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Abstract 

 This study demonstrates how the specific mechanical energy (SME) can be used to 

describe the influence of extrusion parameters such as screw rotation speed, feed rate 

and barrel temperature on clay dispersion in organoclay (OMMT) based polypropylene 

nanocomposites. These materials were prepared by a melt mixing masterbatch process 

via twin screw extrusion with a wide range of processing conditions. Maleated 

polypropylene (PP-g-MA) was used as a compatibilizer to allow clay exfoliation. 

Characterization of the morphological evolution along the extrusion profile revealed 

that microscale dispersion primarily happens in the melting zone, whereas continuous 

exfoliation is observed all along the kneading zones, up to the die exit. The results 

indicate that exfoliation in the kneading zones is mainly issued from clay tactoids and 

small aggregates with characteristic size inferior to 10 µm, emphasizing the crucial role 

of primary microscale dispersion on the final structure and properties of the 

nanocomposites. Relevant quantitative prediction of the multiscale dispersion state 

along the extrusion profile was obtained using the melt state SME as unique parameter. 

 

Keywords: A. Nanocomposites, A. Polymer-matrix composites (PMCs), D. Rheology, 

E. Extrusion, Dispersion 
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1. Introduction 

 Reinforcement of polymer matrix by the addition of nanoclay particles is an efficient 

strategy to extend polymers’ range of applications by enhancing their mechanical [1,2], 

thermal [3,4] and barrier properties [5,6]. Nanostructuring of these hybrid materials is 

obtained by intercalation or exfoliation of the native stacked clay platelets by the 

macromolecules [3,7,8]. Melt processing has revealed to be a very suitable route for 

nanocomposites production as it benefits flexible processability of continuous mixing 

processes and does not require the use of solvents, which is advantageous from an 

environmental and economical point of view. 

 In the case of widely used polyolefin matrices such as polypropylene, the grafting of 

polar groups such as maleic anhydride along polypropylene backbone turns out an 

effective approach to improve polymer-clay affinity and allows the formation of 

intercalated/exfoliated polypropylene based nanocomposites [9–11]. 

 Besides compatibilization concern, it is important to understand how processing 

conditions affect the structure of nanocomposites during melt mixing step in order to 

establish processing strategies which could lead to highly exfoliated PP based 

nanocomposites. Out of the massive literature dealing with nanocomposites, few 

references discuss the influence of processing conditions on the resulting 

nanocomposites’ structure [2,10,12–18]. An important aspect of the melt processing 

approach is to fulfill a dispersive mixing, i.e. to break the native organoclay 

agglomerates down to individual layers. Several studies revealed that the state of 

dispersion of the nanocomposites is sensitive to both shear intensity and residence time 

[10,12,15–19]. Furthermore, quantitative characterization of the overall dispersion state 

is quite challenging as nanocomposites can be highly polydisperse systems. X-ray 

diffraction (XRD) and transmission electron microscopy (TEM) are widely used to 
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describe nanoscale organization. However, these characterization techniques provide a 

local insight and cannot be representative of the whole range of the dispersion state 

[20,21]. On the other hand, melt rheology is very sensitive to the nanostructure [10,22–

29] and has the advantage to probe macroscopic volume properties of the 

nanocomposites samples. 

 Beyond of fundamental interest, it is also crucial to understand the mechanisms of 

clay dispersion from its natural agglomerate form to exfoliated nanostructure during the 

extrusion process. Modularity of twin screw extruders enables the use of numerous 

types of elements (conveying screw, back flowing screw, mixers, kneaders, etc) which 

can be combined with countless possibilities. The design of screw profile will affect 

flow properties within the extruder and local parameters like filling ratio, shear rate, 

temperature and residence time. Consequently, it will also influence distribution and 

dispersion of the clay within the matrix. In a previous study [30], we showed how the 

influence of processing conditions on the final structure of extruded nanocomposites 

can be described by a single parameter, using the specific mechanical energy (SME). 

The latter represents the level of energy per mass unit that is transferred to the material 

by mechanical input during extrusion. In the present article, we emphasize on the 

evolution of dispersion state along the extrusion profile by investigating the role of local 

SME contribution and dispersion mechanisms of the organoclay filler, using identical 

nanocomposite formulation [30]. For this purpose, dead-stop experiments were carried 

out after reaching stationary conditions in order to sample materials from various zones 

along the extrusion profile. However, the lack of information about local extrusion 

parameters during melt processing raises a problem in the establishment of processing-

structure relationships along the screw profile. To overcome this limitation, we used a 
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flow simulation software (Ludovic®) to calculate local extrusion parameters along the 

screw profile [31] and confront experimental results with empiric laws based on SME. 

