracture
stress), and use is made of the BRF Y (x) = �Z(x), which can be
directly obtained with the intensity �(dt) = �m(t� z0)

m�1dt (t � z0),
by means of the operator ^ instead of _, and starting from the value
+1 outside of the Poisson point process in Rn. For z � z0

PfZ^(K) � zg = exp�(�(z � z0)
m�n(K)) (22)

F The Pareto model is obtained with the same construction as the

Weibull model, with the intensity �(dt) =
��dt

t
for t � z0 � 0 and

else �(dt) = 0. We have

PfZ_(K) < zg = exp

Z z0

�1

��n(AZ0t(z)�
�K)
dt

t

= exp ��n(K)

Z �z0

�z

dt

t
=
�
z0
z

���n(K)
(23)

Using the operator ^ instead of _, and starting from the value +1
outside of the Poisson point process in Rn. For z � z0

13



PfZ^(K) � zg =

�
z0
z

���n(K)
(24)

3.9 Test of the BRF

Tests proposed for testing the BRF model are derived from tests proposed
for the Boolean model. In a �rst step, it is possible to work on sets obtained
by applying thresholds on Z(x) at di¤erent levels zi, which are Boolean

models with intensity

Z

R

(1 � Gt(zi))�(dt), where Gt(z) is the distribution

function of the maximum of Z 0t(x). Other tests can be directly applied to the
function Z(x). They involve the following criteria: convexity of the sections
AZ0t(z), change of support on convex sets, and in�nite divisibility for _.

3.9.1 Convexity of AZ0t(z)

This is the most often used test used in applications until now. It is based
on an additional assumption, the convexity of the sections of the primary
function, AZ0t(z). This is not satis�ed in the general case. The test makes
use of the Steiner formula to the distribution (16) PfZ_(K) < zg when
K is a compact convex set. In these conditions, log(PfZ_(�K) < zg) and

similarly

Z

R

log(PfZ_(�K) < zg) dz are polynomials of degree k in � for

K � Rk.
It is easy to implement these tests, since they only require the estimation

of the distribution functions after change of support by the operator _ on
convex sets with increasing sizes �K. The �rst test, based on a threshold z,
is the same as for the Boolean random set model. The second test may be the
source of numerical di¢culties, since we may obtain PfZ_(�K) < zg ' 0
for weak values of z. In that case, we have to set a lower value z0 for the
numerical integration of the integral.

Examples of applications of these tests are given in [3, 4, 19, 21, 28, 1, 4].
In [4], the test was satisfactory for change of support on segments with
increasing lengths; primary functions of di¤erent shapes were used for the
simulation of the rough surface of steel plates: cylinders, paraboloids, cones.

3.9.2 Change of support on convex sets

Again we consider Z_(�K) with K convex, and � is chosen in such a way
that �n(�K)� �n(AZ0t(z)). We do not need to make any assumption about
the convexity of AZ0t(z) for the proposed asymtotic tests [5].

Let z such that _tfGt(z)g < 1 and two convex sets K1 � R
n1 , K2 � R

n2

14



with n1 � n, n2 � n. We have:

H(�1; �2) =
log(PfZ_(�1K1) < zg)

log(PfZ_(�2K2) < zg)
=

Z

R

�n(AZ0t(z)� �1
�K1)�(dt)

Z

R

�n(AZ0t(z)� �2
�K2)�(dt)

(25)

For �1 ! +1 and for �2 ! +1, Eq. (25) becomes

H(�1; �2) =
�n11
�n22

�n1(K1)

�n2(K2)
(26)

For instance in R3 :

F If K1 is the cube with edge 1 and if K2 is the square with edge 1

H(�1; �2) =
�31
�22
and H(�; �) = �

F If K1 is the cube with edge 1 and if K2 is the segment with length 1

H(�1; �2) =
�31
�2
and H(�; �) = �2

F If K1 is the square with edge 1 and if K2 is the segment with length 1

H(�1; �2) =
�21
�2
and H(�; �) = �

In practice, it is also possible to set �1 and �2 constant and to vary z.
The two curves log(PfZ_(�1K1) < zg) and log(PfZ_(�2K2) < zg) must be
proportional, with a slope equal to H(�1; �2).

