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Abstract - The continuous improvement of the

accuracy of wind power forecasts is motivated by the

increasing wind power integration. Today forecasters

are challenged in providing forecasts able to handle

extreme situations. This paper presents two methods

focusing on forecasting large and sharp variations

in power output of a wind farm called ramps. The

first one provides probabilistic forecasts using large

temporal scales information about ramps. The second

method uses ensembles to generate confidence inter-

vals allowing to better estimate the timing of ramps.

The two methods are tested and results are given for

a real case study.

Key words : wind power forecast, ramps, phase er-

rors, forecasts ensemble.

1 Introduction

Most of the existing wind power prediction methods
are designed to provide single point forecasts (often
called as ”deterministic” ones). The parameters of
the models involved are commonly obtained with min-
imum least square estimation, and the provided point
forecasts then relate to the conditional expectation of
wind power generation for each look ahead time, given
the information available up to current time. Two ex-
tensive reviews of the state of the art in wind power
forecasting are available in [9] and [6].

Recent research works in wind power forecasting
have focused on associating uncertainty estimates to
these point forecasts. Pinson and Kariniotakis [20]
have described two complementary approaches that

consist of providing forecast users with skill forecasts
(commonly in the form of risk indices [22]) or alterna-
tively with probabilistic forecasts. The present paper
focuses on the latter form of uncertainty estimates,
which may be either derived from meteorological en-
sembles [18, 17, 21], based on physical considerations
[14], or finally produced from one of the numerous sta-
tistical methods that have appeared in the literature,
see [3, 10, 15, 13, 16] among others. They may take
the form of quantile, interval or density forecasts. If
appropriately incorporated in decision-making meth-
ods, such forecasts permit to significantly increase the
value of wind generation. Recent developments in
that direction include among others methods for dy-
namic reserve quantification [8], for the optimal oper-
ation of combined wind-hydro power plants [5, 1], or
finally for the design of optimal trading strategies in
liberalized electricity pools [19].

One of the main issues that we encounter today,
when it comes to the accuracy of wind power fore-
casts, is to give a forecast able to handle an extreme
situation. What can be considered as an extreme is
not an obvious task and is highly end-user-dependent.
Often for power system operators extreme events are
linked to large deviations of power generation with re-
spect to the expected power generation. The severity
of the large deviation depends highly on how fast it
happens, and on the timing especially if concurrently
other events happen (i.e the electricity demand is also
highly fluctuating). Nowadays it is a challenge to im-
prove the forecasts for such situations. Two types of
solutions, rather complementary can be envisaged:

1. Try to detect early the deviation between the ex-



Figure 1: An Example of wind power observations
and predictions, with uncertainty estimation provided
by centered prediction intervals of nominal coverage
rates of 10% to 90% with 10% increment. One can
see 8 consecutive observations lying under the 5 per-
centile estimations between horizons 31 and 38.

pected and the observed power generation and
correct the corresponding spot forecast or send
an alert to the end-user. This type of solution
clearly relies on improving the data assimilation
process. It is related to time scales of a few min-
utes to a few hours.

2. Try to provide uncertainty bounds that indicate
the possibility of such deviations to happen or
provide risk indices as warnings for such large
deviations. This type of solution relies on im-
proving the way we learn the uncertainty from
the past. It is related to time scales of a few
hours to one week.

In this paper, we try to improve the second type
of solutions. The challenge we encounter is the fol-
lowing. We have a probabilistic forecast that is re-
liable in the probabilistic sense: for example there
are around 5% of observations that fall under the 5

percentile estimations. But as we see in Figure 1,
we can have 8 consecutive observations under them.
Mathematically speaking, there are two possible ex-
planations to what we see in Figure 1:

1. We are in a situation where the observations are
highly dependent: if one observation falls under
the 5 percentile estimation at time t, then it is
likely that it will stay under it for some time.

2. We are in a situation where our forecast is not
reliable ”locally”. Note that if the observations
are purely independent along time (when the sys-
tem is really chaotic) the probability that 8 con-
secutive observations fall under the 5 percentile
estimations is around 5−8. Even if this ”inde-
pendence” assumption is weak, we can say that
when the system is chaotic the situation we see
in Figure 1 should never happen.

However, for a wind power forecaster, Figure 1 is just
representative of a so-called phase error, i.e an er-
ror on the timing of a ramp. This paper investigates
the problem we see in Figure 1. Firstly, in Section 2,
we give a forecasting procedure including information
about ramps to increase local reliability of a proba-
bilistic forecast. Then, in Section 3, we show how to
use ensembles to forecast confidence intervals for the
timing of a ramp. Conclusions are given in section 4.

