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Abstract

The Boolean RF are a generalization of the Boolean RACS. Their
construction based on the combination of a sequence of primary RF by
the operation V (supremum) or A (infimum), and their main properties
(among which the supremum or infimum infinite divisibility) are given
in the case of scalar RF built on a Poisson point process.

1 Introduction

This text reviews a family of random functions (RF) which is an extension
of the binary Boolean model, and is of wide use for applications, the Boolean
RF.

This family owns the interesting property of supremum (or infimum, ac-
cording to the chosen type of construction) infinite divisibility. These models
are particularly interesting for applications in physics, such as in fracture
statistics [6, 9, 10]. The basic idea of the Boolean RF (BRF) was born about
the modelling of rough surfaces by D. Jeulin (1979), by a generalization of
the Boolean model of G. Matheron. The first presentations and applications
are given in [3, 25]. In [4] an anisotropic version is developed. Out of the field
of materials, other examples of applications are given for biomedical images
[19, 21, 22], for Scanning Electron Microscope images [28], and for solving
problems of exploitation of oceanographic reserves [1]. The first theoretical
studies of the BRF are given in [3, 25, 4, 26]. In [27, 28], J. Serra introduces
a general BRF model, connected to a non stationary Poisson point process
in R, In [20, 21], F. Preteux and M. Schmitt proved some characteristic
properties of the BRF, useful for the identification of a model from images.
Finally, a generalization of the BRF at two levels was proposed and devel-
oped by D. Jeulin [7, 6]: introduction of Boolean varieties RF (including the
Poisson point process as a particular case), and of the multivariate case.

In what follows, a reminder on random closed sets and on semi-continuous
RF is given. Then we review the properties of the Boolean RF model.



2 Reminder on random closed sets and on semi-
continuous random functions

The heterogeneity of materials can be handled through a probabilistic ap-
proach, which enables us to generate models and simulation of the mi-
crostructures. Two-phase media can be modelled by realizations of ran-
dom closed sets. More general microstructures involve the use of random
functions.

2.1 Random closed sets

When considering two-phase materials (for instance a set of particles A
embedded in a matrix A°), we use a model of random closed set (RACS)
A [16, 18, 25, 8], fully characterized from a probabilistic point of view by
its Choquet capacity T(K) defined on the compact sets K, from (1) below,
where P denotes a probability:

T(K)=P(KNA#0)=1-Q(K)=1- P(K C A%). (1)

In the Euclidean space R, the Choquet capacity is related to the dilation
operation of Mathematical Morphology A & K. We have:

T(K,;)=P{K,NA#0} =P{xc Ad K}

In practice, T(K) can be estimated by area fraction measurements on 2D
images, or from volume fraction estimation on 3D images (from true mi-
crostructures, or from simulations), after a morphological dilation of the set
A by the set K [16, 18, 25, 8], or calculated for a given theoretical model.
Equation (1) is used for the identification of a model (estimation of its para-
meters, and test of its validity). Particular cases of morphological properties
deduced from (1) are the volume fraction V,,, the covariance (a useful tool to
detect the presence of scales or anisotropies), the distribution of distances
of a point in A° to the boundary of A. The access to 3D images of mi-
crostructures by means of X-ray microtomography [23] makes it possible to
use 3D compact sets K (like balls B(r) with various radii r) to characterize
the random set.

2.2 Upper semi-continuous random functions

We consider semi-continuous (upper, lower) random functions, for which the
changes of supports by V or by A provide random variables [17]:

Zy(K) = Veer{Z ()}
ZNK) = Noer{Z ()}

Random Functions (RF) and Random Sets are related by means of their
subgraph and of their overgraph [2].



Definition 1 The subgraph T'? of the function ¢ is made of the pairs {x, z},
€ E, z € R, with z < ¢(x). The overgraph T, is made of the pairs {z,z},
r € E, z € R, with z > ¢(z).

We have the following result connecting semi-continuous functions and
closed sets [2]:

Proposition 2 The function ¢ is lsc < its overgraph I, is a closed set in
E X R; ¢ is usc < 1its subgraph I'? is a closed set in E2 X R.