2. Materials and methods 

 2.1 Materials 

 The polypropylene (PP) used in this study was a semi-crystalline injection grade 

isotactic homopolymer produced by LyondellBasell under the reference Moplen 

HP400R. It had a density of 0.905 g/cm3 (25°C), a melting temperature of 165°C and a 

25 g/10 min melt flow index (230°C, 2.16 kg). A montmorillonite based organoclay 

(OMMT, Dellite® 67G) in powder form with a density of 1.7 g/cm3 was kindly provided 

by Laviosa Chimica Mineraria. This grade of organoclay featured 48 wt% of 

dimethyldehydrogenated-tallow quaternary ammonium as organic modifier and a cation 

exchange capacity of 115 meq/100 g. Polypropylene grafted with maleic anhydride (PP-

g-MA, EastmanTM G-3015) was purchased from Eastman Chemical Company and used 

as a compatibilizer. This grade had a maleic anhydride content of 3.1 wt%, a density of 

0.913 g/cm3 and a melting temperature of 162°C. 

 2.2 Compounding of organoclay based PP nanocomposites 

 Nanocomposites were prepared via a masterbatch process [13,17]. A masterbatch 

with a PP-g-MA to OMMT ratio of 2:1 was compounded at the Danish Technological 

Institute, as described elsewhere [32], with following formulation: 40 wt% PP, 40 wt% 

PP-g-MA and 20 wt% OMMT. In a second step, the masterbatch was diluted into the 

PP matrix to produce PP/PP-g-MA/OMMT nanocomposites with respective weight 

fractions of 85/10/5 using a ThermoFisher Rheomex PTW24 co-rotating twin screw 

extruder with laboratory scale modular screw profile design (diameter D = 24 mm, 

length to diameter ratio L/D = 40). The screw configuration is described in Fig. 1. The 

temperature was set identically for all barrel elements, except for the first one which 
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was regulated at 80°C. An appropriate mixture of PP and masterbatch pellets was 

tumbled mixed and then fed into the hopper using a gravimetric feeder. Once extrusion 

conditions have reached steady state, extruded strands were pelletized. Nanocomposites 

were prepared for a wide range of processing conditions, depending on screw rotation 

speed N, feed rate Q and regulated barrel temperature Treg, as listed in Table 1. Each of 

these three parameters was varied individually to assess its effect on the resulting state 

of dispersion and properties of the nanocomposites. For each extrusion condition, the 

drive motor torque τ was recorded. The specific mechanical energy (SME, in kWh/t) 

was then calculated using Eq. (1) which involves motor power (Pmotor = 11 000 W) and 

maximum values of drive motor torque (τmax = 180 Nm) and screw rotation speed (Nmax 

= 1000 rpm): 

Q
N

N
P

SME motor ⋅
⋅

⋅
=

τ
τ maxmax

   (1) 

Extruded nanocomposites pellets were collected and dried in a vacuum oven at 80°C 

during 15 h, prior to be formed into disk-shaped samples [30] for further material 

characterization. 

2.3 Dead-stop experiments 

 The Rheomex extruder is equipped with a clam-shell barrel system which can be 

opened to allow access to the screw profile. Dead-stop experiments were carried out by 

suddenly stopping the extruder once stationary conditions were reached (typically after 

10 minutes). Then, barrel was cooled down to 100°C by internal water flow in 

approximately 15 minutes, before opening the barrel. Few quantities of materials 

(between 2 and 4 g) were collected in the material-filled zones of the screw profile, i.e. 

in the kneading elements. These sampling zones were indexed from A to J, as indicated 
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on Fig. 1. This sampling was carried out for screw rotation speeds of 100, 300 and 500 

rpm at constant feed rate and barrel temperature of 3 kg/h and 180°C, respectively. 