These tests, not based on the assumption of convexity of the sections
AZ0t(z), can be implemented after a �rst change of support over a non convex
set K (for instance fx; x+hg, or K made of any number of points), provided
that � stays larger than the range of Y (x), deduced from Z(x) by this �rst
transformation.

3.10 BRF and random tesselations

Boolean random functions can be used for the generation of models of ran-
dom tesselations [15]. A large class of random tesselation models combines
a point process and a distance to the points. For instance, attaching to every
Poisson point xk a primary random function Z 0k(x) de�ned according to the
Euclidean distance, the standard Voronoi model can be deduced from a ^
BRF with primary function made of an increasing paraboloid of revolution:

Z(x) = ^kZ
0
k(x� xk) (27)
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Sections of primary functions at level z are balls de�ned by the corre-
sponding metric. De�ne

B0k(z) = fx; Z
0
k(x) < zg

From equation (27) we have

B(z) = fx; Z(x) < zg = [xkB
0
k(z)xk (28)

By construction equation (28) B(z) is a Boolean random set with convex
primary grains B0k(z). Consider a compact set K and the in�mum Z^(K) =
^y2KfZ(y)g. We have for the stationary case

PfZ^(K) � zg = exp�f�E(�n(B
0
k(z)� �K))g (29)

More general random tesselations can be generated by the same process,
starting from Boolean random functions with any primary random function
Z 0(x). We consider that the realization k of Z 0(x) owns simply connected
compact sections B0k(z), such that B

0
k(z1) � B

0
k(z2) for z2 > z1. We consider

primary random functions reaching their minimum Z 0(0) for x = 0. We
associate to Z 0k(x) the �oor set A

0
k de�ned by

A0k = fx; Z
0
k(x) = Z

0
k(0)g (30)

If we have A0 = fOg, we can de�ne the class Ck of the random tesselation,
generated by the germ xk and the primary random function Z 0(x) by:

Ck = fx 2 R
n; Z 0k(x� xk) < Z

0
l(x� xl); xk 2 P; xl 2 P; l 6= kg (31)

For the simulation of random tesselations, we just need to simulate re-
alizations of the Boolean random function with primary functions Z 0k corre-
sponding to the model. The boundaries of the tesselation are provided by
the crest lines of the random functions, obtained by the watershed of the
random function using as markers apparent markers de�ned below. By con-
struction of the Boolean random functions, the location of crest lines, and
therefore the boundaries of the classes of the resulting tesselation are invari-
ant by a non decreasing transformation � (anamorphosis) of the values of
Z 0k(x) (for instance using Z

0p
k (x) instead of Z

0
k(x)), that is compatible with

the order relationship, namely such that z1 < z2 implies �(z1) < �(z2).
An alternative extraction of classes is given by their labels Ck. Starting

from the simulation, and from the germs xk, we generate in each point x a
set of labels L(x):

L(x) = fk; Z(x) = Z 0k(x� xk)g (32)

Points x with the single label k generate the interior of cell Ck. Points
with two labels k and l are on the boundaries between cells Ck and Cl. In
R3, points with three labels are on the edges of the tesselation, and points
with four labels are its vertices. More details about the properties of such
random tesselations are given in [15].
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4 Multiscale Boolean random functions

In many practical situations, there is a non-homogeneous dispersion of ob-

jects in a matrix, and possibly arrangement of aggregates at di¤erent scales
[11, 13, 14]. A convenient way to account for theses situations is to re-
place the Poisson point process by a Cox process, generating multi scale
Cox Boolean Random Function.