Theorem 3 A random function Z(x) defined in R"™, upper semi continuous
(usc), is characterized by its Choquet capacity T(g) defined over lower semi
continuous functions (Isc) g with a compact support K

T(9) = P{reDz(g)}=1-Q(9) (2)
Dz(9)¢ = Az, Z(z+vy) <g(y),Vy € K}

Particular cases of the Choquet capacity are obtained from Equation (2),
depending on the choice of the test function g.

e When g(z;) = z; for z; (i =1,2,...,n), else g(z) = +o0:
T(g9) =1—-P{Z(x1) < z1,..., Z(zp) < 2}

1 — T(g) gives the spatial law. In what follows we note Az(z) the
random closed set obtained by thresholding the RF Z(z) at level z:

An(2) = {, Z(x) > 2}
e For the function g(z) =z if x € K, and g(z) = 40 if z ¢ K,
Dz(9)" ={z,Z(x +y) <z Vyc K} = [AZV(K)(Z>]C
We have:
Zy(K)z)<ze K, C (Az(2) @ recAz(z2)°0 K

and
Zy(K)z)>ze e (Az(2) 0 K) =Az(2) @ K

and therefore
Az, x)(2) = Dz(g9) = Az(2) © K
For this type of test function g, we have:

T(g) = P{z € Dz(9)} =1-Q(9) =1 - P{Zy(K) < z}

The Choquet capacity gives the probability distribution of the RF
Z(z) after a change of support by V over the compact set K.



Let Z1(z) and Z3(z) be two usc RF and Z(z) = Z1(z) V Z3(x). We have

(Dzyvz,(9))¢ = Dz(9)° ={z, Z1(x +y) V Zao(z +y) < g(y),Vy € K}
= {z,Z1(z +y) < gly) and Zo(z +y) < g(y) ,Vy € K}
= DZl (g)c N DZQ(g)C

Therefore
Dzyvzy(9) = Dz,(9) U Dz,(9g) (3)
and
Tzivz,(9) = Plw e Dz(g)} =1-Q(g) = P{z € Dz (9) UDz(9)}4)
and Q(g) = P{z € Dz (9)°NDz(9)} (5)

Furthermore we have:

AS(z) = {z,Z(x) < z} ={z,Z1(x) V Z2(x) < 2}
{z,Z1(z) < z and Za(v) < 2z} = AY, (2) N AZ,(2)

Azivzy(2) = Az (2) U Az, (2) (6)

If the two RF Zi(x) and Zy(z) are independent, the two random sets
Dz, (g) and Dg,(g) are independent, and the relation 5 writes:

Q(g) = P{z € Dz(g)} =P{z € Dz (9)°N Dz(9)}
= Plz € Dz(9)}P{z € Dz,(9)°} = Q1(9)Q2(9)

More generally, if Z(z) = ViZ}Y;(z) and if the Y;(x) are independent real-
izations of the same RF Y (z) with P{z € Dy (9)°} = Qv (g), we get:

Qz(g) = P{z € Dz(9)°} = P{z € =i Dyi(9)} = Qv (9)" (7

2.3 Principle of random sets and of random function mod-
eling

The main steps to follow when designing a random model of structure are
as follows:

1. Choice of basic assumptions

2. Computation or estimation of the Choquet’s capacity functionnal

T(K)

The functional T'(K'),T(g) is obtained as a function of



1. the assumptions
2. the parameters of the model

3. the compact K or the function g.

For a given model, the functionnal 7" is obtained by theoretical calcula-
tion or by estimation, either on simulations, or on real structures. This gives
access to a possible estimation of the parameters from the ”experimental”
T, and to tests of the validity of assumption for model identification.

3 The Boolean random functions

In what follows, we review the main properties of the BRF built on the
Poisson point process.

3.1 Construction of the BRF

We are concerned in this section by Boolean RF with support in the Euclid-
ean space R", and note p,,(dx) and 6(dt) the Lebesgue measure in R" and a
o finite measure on R (such that [ 6(dt) remains finite for every bounded
Borel set B in R). We consider:

e i) a Poisson point process P, with the intensity measure p,(dz) ®
0(dt) in R" x R;

e ii) a family of independent lower semi continuous primary RF Zj(z),
with a subgraph % = A (t) having almost surely compact sections

Az(2).