 2.4 Characterization 

 In order to estimate the efficiency of dispersive mixing during extrusion, multi-scale 

morphological characterization was performed on each sample. The presence of 

undispersed clay agglomerates was detected using a Philips XL30 scanning electron 

microscope (SEM) as described elsewhere [30]. Particle analysis was carried out from 

the SEM pictures using Visilog image analysis software. This step allowed to quantify 

microscale dispersion through the area ratio Ar (%) defined by Eq. (2), where AMMT is 

the area occupied by residual clay agglomerates and A0 is the analyzed section area 

(equals to 17.2 mm2). Clay particles with equivalent diameter inferior to 10 μm were not 

taken into account. The quality of microscale dispersion is thus augmented when Ar 

decreases. 

0

100
A
A

A MMT
r

∑⋅=    (2) 

 Local nanoscale organization was observed from ultra-thin sections using a Philips 

CM12 transmission electron microscope (TEM) [30]. The mean basal spacing d001 of 

the samples was measured using a Philips Xpert’ Pro X-ray diffractometer (XRD) in 

order to assess the extent of intercalation [30]. 

 Rheological measurements were used to quantify the extent of exfoliation. Small 

amplitude oscillatory shear (SAOS) measurements were performed on a strain-

controlled ARES rheometer (TA Instruments). Parallel plate geometry with 25 mm 

diameter and 1 mm gap was used. All rheological tests were conducted in the molten 

state with a fixed temperature of 180°C under nitrogen environment, using compressed 

disk samples. Prior to frequency sweep tests, samples were equilibrated after loading in 

the rheometer at 180°C for one-half hour, similarly to protocols previously proposed by 
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other authors [10,24]. Frequency sweep tests were carried out from 102 to 10-2 rad/s in 

angular frequency. Shear strain did not exceed 1 % to ensure these tests were conducted 

within the linear viscoelastic range and a new sample was used for each rheological test. 

Above their percolation threshold, nanocomposites were reported to display a 

nonterminal low frequency response which is indicative of a solid-like behavior, with 

the appearance of a storage modulus (G’) plateau and a significant increase of the 

complex viscosity (|η*|) in the low frequency regime [10,22–24]. This solid-like 

behavior of nanocomposites has been attributed to the existence of a three-dimensional 

percolation network formed by anisotropic clay platelets within the matrix [22–24]. 

Lertwimolnun and Vergnes [10] proposed using a Carreau-Yasuda model combined 

with a yield stress term (Eq. 3) to describe the frequency dependence of 

nanocomposites’ complex viscosity |η*|, where ω is the angular frequency, σ0 is the 

melt yield stress, η0 is the zero-shear viscosity, λ is characteristic relaxation time, a is 

the Yasuda parameter and m is the shear-thinning index: 

( ) ( )[ ]( ) ama 1

0
0 1

−∗ ⋅+⋅+= ωλη
ω
σ

ωη    (3) 

Moreover, σ0 has been shown to efficiently characterize the level of exfoliation 

[10,15,16,30]. 

 2.5 Flow modeling 

 Simulations of flow conditions along the co-rotating twin screw extruder were 

performed using Ludovic© software, which enables the calculation of the main local 

flow variables like shear rate, filling ratio, melt temperature, pressure, residence time 

and dissipated energy, from melting zone to die exit [31]. Numerous experimental 

validations in compounding (filler dispersion, reactive extrusion), optimization and 

scale-up applications have shown that Ludovic© offers consistent description of the flow 
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conditions in twin screw extrusion processes [33,34]. These simulations were carried 

out to establish relationships between nanocomposites structure and processing 

parameters along the screw profile, where local physical values cannot be precisely 

measured (or measured at all) during processing. Rheological data (flow curves) of the 

PP/PP-g-MA matrix were used for those calculations. Indeed, for the range of shear 

rates encountered in extrusion (10-100 s-1), there is quite no difference in viscosity 

between matrix and nanocomposite. 

 

3. Results and discussion 

 3.1 Morphology of native OMMT and masterbatch 

 Dellite© 67G is an off-white powder, composed of agglomerated layered silicate 

with characteristic size comprised between 10 and 40 µm [30]. These bundles of 

stacked OMMT layers present van-der-Waals interactions leading to important cohesive 

forces, which must be overcome by the applied shear stresses during melt mixing 

process in order to reach nanoscale dispersion. Basal spacing d001 of the Dellite© 67G 

was found to be 3.37 nm by XRD measurements. 