2 Probabilistic forecasts condi-
tional to ramps information

The probabilistic procedures that are commonly used
in the literature, for forecasting at time t the distri-
bution of wind generation, use as input weather fore-
casts available at time t for look ahead time t + h.
However a ramp event evolutes over several time
steps corresponding to several hours within an inter-
val [ t + h , t + h′ ]. The related uncertainty at the
same interval is also correlated and can propagate up
to time t+ h′

In this section, the aim is to extend the prediction
model through some additional explanatory variables
that contain information about nearby ramp timing
and intensity. In the first subsection we explain how



to forecast the timing and intensity of a ramp and
in the second subsection we explain how to use this
information in a probabilistic forecasting process.

2.1 On the definition of ramp events

A ramp event of wind power production is commonly
defined as a variation exceeding a minimum percent-
age Vmin of the nominal power of a wind farm, within
a period less than or equal to a maximum duration
Tmax ( [11] [2] and [7]). It is difficult to find a con-
sensus on the value of Vmin and Tmax, and it is likely
that the adapted values for those parameters might
depend on the geographical situation (climate), the
complexity of the terrain and the situation with re-
spect to the network. However, a common choice is
Vmin = 50% of the nominal power and Tmax = 5
hours.

To define a ramp, it seems necessary to introduce a
parameter related to time and one to the amount of
power (respectively Tmax and Vmin). The difficulty
to standardize a such definition, comes from the fact
that these parameters are arbitrarily fixed, depend-
ing on the modeller’s appreciation. In this paper, we
propose a slightly different definition implying filter-
ing. Let (pt)t be a wind power time series and (pft )t
be the associated filtered signal :

pft = mean { pt+h − pt+h−nam
; h = 1, . . . , nam } (1)

where nam stands for the number of averaged dif-
ferences of measures. Note that this can be writ-
ten with a convolution product of the power signal
with fnam = 1/nam ( 1nam ,−1nam) : pft = pt ∗ fnam .
The filtered signal (pft )t measures the variations of
the initial power signal (pt)t. A ramp event then cor-
responds to an interval of time at which the abso-
lute value of the filtered signal (pft )t exceeds a given
threshold τ > 0 (see Figure 2). Even if a ramp is not
localized in time, it is however useful to associate a
particular date to a ramp. We choose to associate to
a ramp event the time t for which the filtered signal
pft has maximal magnitude. This maximal magnitude
defines the intensity of the ramp.

The number of averaged measures nam is the width
of the filter fnam and hence can be understood as a
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Figure 2: Example of a wind power time series (pt)t,
with absolute value of signals (pft )t calculated for two
values of the nam parameter. The green curve corre-
sponds to a value of nam of 2, and the red one to a
value of 5. The timing of ramps coinciding with the
local maxima of the red filtered signal are at t = 13
and t = 32 hours.
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Figure 3: Distribution of the filtered power time se-
ries (pft )t, obtained for a parameter value nam of 5.
The tails of the distribution correspond to ramp event
situations.

smoothing parameter. Small values of nam will make
the filtered signal (pft )t more sensitive to short period



variations of the power output (pt)t (see figure 2). In
our work, we choose a value of nam = 5 hours, which
is in line with the work of Greaves et al. [11]. The
value of τ should be set relying on weather conditions
and other criteria such as the terrain complexity. We
choose to use τ = 25% of the nominal power of the
wind farm. This gives around 550 hourly sampled
values exceeding the threshold over a period of 6363
hours. Ramp event situations are associated to tails
of the filtered power signal distribution (see Figure
3). Such representation makes easier to understand
ramp events as extreme events.

2.2 Probabilistic forecasts from pre-
dicted ramps information

Let p̂t+h|t, h = 1 . . . hmax, be spot forecasts for the
next period. It is now possible to detect forthcoming
ramps by filtering the forecasted production: p̂ft+h|t =
p̂t+h|t ∗ fnam

.
Based on this we design a model that estimates the

uncertainty in the forecast, for a given look ahead
time h0, using the following explanatory variables as
input:

1. The intensity It+h0|t of the nearest ramp. If this
nearest ramp is forecasted at time t + h1 this
intensity is then | p̂ft+h1|t |.

2. The time difference Tdt+h0|t = |h1−h0| between
the nearest forecasted ramp and the time t+ h0.

If It+h0|t is high and Tdt+h0|t is small (which means
that a ramp of high intensity has been forecasted
nearby to time t+h0), the confidence interval should
be larger, in order to include the possibility of a trans-
lation of the ramp along time.