Definition 4 The Boolean random function (BRF) with the primary func-
tion Z,(x) and with the intensity p, (dx) @ 0(dt) is the RF Z(x) obtained
by

Z(x) = V(yaneriZt, (@ — zx)} (8)

We can notice the following points.

e i) This definition, given in [6], is more general than the one proposed
by J. Serra in [27, 28]; it covers the previous definitions:

— the Boolean islands, for which the measure 6(dt) is the Dirac
distribution concentrated in a point ¢t of R: 0(dt) = 0d(t) [3, 25,
4];



— the "generalized” BRF, where we have Z}(x) = Y/ (z) + t, where
Y/(z) is a family of primary RF. The addition of ¢ comes from
a definition of the BRF as a non stationary Boolean RACS in
R™! with Poisson germs in R"*! and with primary random sets
A’(t) defined at the origin (0,0) of the coordinates of R"*1. To
introduce BRF on more general lattices, where the addition is
not necessarily defined, this construction process cannot be used.

ii) The parameter ¢, that can be assimilated to z in the definition
[27, 28], as for examples given in section 3.8, can also be interpreted
as a time, leading to the notion of sequential RF. In these conditions,
for the time interval (¢,t + dt) is defined an infinitesimal BRF.

iii) It is possible to parametrize the primary functions by t € R¥, with a
o—finite measure 6(dt) on R"~*.This enables us to introduce a primary
function depending on several indexes. Instead of RF, an abstract
space FF and a measure 6 defined on E can be chosen. Similarly,
the Lebesgue measure on R", p, (dz), can be replaced by a o—finite
measure 6(dx) on R", dropping the stationarity in R™. This process
can be used to build multiscale RF, as illustrated in section 4.

iv) From the definition (8), the "floor” value of Z(z) is —oo. This value
can be bounded (z0) by use of primary functions such that Az (20) =
R™, or by taking Y (z) = 2o V Z(z).

v) From lower semi-continuous primary functions Z’(t) (with over-
graph Fzé), it is possible to build a A BRF [6], by replacing in Eq. (8)
the operation V by A, and starting from a +oo ceiling value of Z(z). It
is equivalent to build a V BRF Y from the primary RF Y/ (z) = —Z/(z)
and to consider as a A BRF Z(z) = —Y (z). For this reason, we limit
this presentation mainly to the V BRF given by Eq. (8).

vi) From the point of view of subgraphs (closed in R"*! for lower
semi-continuous functions), the relation (8) involves:

FZ = U(tk,wk)EPA,(tk‘)mk (9)
By definition, I'? is a Boolean RACS in R™ with primary grain A’(t).

For illustration, simulations of BRF are shown on figure 1.



Figure 1: Examples of realizations of a Boolean random function with
cone primary functions (left), and built from Poisson lines (right)

3.2 Boolean Random function and Boolean model of random
sets

Using the definition 8 and the property 6, we have for the BRF Z(x):
Az(z) = U(tk,xk)ePAZ;k ()
As a consequence,

Proposition 5 Every random closed set Az(z) obtained by thresholding a
BRF Z(x) at level z is a Boolean random set with primary grain AZ;(Z).

This property will be useful for the identification of a model of BRF,
since available tools for the Boolean model can be used for this purpose.
3.3 Choquet capacity of the BRF

As mentioned in theorem 3, we can characterize a BRF by means of the
functional T'(¢g) defined on lower semi-continuous functions g with a compact
support K :

T(9) = P{z € Dz(9)}; Dz(9)" = {=, Z(y) < g(y — x),Vy € K}
Since Dz,vz,(9) = Dz,(g) U Dz,(g), we get for a BRF Z(x) :
DZ(g) = U(tk,l‘k)e'PDZ£k (g)mk (10)

and Dz(g) is a Boolean RACS with the primary grain Dy (g). Since Dz(g)
corresponds to the event A°(Z) = {3y € R",Z(y) > g(z — y)}, the two
following theorems result.

Theorem 6 Consider a BRF Z(x) and a lower semi continuous function
g translated in x. The number of primary functions Z, for which the event

A°(Z)) is satisfied, follows a Poisson distribution with parameter / Fn(Dz(g)) 0(dt).
R

7



Theorem 7 The Choquet capacity of the BRF Z(x) is given by:

1= 7(9) = Qo) = exp (= [ 7ulDz(00) 01a)) (1)
For the Boolean islands model 0(dt) = 0¢(t) and Z, = Z'
1-T(g) = Qg) = exp (=0, (Dz(9)) ) (12)
As particular functions g, let us examine the following cases:

e i) If g(z;) = 2 for points z; (i = 1,2,...,n), and else g(x) = +oo, we
obtain the spatial law of the BRF:

1-T(g9) = P{Z(z1) < z1,.... Z(xp) < 2}

— exp (— /R Tin(Azy (1), U oo U Agy (20 0(dt)> (13)

For a single point z, is obtained the cumulative distribution function
F(z)

P(z) = P{Z(x) < 2} = exp (— /R (A7 (2)) 9<dt>) (14)

For two points  and = + h, Eq. (13) gives the bivariate distribu-
tion F'(h,z1,22) as a function of the cross geometrical covariogram
K(h, 21, 22, 1) between the two sets Az (21) and Az/(22) :

F(h,z1,29) = P{Z(z) < z1, Z(x + h) < 22}
= exp (= [ () U Az ea) ) o0a) )
= PP exp ([ puldz e 0 Az o)

— F(21)F () exp < /R K(h, 21, 2,1) 0(dt)>

(15)

From Eq. (15), it is clear that for the BRF we always have F'(h, 21, z2) >
F(z1)F(22), so that no negative correlation can occur.

e ii) If g(x) = z for z € K and else g(x) = +oo, K being a compact
set, Eq. (11) enables us to calculate the distribution of Z(x) after a
change of support by the operator V taken over the compact set K
(Zv(z) = Voex{Z(2)}); we have in that case Dy (g) = Az/(2) ® K
and

PZAE) <2 =ew (- [ malz) o By oan) ()

From the definition (8) and from Eq. (10), the following result is
obtained:



Proposition 8 The RF Zy(x) is a BRF with the primary function Z\,(x).

All previous results can be specialized to the Boolean island version of
the model, when 6(dt) = 66o(t) and Z = Z'. Starting form the Choquet
capacity 12, the spatial law becomes:

1-T(g9) = P{Z(z1) < 21, ... Z(xp) < 2}
= exp (=0, (Az (21)z, U ... U Az (2n)z,) 0(dt))

The bivariate distribution is given by
F(h,z1,22) = F(21)F(22) exp (0K (h, 21, 22))
and the change of support by the operator V follows

P{Zy(K) < z} = exp (=07, (Az/(2) ® K))

3.4 Supremum stability and infinite divisibility

Let Zi(z) and Z3(x) be two independent BRF with the primary functions
Z1, and Z),, and the intensities 61 (¢) and 62(¢). From Eq. (9) is obtained:

FZ — le U FZQ = U(tk,xk)e'PlAll(tk)wk U(tk,xk)ePg A12<tk)$k

and therefore I'Z is a Boolean model in R"*!; as a consequence, Z(z) is
a BRF with intensity 0(t) = 61(t) + 02(¢t) and with a mixture of primary
functions.

Proposition 9 FEvery supremum of a family of independent BRF Z;(x) is
a BRF with intensity 6(t) = >, 0;(t). The BRF is stable with respect to the
supremum.

The supremum stability property 9 of the BRF is shared with more
recent RF models, namely so-called max-stable processes.

As a consequence of the infinite divisibility of the Boolean model for U,
we get:

Theorem 10 Every BRF Z(x) is infinite divisible for vV : Vn,Z(x) =
\/gi?Zk(m) where the Zj, are independent BRF with the same law.

This results immediately from the expression of the Choquet capacity
of the BRF 11 and from the Choquet capacity of VF=1Z,(x) derived from
equation 7: for any integer n, we have

|~ T(g) = Olg) = exp <—/Run(Dz,;(9)) 9(dt)>n

n



3.5 Characteristics of the primary functions

Some characteristics of the pair (intensity, primary function) can be deter-
mined from information on the BRF Z(x). These characteristics are directly
deduced from the Choquet capacity (11) and from the derived properties
(13-15).

3.5.1 Transformation by anamorphosis

Let ¢ an anamorphosis transformation (namely a monotonous non-decreasing
transformation applying R into R). Let Y = ¢(Z).

Proposition 11 FEvery anamorphosis of a BRF, ¢(Z), is a BRF obtained
with the same intensity 6(t) and with the primary function Y' = o(Z').

Proof. We have
Apz)(2) = {331; p(Z(x)) =z z} = {z; Z(x )1 ¢~ (2)}
= AZ(QO_ (Z)) U(tk,wk)GPAZé ( (Z))xk
= U(tk@k)e’PAWk (2)z), = AY(z)
]
This result enables us to restrict our study to strictly positive BRF, since
it is always possible to transform any function Z into a positive function Y =

©(Z) (consider for instance the anamophosis obtained by an exponential
transformation).