 SEM study of the masterbatch revealed the existence of OMMT agglomerates 

within the matrix, with equivalent diameter ranging from 10 to 170 µm (Fig. 2a), 

leading to an area ratio Ar of 12.8 %. The presence of OMMT bundles exceeding 40 µm 

in equivalent diameter indicates that agglomeration of the OMMT powder occurred 

during the masterbatch compounding step. TEM observations showed the presence of 

tactoids containing 3 to 5 stacked layers, as well as individualized platelets which is a 

sign of partial exfoliation (Fig. 2b). XRD experiments provided a basal spacing d001 of 

3.44 nm, denoting a partial intercalation of the tactoids present within the masterbatch. 

 3.2 Influence of processing conditions on melt state SME and resulting structure 
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 The mechanical energy transferred to the material during the extrusion process 

depends on various physical parameters such as shear intensity, residence time and melt 

temperature. It is therefore important to understand how processing parameters like 

screw rotation speed, feed rate and barrel temperature affect the SME prior to the 

establishment of relationships between the SME and the dispersion state. Since the 

mixing process takes place in the melt state, it seems appropriate to consider that the 

energy consumed by the solid conveying and the melting on the first part of the screw 

profile (Fig. 1) does not contribute to the OMMT dispersion. Ludovic© simulations 

allow to calculate the SME dissipated in the melt state (SMEmelt) which strongly 

depends on processing conditions. The increase of screw rotation speed induces torque 

reduction due to shear thinning behavior of the polymeric matrix, as well as a lower 

filling ratio of the extruder and important viscous heating. Despite torque decrease, 

screw speed augmentation results in a linear increase of SMEmelt. On the other hand, 

feed rate augmentation simultaneously leads to torque increase (as expected from higher 

filling ratio) and residence time reduction, giving rise to SMEmelt decrease. Furthermore, 

SMEmelt is found to lessen linearly with barrel temperature. This trend is related to 

torque reduction caused by the decrease of the matrix viscosity. 

 Here, we show that SMEmelt is a key descriptor of processing influence on OMMT 

multiscale dispersion, similarly to the total SME defined by (Eq. 1) [30]. Plot of the area 

ratio as a function of SMEmelt is represented on Fig. 3a. Variations of processing 

conditions through the settings of screw speed, feed rate and barrel temperature lead to a 

mastercurve that underlies the predominance of SMEmelt on microscale dispersion. The 

increase of SMEmelt from its lowest to its highest value in the investigated range leads to 

a reduction of the area ratio by a factor of seven, linked to a significant decrease in 

number and size range of OMMT agglomerates. Microscale dispersion is thus enhanced 
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when processing conditions are set to maximize SMEmelt, at least in the studied range. 

The area ratio was found to scale with SMEmelt as a decreasing power law. Similar 

correlation has been recently found by Villmow et al. [35], using the experimentally 

measured SME, in the case of polycaprolactone/multi-walled carbon nanotube 

composites, where the nanotubes were also introduced into the extruder as agglomerated 

powder. 

 The effect of SMEmelt on the exfoliation level is illustrated on Fig. 3b. As said 

before, rheological analysis allows to determine the yield stress σ0 which is used as a 

quantitative measurement of the extent of exfoliation. Fig. 3b shows that a mastercurve 

is built when the yield stress is represented as a function of SMEmelt, whatever the 

processing conditions. At first, the yield stress grows linearly with SMEmelt up to a value 

close to 360 kWh/t. Above this critical SMEmelt value, the yield stress stabilizes at a 

plateau value, suggesting that no further exfoliation seems to occur. Médéric et al. [18] 

found a similar result with polyamide 12/OMMT nanocomposites processed in an 

internal mixer, with much lower critical SME value (around 140 kWh/t in experimental 

value). This may suggest that the critical SME depends on the polymer-clay affinity 

since exfoliation is known to be much easier in a polar PA matrix rather than in PP 

[9,12]. The saturation of the extent of exfoliation reveals a certain limit of the influence 

of processing conditions on nanoscale dispersion. This phenomenon is observed for the 

highest screw rotation speeds, where important shear thinning and high melt 

temperature can soften the shear stresses and thus limit layer delamination. Moreover, 

XRD measurements indicate a partial collapse of the interlayer spacing when screw 

rotation speed exceeds 500 rpm (Table 1), what also might inhibit exfoliation. 
Considering the temperature range (210-260 °C) and the mean residence times (90-110 s), this 

could be due to thermal degradation of the surfactant, as often evoked in the literature, but 

desorption of the surfactant molecules from the interlayer spacing could also be a possible 

mechanism. 

