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SUMMARY

The large-scale integration of wind genera-
tion imposes several difficulties in the manage-
ment of power systems. Wind power forecast-
ing up to a few days ahead contributes to a
secure and economic power system operation.
Prediction models of today are mainly focused
on spot or probabilistic predictions of wind
power. However, in many applications, end-
users require additional tools for the on-line
estimation of the uncertainty of the predictions.
One solution to this is prediction risk indices,
computed on wind power forecast ensembles
derived from numerical weather prediction en-
sembles. This paper investigates the useful-
ness of such risk indices as a complement
to usual wind power forecasts for informing
on the expected level of uncertainty and the
risk for large forecast errors. Results show that
risk indices are useful to extract information
from power ensembles and can give valuable
information about the expected prediction un-
certainty.

I. INTRODUCTION

Wind power is a rapidly growing renewable
energy source increasing its share in electricity
systems. Since wind power is variable, accu-
rate forecasting of wind farm production up to
a few days ahead is required for reliable large-
scale integration. Apart from spot forecasts of
the wind farm output for the coming hours, of
major importance is the development of tools
for the online assessment of the uncertainty of
these forecasts and the provision of information
about the risk for large forecast errors.

For Wind Power Forecasting (WPF) mod-
els based on Numerical Weather Predictions
(NWPs) it has been found that the accuracy
of the power predictions is highly dependent
on the accuracy of the NWPs [1]. Nowadays,

weather forecasts can be provided as meteo-
rological ensembles consisting of a set of al-
ternative predictions representing different sce-
narios. Such ensembles can be useful in the
context of WPF, for example to construct wind
power prediction ensembles. One way to use
these WPF ensembles is then to measure the
spread of the ensemble members and relate it
to the forecast error. This approach was inves-
tigated in [1] where the concept of Risk Indices
as a measure of the spread was introduced.

In this paper, the usefulness of risk indices
as a tool to quantify and communicate the
uncertainty of wind power forecasts is further
investigated. The concepts and definitions in-
troduced in [1] are used as a starting point and
several of the perspectives stated there are fur-
ther explored herein. This includes a validation
of the results on various types of test-cases
and a further investigation on other possibil-
ities for estimating the disagreement among
ensemble members. It also encompasses the
utilization of prediction risk indices by wind
power forecast users.

The paper starts with a description of mete-
orological and wind power forecast ensembles
in Section II. Furthermore, the concept and
the definition of risk indices are introduced in
Section III. From this, the methodology for risk
index validation and the objectives of the work
are described in Section IV. The case study
is then described and characteristics for the
forecasting models employed are outlined in
Section V. A validation of the risk index is
made in Section VI, by comparing this case
study with previous results. In [1] the index
was defined over a look-ahead time window
over 24 hours and the impact on the length
of this window is examined here. Furthermore,
two alternative definitions of risk indices are
proposed and examined. The use of risk in-
dices in an operational context is important and
this is investigated in Section VIII. Finally, the
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conclusions are presented in Section IX.

II. ENSEMBLE FORECASTS

NWP models are highly sensitive for varia-
tions in the initial conditions and the model for-
mulation [2]. Besides increasing the spatial and
temporal resolution, effort from meteorological
institutions is therefore also placed on provid-
ing meteorological ensembles which consist
of sets of alternative predictions representing
different scenarios.

In this paper, the ensembles are provided
from the Ensemble Prediction System (EPS)
of the European Centre for Medium-range
Weather Forecasts (ECMWF). These ensem-
bles consist of 51 members out of whom one
member is an unperturbed control forecast and
the other are alternative predictions. The en-
sembles are calculated using singular vectors
which represent the most perturbed states in
terms of energy growth in the model during the
first two days ahead [2]. The ensemble mem-
bers are then calculated as linear combinations
of singular vectors, which imply that the largest
possible deviations are taken into account.

A simple way to produce wind power forecast
ensembles is to use NWP ensembles and feed
them into a WPF model. An example is shown
in Figure 1 including point wind power forecasts
derived from the 51 ensemble members as well
as the observations for the same period.

In the episode presented here, the ensemble
members lie relatively close for the first 30
- 40 hours ahead after which the spread is
larger for the rest of the look-ahead times. It
can clearly be seen that the forecast errors
tend to be larger when the spread among the
ensemble members grows. This trend was also
found in [3] where it was concluded that the
average standard deviation of prediction errors
increases as the ensemble spread increases.

It has however also been found in previous
studies that the spread of the WPF ensemble
members does not reflect the whole range
of possible outcomes [4]. This trend can be
observed in Figure 1 where the observations
are in many cases outside the ensemble set.
This has been explained to be due to a mis-
representation of the uncertainty in the initial
state of the atmosphere or to error growth in
the model. The implication is that ensemble
forecasts of wind power are not reliable in a
probabilistic sense, where reliability is referred
to as the probabilistic correctness of the pre-
dicted distributions.