3.5.2 Moments of Z{(K) and mathematical expectation of the
anamorphosed of 7/, (K)

We consider now positive BRF.

Proposition 12 We have:

M0, K) = — / i“Ulog (P{Zy(K) < z}) d

Lty (1)
= — E (ZtV Z dx 9
1 R+ n
Let ®(z) a strictly positive function with ®(z / o(u) du. We have:
0
~ [ o) log (PLZU(K) < 21) ds
R (18)

_ /R +E[ | 2z, (50)(@) dx] o(dt)

10



Proof. We note 1> .(z) the indicator function of the set Az (2) at point
z (1z1>.(z) = 1if Z/(z) > z and else 1> (x) = 0). For a given realization
of the primary function we have:

Az (@) = [ 1gppu(o) da

. Zi(z) 7))
/ ZZ_11Z£>z($) dz = / Zz—ldz — ( t(x))
Rt o 0

7

and

By integration in R™ we obtain
7! % )
[ g [ 4y a:
n 1 R+ t

and by taking the mathematical expectation

E{/n(zz(ix))i dm} —/Rflﬂn(flz;(z)) @

The moment M (i) is deduced by integration of the last expression over the
measure 0(dt), and similarly for the moment M (i, K) after replacing Z and
Z' by Zy(K) and by Z{,(K). Similarly, we have

Z{(x)
/ (g (2) dz = / o(2) dz = B(Zl(x))
R+ 0

and by integration in R™

/ (A (2)) dz = / O(Z)(x)) da
R+ n

After taking the mathematical expectation and after integration over 0(dt)
the expression (18) is immediate for Z and for Z,(K). m

3.5.3 Geometrical covariogram of the primary function

Starting from the bivariate distribution given in Eq. (15), for z = 213 = 29
we obtain for a positive RF Z

/OO log P{Z( )<z Z(x+h)<z}/(F(z )))

// K(h,z,z,t)0 dtdz—/Kht (dt)

with the notation K (h,t) = p, (A’ (t) N A’ (t)—p) for the geometrical co-
variogram in R"*! of the positive part of the subgraph of Z;, 4’, (¢). The Eq.
(19) may be useful for the identification of primary functions from K (h,t),
often simpler for calculations than the bivariate distribution deduced from
the cross geometrical covariogram K (h, 21, 22, t).

(19)

11



3.6 Some stereological aspects of the BRF

As for the Boolean model, a BRF defined in R™ generates by section in
RF (k < n) BRF with induced intensity and primary functions. This is
a property connected to the Poisson point process. For some families of
primary functions (for instance when the positive part of the subgraph is
made in R™*! of spheres, similar cylinders, or similar parallelepipeds,...),
it is possible to estimate the properties of the primary functions (up to the
intensity), from the sole bivariate distribution known on profiles, through the

function / K(h,t)0(dt). As far as these primary functions are well suited

to real data, it can be relatively easy to implement them in applications.

3.7 BRF and counting

In this section, we consider digital images with support in R?, modelled by
Boolean island BRF. -

As in [27, 28], we assume that the integral V = / 1o(Az(2)) dz is

known from a preliminary study. When considering a topographical surface
in R3, V is the volume covered by the primary function Z’. We wish to
estimate 6 for images considered as realizations of BRF with intensity 6.
From the distribution function F'(z), we get:

_/000 log (F(z))dz =0V (20)

This counting algorithm is very convenient, since it does not require any
segmentation or any choice of a threshold. Well suited to Boolean textures,
it is weakly sensitive to noise, but it is sensitive to illumination conditions
(through V'), which should remain strictly constant between a standard
experiment (to estimate V') and an image acquisition for counting.

3.8 Identification of a BRF model

To identify a BRF from data, both the family of primary function Z(x)
and the measure 6(dt) must be known. However, the Choquet capacity
(11), experimentally estimated from realizations of BRF, depends on the
product of two factors: the intensity and a measure on the primary function.
It is therefore not possible to know these two terms separately from their
product, so that we have to face an indetermination. To raise it, we rely on
the following results proved by M. Schmitt and F. Preteux [19, 20, 24]. We
note (Z;,0) the BRF defined by a choice of the primary function Z; and of
the intensity 6(dt).