TEM observations shown in Fig. 3b highlight the simultaneous presence of partially 

oriented tactoids and single layers. Augmentation of the yield stress corresponds to a 

reduction in tactoids thickness, as well as an increase in individual layers number and a 

shortening of interparticle distances, indicating an enhancement of nanoscale dispersion 
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which confirms the trend depicted by rheological measurements. We recently showed 

that this raise in exfoliation level led to higher stiffness of the nanocomposites in the 

semicrystalline state [30]. 

 3.3 Morphological evolution along the extrusion profile 

  3.3.1 Multiscale observations 

 The progress of OMMT dispersion during extrusion processing was investigated by 

following the structural features of the hybrid material along the extrusion profile. This 

analysis was carried out for screw rotation speeds of 100, 300 and 500 rpm at constant 

feed rate (3 kg/h) and barrel temperature (180°C). Fig. 4a shows typical SEM pictures 

of the samples collected along the screw profile after processing (N = 500 rpm, Q = 3 

kg/h, Treg = 180°C). A significant reduction in size of the OMMT agglomerates is 

observed from zone A to B, i.e. the melting zone. In fact, even the frontier between PP 

and masterbatch pellets can be distinguished on the zone A sample as the melting of 

polymers is incomplete at this stage of the extrusion process. Afterwards, no meaningful 

evolution of the microscale dispersion of the OMMT can be observed from zone B to 

the die exit. These observations point out that microscale dispersion mainly happens in 

the melting zone, since most of the OMMT agglomerates present afterwards remained 

undispersed within the matrix.  

 Evolution of nanoscale dispersion along the extrusion profile was also monitored 

using TEM, as illustrated in Fig. 4b for the same processing conditions. The increase in 

tactoids and single platelets number together with the reduction of tactoids thickness 

indicates an enhancement of the exfoliation level along the extrusion profile. One can 

note that the orientation of clay particles (tactoids and platelets) becomes more 

pronounced as the material flows towards the die exit, which could be attributed to a 

progressive flow induced alignment of anisotropic clay particles [36,37].  
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  3.3.2 Rheological analysis 

 Linear viscoelastic behavior of PP/PP-g-MA matrix and nanocomposites samples 

from various zones of the extrusion profile is represented in Fig. 5. The matrix exhibits 

a classical Carreau-Yasuda behavior, whereas nanocomposites show a low frequency G’ 

plateau and yield stress behavior. Rheological data were fitted using the Carreau-

Yasuda with yield stress model (Eq. (3)) by adjustment of the five parameters. As 

shown on Fig. 5b, an excellent agreement is observed between experimental data and 

fitted curves, confirming that Eq. (3) provides a very accurate description of the 

nanocomposites rheological behavior. The increase of the exfoliation level intensifies 

the solid-like behavior of the nanocomposites and leads to a yield stress augmentation, 

which can thus be used as a quantitative parameter to measure the extent of exfoliation 

at fixed clay content [10,28]. Here, the low frequency G’ plateau becomes increasingly 

marked and reaches higher values as material progresses towards the die exit, 

suggesting the development of a long scale network formed by anisotropic clay platelets 

through progressive exfoliation along the screw profile, in accordance with local TEM 

observations. Augmentation of screw speed results in a substantial acceleration of 

nanoscale morphological development along the extrusion profile, as shown on Fig. 6b.  

  3.3.3 Correlation between dispersion progress and local SME 

 In order to explore the influence of processing on the progressive nanocomposite 

formation along the screw profile, flow parameters of the twin-screw extrusion process 

were calculated using Ludovic© software. Excellent agreement between experimental 

measurements and Ludovic© results was found in terms of residence time, melt 

temperature at the die exit, die pressure and SME, confirming the relevance of these 

simulations. Fig. 7 shows the evolution of SMEmelt along the screw profile for several 
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screw rotation speeds. It clearly appears that energy is mainly dissipated in the zones 

containing blocks of kneading discs, whereas conveying elements show insignificant 

dissipation. The rise in screw rotation speed magnifies the increase of SMEmelt along the 

screw profile, in accordance with the results presented in section 3.2. In this selected 

range of processing conditions, the area ratio and melt yield stress of the samples 

collected at the die exit can be described as a function of SMEmelt using Eq. (4) and (5), 

respectively, where α = 47.14 kWhn/tn, β = 4.78 Pa.t/kWh and n = 0,7321:  

n
meltr SMEA −⋅= α    (4) 

meltSME⋅= βσ 0     (5) 

These results correspond to the trends shown in Figs. 4 and 5 for the same range of 

processing conditions. 