Forecasting procedure The proposed procedure
to produce improved uncertainty forecasts is com-
posed by the following 2 steps.

• Step 1. Make preliminary spot power forecasts
and use them to calculate It+h0|t and Tdt+h0|t.

• Step 2. Make a probabilistic forecast for time
t + h0 at time t (for example with the Quan-
tile Regression Forest procedure) using the vari-
ables It+h0|t and Tdt+h0|t as additional explana-
tory variables in the model.

Data used for the numerical study included hourly
power measures from two European wind farms (one
located in Ireland, the other one in Danemark). We
used wind speed and direction forecasts, with the
Quantile Regression Forest method as a basic model
to produce quantiles estimations. The forecasted
quantiles cover proportions from 5% to 95% with a
5% increment, and were produced respectively four
and twice a day for 48 hours ahead. We evaluated
our procedure by comparing this basic model, with
an advanced one which also included our additional
explanatory variables related to ramps.
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Figure 4: Reliability diagram of 5, . . . , 95 percentiles
estimations made with the Quantile Regression Forest
procedure, using or not the new explanatory variables
related to ramps. Results are for the Danish wind
farm.

Figure 4 is a reliability diagram, it shows the de-
viation from perfect reliability of forecasted quantiles
of our two models. The procedure using the new ex-
planatory variables only performs better in the case of
high quantiles. Also we could use these additional in-
puts only to forecast the highest quantiles. However



more simulations will be performed to confirm this
tendency. The sharpness, measured by the mean size
of confidence intervals, is at a good level with similar
performance of the basic and advanced models.

Having a reliable probabilistic forecast of the power
output is important for an end-user such as a system
operator. However, it is also useful to forecast directly
the timing of a ramp.

3 Estimating the probability of
ramps observation with wind
power ensemble forecasts

What could be more difficult to predict than the am-
plitude of a forthcoming ramp, is the timing of this
ramp. Error in the timing results to the so-called
phase errors that have a high impact for end users.
Current operational state-of-the-art wind power fore-
casting models do not have dedicated modules for
ramp forecasting although first approaches start to
appear [12, 23].

In [11], Greaves et al. propose to forecast the prob-
ability distribution of the timing of a ramp. The fore-
casted distribution has a bounded support and it is
often observed that ramp events appear outside of this
support or do not appear at all. This indicates that
in that approach the forecast is not reliable. In addi-
tion, their forecast is a climatology: the center of the
distribution is forecast with up-to-date information
but the distribution itself is the same whatever the
conditions. This naturally implies a lack of sharpness
in the probabilistic forecast.

Here we propose a method which provides reli-
able confidence intervals for ramp-timing estimation,
from the use of wind power forecasts ensemble. In
our numerical study, we used hourly power measures
from three wind farms located in France. Data also
included meteorological forecasts ensemble of wind
speed, consisting of 51 members provided by the EPS
model of ECMWF. After an interpolation, we got at
each run time (every 12 hours) hourly sampled fore-
casts up to 80 hours ahead. Each member was used as
input to the Random Forests procedure, trained with
the unperturbed control weather forecast. It results

in an ensemble of 51 wind power forecasts.
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Figure 5: Here is an exemple of absolute value of
filtered signals of observations (blue curve) and en-
semble members (red curves, black curve is the con-
trol forecast). The ramp observed at horizon 63
is predicted by 39 members, which filtered signals
cross over the horizontal dashed line representing the
threshold τ . The resulting timing estimation h is
equal to 61.

In a first part, we use the procedure introduced
in section 2 to transform the wind power forecasts
ensemble into an ensemble of ramp-timing forecasts.
Considering a run time t, we first apply the filtering
to each member of the wind power forecasts ensemble.
We obtain an ensemble of 51 filtered signals (as shown
by Figure 5), from which we compute the ensemble
of timings of ramps forecasted by each member. For
now, it is expected to have different members pre-
dicting the same event. So, the set of timings has to
be split into several subsets: one for each event. We
create Nramp

t subsets focusing on the coherence be-
tween filtered signals. We denote by Nt(i) the number
of members predicting the event i ∈ { 1, . . . , Nramp

t }.
Finally we compute a mean timing ht(i) for each ramp
event.