Proposition 13 Characterization of a BRF. Consider a BRF (Z}],0);
i) If 6(R) = 0 < oo, the BRF admits a unique representation as a Boolean

12



island (Z',00), where Z' is centered on the projection on the plane z = 0
of the center m of the sphere in R™ circumscribing the maxima of the
primary function; it)If O(R) = 400, the BRF can be uniquely represented by
(Z{,0), where the Z; are centered in m and where Z(x) = V(4 z)ep{Zi, (T —
T) + i}

From experimental data, we always access to a bounded range of vari-
ation for Z(x). We can therefore mostly consider Boolean islands. It will
be the same situation for simulations. However, at the level of a theoretical
model, it is often interesting to consider the case ii) with §(R) = +o0. For
instance we can use the following BRF:

e The Weibull model is obtained by implantation of primary functions
Z{(z) with a point support (Z{(z) = td(x), d(z) being the Dirac dis-
tribution in R™) and 0(dt) = Om(zg — t)™ ! for t < 29 < 0. With this
definition, the BRF differs from —oo on points of a Poisson process. It
cannot be characterized by its spatial law, which is equal to zero. Use
must be made of the Choquet capacity (11) for functions g having a
support with non zero measure in R". For instance, the distribution
function of Z\ (K) is derived from Eq. (16):

20

P{Z,(K) < z} = exp / Om(zo — t)m_lﬁn(Azé(z) ® K) dt

with Az/(z) & K =K for t > z, else = (). It comes:
P{Zy(K) < z} = exp—0(z0 — 2)" 11, (K) (21)

In fracture statistics, the variable of interest is Z > 0 (the fracture
stress), and use is made of the BRF Y (z) = —Z(z), which can be
directly obtained with the intensity 6(dt) = 0m(t — z0)™ dt (t > z0),
by means of the operator A instead of V, and starting from the value
400 outside of the Poisson point process in R". For z > zg

P{ZN(K) = z} = exp —(0(z — 20)" 1, (K)) (22)

e The Pareto model is obtained with the same% construction as the
Weibull model, with the intensity 6(dt) = for t < z9 < 0 and
else 6(dt) = 0. We have

P{Zu(K) <2} =exp [ om(Az(2) @ K)

TR dt
= exp 9Mn(K)/ 7= ()" )

(23)

Using the operator A instead of V, and starting from the value 400
outside of the Poisson point process in R"™. For z > zg

13



20\ O (5)
P(zAK) 2 2) = (2) (24)

3.9 Test of the BRF

Tests proposed for testing the BRF model are derived from tests proposed
for the Boolean model. In a first step, it is possible to work on sets obtained
by applying thresholds on Z(z) at different levels z;, which are Boolean

models with intensity /(1 — Gy(z1))0(dt), where G¢(z) is the distribution

R
function of the maximum of Zj(z). Other tests can be directly applied to the
function Z(z). They involve the following criteria: convexity of the sections
AZtr(z), change of support on convex sets, and infinite divisibility for V.

3.9.1 Convexity of Az /(2)

This is the most often used test used in applications until now. It is based
on an additional assumption, the convexity of the sections of the primary
function, Azé(z). This is not satisfied in the general case. The test makes
use of the Steiner formula to the distribution (16) P{Z,(K) < z} when
K is a compact convex set. In these conditions, log(P{Z,(AK) < z}) and

similarly / log(P{Zy(AK) < z}) dz are polynomials of degree k in X for
R

K C R

It is easy to implement these tests, since they only require the estimation
of the distribution functions after change of support by the operator V on
convex sets with increasing sizes AK. The first test, based on a threshold z,
is the same as for the Boolean random set model. The second test may be the
source of numerical difficulties, since we may obtain P{Z,(AK) < z} ~ 0
for weak values of z. In that case, we have to set a lower value zg for the
numerical integration of the integral.

Examples of applications of these tests are given in [3, 4, 19, 21, 28, 1, 4].
In [4], the test was satisfactory for change of support on segments with
increasing lengths; primary functions of different shapes were used for the
simulation of the rough surface of steel plates: cylinders, paraboloids, cones.

3.9.2 Change of support on convex sets

Again we consider Zy(AK) with K convex, and A is chosen in such a way
that p,, (AK) > 1,(Az(2)). We do not need to make any assumption about
the convexity of Az (z) for the proposed asymtotic tests [5].