 Based on calculations of local SMEmelt values via Ludovic© simulations, Eq. (4) and 

(5) were used to calculate the area ratio and melt yields stress along the screw profile. 

Comparisons of calculated values (dashed lines) with experimental values (symbols) are 

presented in Fig. 6. A fair agreement is obtained, despite some deviations can be noted 

concerning the variations of the area ratio in zones A through C, where agglomerate 

dispersion was found to be more drastic. Nevertheless, these calculations lead to a 

satisfactory description of the multiscale OMMT dispersion state development along the 

extrusion profile, without any adjustment parameter. 

 These results confirm that microscale dispersion of OMMT principally takes place 

in the melting zone, whereas nanoscale dispersion appears to follow a progressive 

development along the screw profile. The dispersion efficiency at both micro and 

nanoscale is clearly favored by the increase of screw rotation speed, at least up to 500 

rpm, in accordance with the results presented in section 3.2. 
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  3.3.4 Dispersion mechanisms 

 Understanding of OMMT dispersion mechanisms involved during extrusion is a key 

step towards melt processing optimization. Plot of the melt yield stress as a function of 

the area ratio presented in Fig. 8a illustrates the dispersion regimes. For extrusion zones 

A and B (white region in Fig. 8a), a significant reduction of the area ratio occurs while 

the melt yield stress is almost unaffected. This indicates the preponderance of OMMT 

agglomerate fragmentation into smaller particles with characteristic size inferior to 10 

µm, as illustrated in Fig. 8b. Furthermore, the influence of shear stress on microscale 

dispersion suggests a rupture mechanism [38,39], which could explain why the 

dispersion of OMMT agglomerates primarily occurs in the melting zone since shear 

stresses are maximum in this part of the extrusion profile. The influence of feed rate on 

the area ratio (Fig. 3a) reveals the sensitivity of microscale dispersion to residence time 

which could be the signature of an erosion-like mechanism, previously observed in 

shear flows for other fillers like carbon black [38], silica [40] and carbon nanotubes 

[39].  

 A change of dispersion regime is observed after the melting zone (grey region in 

Fig. 8a), where a substantial rise of the melt yield stress is accompanied by a slight 

decrease of the area ratio from zone B to the die exit, highlighting the preponderance of 

OMMT exfoliation. Since the area ratio is nearly unchanged after the melting zone, 

exfoliation of the layers must come from clay particles with characteristic size less than 

10 µm, i.e. aggregates and tactoids. The TEM micrograph presented on Fig. 8c supports 

this hypothesis and reveals that OMMT platelets seem to be peeled off from the surface 

of aggregated stacks. Similar observation of peel apart mechanism was reported by 

Dennis et al. [12] in the case of melt processed organoclay based nylon 6 

nanocomposites. Thereby, OMMT dispersion by melt mixing in twin screw extrusion 
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can be described as a two-step process. First, microscale dispersion takes place in the 

melting zone by the fragmentation of agglomerates into smaller tactoids and aggregates. 

However, this step results in a certain amount of undispersed agglomerates whose 

number and size depend on processing conditions. The second step is a progressive 

delamination of the montmorillonite layers, which takes place in the kneading zones up 

to the die exit. The latter strongly depends on processing conditions and may only be 

possible in the case of intercalation of the PP-g-MA compatibilizer between stacked 

layers [9,10]. 

4. Summary and conclusions 

 This article offers in-depth discussion about the relationships between processing 

and multiscale structure of PP/PP-g-MA/OMMT nanocomposites prepared by twin 

screw extrusion via a masterbatch dilution method. Melt processed nanocomposites 

revealed to be highly polydisperse systems, exposing the concomitant presence of 

OMMT individual layers, tactoids and agglomerates. The microscale feature of 

nanocomposites is rarely probed in the structural analysis that can be found in the 

literature, where the focus is mainly set on local nanoscale organization through XRD 

and TEM analysis. Nonetheless, this aspect is crucial since the presence of agglomerates 

might act as structural defects which could be related to the failure of mechanical 

properties enhancement predictions.  