In a �rst step, we can replace in the construction of the BRF the intensity
measure �n(dx) A �(dt) in Rn � R by the intensity �(dx; dt), dropping
the stationarity of the Poisson point process. In a second step, we use for
�(dx; dt) a realization of a positive random function, generating a Cox point
process. The Choquet capacity becomes:

T (g) = 1� E�fexp(�EZ0tf

Z

R

�(DZ0t(g); dt)gg = 1� 'g(1)

with 'g(�) the Laplace transform of the positive random variable

EZ0tf

Z

R

�(DZ0t(g); dt)g

EZ0tbeing the expectation with respect to the random function Z 0t.
A typical example is given by a constant intensity � inside a �rst random

set A1 (such as a stationary Boolean model of spheres with a large radius
R). We keep the points of a Poisson point process contained in A1, as germs
for centers of primary RF. We have �(dx) = �1A1(x)dx, where 1A1(x) is the
indicator function of the set A1. Then

T (g) = 1� 'g(�)

where 'g(�) is the Laplace transform of the positive random variable

EZ0tf

Z

R

�n(DZ0t(g) \A1) �(dt)

For a deterministic primary function grain Z 0t, we have to use the change
of support of the random set A1 over the compact set DZ0t(g)), which is
easily estimated from simulations. In [13, 14] use is made of of the Beta
distribution for the Cox-Boolean model.

For the test function g(x) = z if x 2 K, and g(x) = +1 if x =2 K, we
obtain the distribution of the supremum of Z(x) over the compact set K,
Z_(K)

1� T (K; z) = 'K(z; 1)

where 'K(z; �) is the Laplace transform of the positive random variable

EZ0tf

Z

R

�n(AZ0t(z)�
�K \A1) �(dt).
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An alternative way to generate multiscale BRF is to use a hierarchical
model built from a random tesselation of space given in section (5.2).

5 Exercises

5.1 BRF with cylinder primary random functions

We consider primary RF de�ned in two steps: start with a compact random
set A00. To every realization of A

0
0 is attributed an independent realization

of random variable Z 0 with distribution function G(z) = PfZ 0 < zg. A
Boolean islands RF Z(x) with intensity � is built from this cylinder primary
function. Give i) the univariate and bivariate distribution functions of Z(x).
Give ii) the distribution function of Z_(K) for this model.

Answer:

i) Using 12, we have F (z) = PfZ(x) < zg = exp (���n(A
0
0)(1�G(z))).

Similarly, using the notation r(h) =
�n(A

0
0\A

0
0�h)

�n(A
0
0)

we get

F (h; z1; z2) = PfZ(x) < z1; Z(x+ h) < z2g

= F (z1)F (z2)F (z1 ^ z2)
�r(h)

ii) We have

PfZ_(K) < zg = exp
�
���n(A

0
0 � �K)(1�G(z))

�

= F (z)
�n(A

0
0�

�K)

�n(A
0
0)

5.2 A hierarchical BRF model

A RF Z is built in two steps: a random stationary tessellation � of the space
Rn delimits classes Ci. In every class Ci is considered a realization Zi of
a stationary Boolean island with primary RF Z 0(x) and with the random
intensity Yi. For two classes Ci and Cj the realizations of Zi, Zj , Yi, Yj are
independent. Give for the RF Z, as a function of the statistical properties
of � and of the Laplace transform � of the positive RV Y , the expressions
of: i) the probability law F (z) = PfZ(x) < zg; ii) the bivariate distribution
F (h; z1; z2).

Answer:

i) We have F (z) = Pfx 2 AZ(z)g. The restriction of AZ(z) to every class
Ci is a Boolean random set with primary grain AZ0(z) and with intensity
Yi. Given Yi = y, we have

F (z) = exp(�y�n(AZ0(z))

Taking the mathematical expectation we respect to the random variable Y ,
we get:

F (z) = �(�n(AZ0(z)))
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ii) When x 2 Ci and x + h 2 Ci, we use the bivariate distribution of
the BRF with the intensity Yi. When x 2 Ci and x + h 2 Cj (with i 6= j),
the RV Z(x) and Z(x + h) are independent, with univariate distribution
functions F (z1) = exp(�y1�n(AZ0(z1)) and F (z2) = exp(�y2�n(AZ0(z2)).
We note

r(h) =
�n(C \ C�h)

�n(C)

the probability of x 2 Ci and x + h 2 Ci. After deconditioning over � and
over Y , we obtain:

F (h; z1; z2) = r(h)�(�n(AZ0(z1) [AZ0(z2)h))

+(1� r(h))�(�n(AZ0(z1)))�(�n(AZ0(z2)))
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