Let z such that V;{G¢(z)} < 1 and two convex sets K1 C R™, Ko C R™
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with nq1 <n, no < n. We have:

ia(Az(2) & M K1)0(dt)
HOw ) = BPLIZKY) < =) :/R SAN (25)

 log(P{Zy(A\2K2) < z}) /Mn(AZ;(Z) & Ao K2)0(dt)
R

For A\j — 400 and for Ay — +o00, Eq. (25) becomes

AL Mo, (Kl)
H(Alv/\Q) = )\7;12 [ 1(K2) (26)
na

For instance in R3 :

e If K is the cube with edge 1 and if K5 is the square with edge 1

)\3
H(\, M) = 7; and H(\, ) = A
2

e If K is the cube with edge 1 and if K5 is the segment with length 1

)\3
H(\, Xo) = 7; and H(\,\) = A2

o If K7 is the square with edge 1 and if K5 is the segment with length 1

2
H(A1, M) = t and H(\,\) = A

In practice, it is also possible to set A\; and Ao constant and to vary z.
The two curves log(P{Z, (A K1) < z}) and log(P{Zy(A2K2) < z}) must be
proportional, with a slope equal to H (A1, A2).

These tests, not based on the assumption of convexity of the sections
Az (z), can be implemented after a first change of support over a non convex
set K (for instance {x,z+h}, or K made of any number of points), provided
that A stays larger than the range of Y (x), deduced from Z(z) by this first
transformation.

3.10 BRF and random tesselations

Boolean random functions can be used for the generation of models of ran-
dom tesselations [15]. A large class of random tesselation models combines
a point process and a distance to the points. For instance, attaching to every
Poisson point 3, a primary random function Z; () defined according to the
Euclidean distance, the standard Voronoi model can be deduced from a A
BRF with primary function made of an increasing paraboloid of revolution:

Z(x) = N Zp(x — ) (27)

15



Sections of primary functions at level z are balls defined by the corre-
sponding metric. Define

Byi(2) = {z, Zj(x) < 2}
From equation (27) we have
B(Z) = {$7 Z(:U) < Z} = UIkBl,c(z)mk (28)

By construction equation (28) B(z) is a Boolean random set with convex
primary grains B} (z). Consider a compact set K and the infimum Z,(K) =
Nyex{Z(y)}. We have for the stationary case

P{Z\(K) 2 2} = exp —{0B (p, (By(2) ® K))} (29)

More general random tesselations can be generated by the same process,
starting from Boolean random functions with any primary random function
Z'(z). We consider that the realization k of Z’(x) owns simply connected
compact sections By (z), such that B} (z1) C By (22) for zo > z;. We consider
primary random functions reaching their minimum Z’(0) for z = 0. We
associate to Zj (z) the floor set A} defined by

k= {z, Zi(2) = Z;(0)} (30)

If we have A" = {O}, we can define the class C}, of the random tesselation,
generated by the germ zj and the primary random function Z'(z) by:

Cp={r€R", Z(x —xy) < Z|(x —x)), 21 € P,y € P,l # k} (31)

For the simulation of random tesselations, we just need to simulate re-
alizations of the Boolean random function with primary functions Zj, corre-
sponding to the model. The boundaries of the tesselation are provided by
the crest lines of the random functions, obtained by the watershed of the
random function using as markers apparent markers defined below. By con-
struction of the Boolean random functions, the location of crest lines, and
therefore the boundaries of the classes of the resulting tesselation are invari-
ant by a non decreasing transformation ® (anamorphosis) of the values of
Z(z) (for instance using Z," () instead of Zj(z)), that is compatible with
the order relationship, namely such that z; < z9 implies ®(21) < ®(22).

An alternative extraction of classes is given by their labels C. Starting
from the simulation, and from the germs xj, we generate in each point = a
set of labels L(z):

L(x) = {k, Z(z) = Z},(x — xx)} (32)

Points « with the single label k& generate the interior of cell C. Points
with two labels k and [ are on the boundaries between cells Cy and C). In
R3, points with three labels are on the edges of the tesselation, and points
with four labels are its vertices. More details about the properties of such
random tesselations are given in [15].
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4 Multiscale Boolean random functions
In many practical situations, there is a non-homogeneous dispersion of ob-

jects in a matrix, and possibly arrangement of aggregates at different scales
[11, 13, 14]. A convenient way to account for theses situations is to re-
place the Poisson point process by a Cox process, generating multi scale
Cox Boolean Random Function.