 Development of the multiscale dispersion state of the nanocomposites during melt 

processing was determined thanks to samples collection along the screw profile. 

Numerical simulations using Ludovic© software allowed a quantitative description of 

the dispersion state development along the extrusion profile based on melt state SME 

calculations. The melting zone revealed to be crucial regarding microscale dispersion, 

as reduction in number and size of the OMMT agglomerates mainly takes place in this 
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part of the screw profile. The presence of residual agglomerates after the melting zone 

underlies the importance of microscale structural characterization of the extruded 

materials. A progressive increase of the extent of exfoliation was found to arise from the 

SME contribution of kneading elements on the rest of the screw profile. Additionally, 

this work gives an insight of the OMMT dispersion mechanisms involved during 

extrusion. In a first step, agglomerates are sharply broken down into smaller aggregates 

and tactoids by the mean of rupture and erosion mechanisms. These smaller clay 

particles are then exfoliated through a peel-like mechanism which is favored by the rise 

of shear intensity up to a certain limit. 

 Ultimately, SME appears to be a key parameter of melt processing with regard to the 

structure and properties of nanocomposites, even though it might not be the only 

influential parameter since the effect of screw profile design was not reported here. In 

terms of applications, results have shown that structuring of nanocomposites using twin 

screw extrusion can be optimized by working under high SME conditions until a critical 

limit beyond which exfoliation can no longer be enhanced by the processing conditions. 

Existence of critical phenomenon concerning the extent of exfoliation may indicate a 

limited effect of shear intensity on layer individualization. As a consequence, use of 

elongational strain type of elements in the kneading zone of the screw configuration 

might be a solution to extend the processing limits highlighted in this study. 
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Table 1 
Twin screw extrusion processing conditions and associated material parameters, where 
tmean stands for mean residence time and Tmelt for melt temperature at the die exit. 
 

N  
(rpm) 

Q  
(kg/h) 

Treg  
(°C) 

SME  
(kWh/t) 

tmean  
(s) 

Tmelt  
(°C) 

d001  
(nm) 

100 3 180 150 170 191 3.60 
300 3 180 398 120 197 3.48 
500 3 180 633 110 211 3.31 
700 3 180 873 98 233 3.32 
900 3 180 1087 90 253 3.21 
500 6 180 395 60 210 3.44 
500 10 180 290 42 211 3.47 
500 15 180 247 32 212 3.53 
500 20 180 224 26 206 3.61 
300 3 200 342 115 218 3.47 
300 3 220 327 110 235 3.41 
300 3 240 292 111 258 3.31 
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Figures and Captions 

 

Fig. 1. Screw profile configuration (flow goes from left to right). 
 
 
 
 

 

Fig. 2. (a) SEM and (b) TEM pictures of the OMMT masterbatch. 
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Fig. 3. Evolution of (a) the area ratio and (b) the melt yield stress as a function of 
SMEmelt for nanocomposites prepared over a wide range of processing conditions, with 
corresponding SEM and TEM pictures. 

 

 

 

Fig. 4. (a) SEM and (b) TEM pictures of the samples collected along the screw profile 
after processing at N = 500 rpm, Q = 3 kg/h and Treg = 180°C. 
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Fig. 5. Frequency sweeps in the linear viscoelastic domain for the PP/PP-g-MA matrix 
and nanocomposites samples collected along the screw profile after processing at N = 
500 rpm, Q = 3 kg/h and Treg = 180°C: (a) storage modulus, (b) complex viscosity. 
Solid lines represent best fits obtained with Eq. (3). 
 
 
 
 
 

 

Fig. 6. Evolution of dispersion parameters along the screw profile: (a) area ratio, (b) 
melt yield stress. Symbols represent experimental data, dashed lines represent 
simulation results based on Eq. (4) and (5). 
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Fig. 7. Evolution of SMEmelt along the screw profile for several screw speeds, obtained 
from Ludovic© calculations. 
 
 
 

 

 

Fig. 8. (a) Dispersion regimes of twin-screw extrusion process, (b) SEM illustration of 
OMMT agglomerates breakup, (c) TEM illustration of OMMT exfoliation by tactoid 
peel-off mechanism. 
 

 