In a second part, Nt(i) is used as input to forecast
the distribution of the timing of the ramp i. In or-
der to describe this distribution, we choose a set of



centered intervals associated to the ramp i:

Iit(δ) = [t+ ht(i)− δ, t+ ht(i) + δ] (2)

with different sizes δ = 2, 4, 6, 8, 10, 12. We then
compute the estimation p̂δ,n of the probability pδ,n to
have a ramp in Iit(δ), conditionally to Nt(i) = n. For
each value of δ and each value of n ∈ { 0, . . . , nmax },
this computation is decomposed into two steps :

1. We determine the set of intervals Iit(δ) with
Nt(i) ∈ [n − ν, n + ν] for a fixed ν > 0 (when
n = nmax find those with Nt(i) ∈ [nmax, 51]).

2. Within this subset, we compute p̂δ,n as the pro-
portion of cases for which a ramp event is ob-
served in Iit(δ).
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of wind power forecast members predicting the ramp.
There is one curve for each interval’s radius value δ,
measured in hours. Results are for a wind farm lo-
cated in the south of France.

The parameter ν can be considered as a smoothing
parameter to prevent over fitting and hence, [n−ν, n+
ν] is a smoothing window. In our numerical study we
took ν = 2 but a cross validation procedure could be
used for automatic selection of the parameter. As the
number of cases with Nt(i) ∈ [n − ν, n + ν] tends to
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Figure 7: Brier skill score of our procedure, with the
climatology as a reference method. Results are given
for the different values of δ and the same wind farm
as previously.

decrease for n > 15, we took nmax = 15. The learned
probabilities are shown in Figure 6.

In this figure, we can see that the probability of
observing a ramp in Iit(δ) increases with δ. It also
increases with the number of ensemble members pre-
dicting it. This indicates that the forecasted prob-
ability has more skill than what we could obtain
with a climatology. Indeed, in this case, a climatol-
ogy can be defined by calculating the proportion of
observed ramps in the intervals Itt (δ) for differents
values of δ (without conditionning with respect to
the value of Nt(i)). This climatology is used as a
reference forecast to compute the Brier skill score:
BSS(δ) = (BSref − BS)/BSref (BSref and BS
stand respectively for the Brier score of the clima-
tology and of our procedure. See [4] for a definition).
The results (Figure 7) show a better skill of our pro-
cedure for the all range of values of δ. Furthermore,
we noticed in our case-studies, a sharp increase of the
skill score for the first values of δ.

In Figure 8, is associated to observations and con-
trol forecast up to 3 days ahead, a plot of confidence
intervals defined by our method. While the control
forecast only predicted a ramp at the look ahead time
63, some other members predicted ramps at horizons



22, 45 and 55 (respectively 2, 2 and 6 members). This
implies the production of confidence intervals taking
into account the possible transformation into ramps
of some variations in the power observations time se-
ries. While the probability of observing such ramps
does not exceeds 30% in a radius of 6 hours around
the above mentioned horizons, the ramp observed at
time 63 was predicted 6 hours around look ahead time
57 by 39 members, which corresponds to a probability
of almost 65%.

4 Conclusions

Recent research works in wind power forecasting have
focused on associating uncertainty estimates to spot
forecasts. A challenge now is to provide forecasts able
to handle extreme situations. What can be considered
as an extreme situation is not obvious and is highly
dependent on the perception of end-users about wind
variability or predictability and their impact on deci-
sions related to power system operation. Often Trans-
mission System Operators or other end-users link ex-
tremes to large deviations between expected and ob-
served wind power. Such large deviations are often
encountered during large and sharp variations in the
power output called ramps. These ramps are often
well-predicted in amplitude, but with a time delay
resulting in turn to the so-called phase error.

In this paper, we have proposed two methods for
forecasting the uncertainty of the power production
around ramp events. The first method relies on the
use of additional explanatory variables in a state-
of-the-art probabilistic forecasting model. As many
other conventional short-term prediction approaches,
forecasts are made on a per horizons basis. How-
ever the introduced inputs contain ramps information
for the whole coming forecasting period. As a con-
sequence, they are expected to capture part of the
dependence structure in the wind power process, at
a lower case the dependence structure related to the
development of ramp situations. For each look ahead
time, the method is expected to produce more reli-
able confidence intervals. In our case, the reliability
is improved only for the highest quantile, but more
experiment are necessary in order to come to a con-
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Figure 8: At the top : power observations and con-
trol forecast. At the bottom : confidence intervals
produced by our method, for ramps predicted by at
least one member. The probability to observe such
ramps is given by associated colours. See the text for
more explanations.

clusion. The second proposed method uses ensembles
to forecast the uncertainty in ramps observation and
more precisely in the timing of such ramps. An eval-



uation carried out on three french wind farms has
showed our procedure has more skill than the clima-
tology. In further work the focus will be on improving
the tuning of these approaches and also on validation
using longer data sets.
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