In a first step, we can replace in the construction of the BRF the intensity
measure u,(dz) ® 0(dt) in R™ x R by the intensity 0(dz,dt), dropping
the stationarity of the Poisson point process. In a second step, we use for
0(dz,dt) a realization of a positive random function, generating a Cox point
process. The Choquet capacity becomes:

T(g) = 1 - Ey{exp(~Ez1 /R 0D (9), dt)}} =1 (1)

with ¢, ()) the Laplace transform of the positive random variable

Byl /R 0(Dy(9), dt)}

E Zébeing the expectation with respect to the random function Zj.

A typical example is given by a constant intensity 6 inside a first random
set Ay (such as a stationary Boolean model of spheres with a large radius
R). We keep the points of a Poisson point process contained in A, as germs
for centers of primary RF. We have 0(dx) = 01 4, (v)dz, where 14, () is the
indicator function of the set A;. Then

T(g) =1 —¢,4(0)

where ¢ () is the Laplace transform of the positive random variable

Bl /R (D () N Ay) 6(dt)

For a deterministic primary function grain Zj, we have to use the change
of support of the random set A; over the compact set Dy (g9)), which is
easily estimated from simulations. In [13, 14] use is made of of the Beta
distribution for the Cox-Boolean model.

For the test function g(z) = z if z € K, and g(z) = o0 if z ¢ K, we
obtain the distribution of the supremum of Z(x) over the compact set K,
7,(K)

1 - T(K7 Z) = @K(za 1)
where ¢y (z, A) is the Laplace transform of the positive random variable

EZZ{/RMTL(AZ,Q('Z) D KﬂAl) G(dt)
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An alternative way to generate multiscale BRF is to use a hierarchical
model built from a random tesselation of space given in section (5.2).

5 Exercises

5.1 BRF with cylinder primary random functions

We consider primary RF defined in two steps: start with a compact random
set Aj. To every realization of Ajfj is attributed an independent realization
of random variable Z’' with distribution function G(z) = P{Z' < z}. A
Boolean islands RF Z(x) with intensity € is built from this cylinder primary
function. Give i) the univariate and bivariate distribution functions of Z(z).
Give ii) the distribution function of Z\ (K) for this model.

Answer:

i) Using 12, we have F(z) = P{Z(x) < z} = exp (—0R, (4))(1 — G(2))).

oy (ApNAG_p)

Similarly, using the notation r(h) = =) we get
n 0

F(hyz1,20) = P{Z(x) <z1,Z(x+h) < 2z}
= F(21)F(22)F (21 A 29)"")

ii) We have
P{Zy(K) < z}=exp(~07,(4 @ K)(1 - G(2)))
Fin (AQ®K)
= F(2) Tin(Ap)

5.2 A hierarchical BRF model

A RF Z is built in two steps: a random stationary tessellation 7 of the space
R™ delimits classes C;. In every class C; is considered a realization Z; of
a stationary Boolean island with primary RF Z’(z) and with the random
intensity Y;. For two classes C; and C; the realizations of Z;, Z;, Y;, Y are
independent. Give for the RF Z, as a function of the statistical properties
of m and of the Laplace transform ® of the positive RV Y, the expressions
of: i) the probability law F(z) = P{Z(x) < z}; ii) the bivariate distribution
F (h, 21, ZQ).

Answer:

i) We have F'(z) = P{x € Az(z)}. The restriction of Az(z) to every class
C; is a Boolean random set with primary grain Az/(z) and with intensity
Y;. Given Y; =y, we have

F(z) = exp(—ypn(Az (2))

Taking the mathematical expectation we respect to the random variable Y,
we get:
F(z) = (p,(Az (2)))
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ii) When = € C; and = + h € C;, we use the bivariate distribution of
the BRF with the intensity Y;. When x € C; and z + h € C; (with ¢ # j),
the RV Z(z) and Z(z + h) are independent, with univariate distribution
functions F'(z1) = exp(—yifi,,(Az (21)) and F(z2) = exp(—yaf,, (Az (22)).

We note -
_ /un(c N C—h)
1 (C)
the probability of x € C; and x + h € C;. After deconditioning over m and
over Y, we obtain:
F(h,z1,22) = r(h)®(H,(Az/(21) U Az (22)n))
+(1 = r(h) (1, (Az (21))) @ (B, (Az (22)))

r(h)
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