In order to produce wind power forecast en-
sembles with as good probabilistic correctness
of the members as possible, it is therefore
necessary to use WPF models that preserve
the ensemble spread well [5]. The model used
in [3] to generate wind power ensembles from
wind speed and direction ensembles uses this
idea. The model is tuned to obtain the most ac-
curate description of the power curve in terms
of low bias and is therefore not optimized to
produce as accurate predictions as possible
in terms of Root Mean Square Error (RMSE)
criterion, which is generally used for model
fitting. This causes larger forecast errors com-
pared to state-of-the-art models, but the spread
of the ensemble members is better preserved
implying that more information can be extracted
in the form of risk indices.

III. RISK INDICES

The idea behind risk indices is to measure
the ensemble spread, capture this information
in the form of an index and use this to give
an indication of the expected level of forecast
error. An existing definition is the Normalized
Prediction Risk Index (NPRI), introduced in [3].
It is based on the weighted standard deviation,
σ̃t,k, of the J ensemble members, P̂ (j)

t+k|t, at
prediction time t for look-ahead time t+ k:

σ̃t,k =

 J

J − 1

J∑
j=1

wj

(
P̂

(j)
t+k|t − P̂t+k|t

)21/2

(1)
where the sum of the weights, wj , equals one:

J∑
j=1

wj = 1

and P̂t+k|t is the mean of the ensemble mem-
bers for look-ahead time k:

P̂t+k|t =
1

J

J∑
j=1

P̂
(j)
t+k|t (2)

For ensembles where all members are ex-
pected to be equally likely, as in the case of
ensembles obtained from ECMWF NWPs [6],
wj is set to 1/J for all ensemble members.
In other cases it can be advantageous to give
different weights to different members.

The NPRI is then defined as:

NPRI(k1, k2) =
1

k2 − k1 + 1

k2∑
i=k1

σ̃t,i (3)
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Fig. 1: Example of power forecast ensembles based on ECMWF meteorological ensembles with
corresponding observations. Forecasts are normalized using the nominal power of the wind farm,
Pn.

where k1 and k2 are two look-ahead times, with
k1 ≤ k2.

This paper focuses on the NPRI given over
look-ahead time windows [k1, k2]. Following the
notations in [1], an NPRI given over one day,
k2 − k1 = 24, is noted NPRId. The idea
behind considering look-ahead time windows is
that weather, and thereby power predictability,
seldom changes significantly within short time
periods due to the relatively slow changes of
atmospheric processes. Another motivation is
that tools for assessing the uncertainty for spe-
cific look-ahead times already exist, while tools
for look-ahead time windows have not received
as much attention.

The NPRI is compared with the total energy
imbalance D in the look-ahead time window,
[k1, k2], given by:

Dt+k2

t+k1
= tr

k2∑
i=k1

|Pt+i − P̂t+i|t| (4)

where tr is the temporal resolution of the wind
power predictions.

The energy imbalances are normalized by
their climatological mean, D, given by the av-
erage energy imbalance over a longer time
period:

D
k2

k1
=

1

N

N∑
t=1

Dt+k2

t+k1
(5)

It is however not the value of a risk index in it-
self that gives information about the uncertainty
of the situation but rather its location in the
climatological distribution of risk index values
[1]. Sorting and dividing risk index values into a
number of classes gives the possibility to com-
pute statistics of energy imbalance distributions
for each class. For a computed NPRI value, the
mean and quantiles of the energy imbalance
distributions for the corresponding class can
then be used to give information about the
probability for different levels of energy imbal-
ances. This can for example be used to give
the probability, or risk, for an energy imbalance
larger than 150 % of the average imbalance.
Such information can be important for end-
users of wind power forecasts, for example to
develop alternative electricity trading strategies
depending on the risk for large energy imbal-
ances.

IV. METHODOLOGY FOR RISK INDEX CONCEPT
VALIDATION

When using risk indices, some criteria for
evaluating the quality of the indices are
needed. These are presented here followed by
a detailed description of the objevtives of the
work.
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A. Evaluation criteria

In order to evaluate the performance of the
NPRI, two criteria are considered; the indices
ability to differentiate between high and low
levels of energy imbalances and the sharpness
of the energy imbalance distributions. In [1],
differentiation ability was defined as the Ratio
of Mean Imbalance, here noted as RMI, in
the last and first class, giving the following
expression using 5 classes:

RMI =
MI5
MI1

(6)

A higher RMI indicates that the index can
distinguish better between more and less pre-
dictable situations.

Information about the sharpness of the dis-
tributions of energy imbalances in each class
are given using the quantiles. A robust quan-
tile measure is the Inter-Quartile Range (IQR)
which is the difference between the upper and
lower quartiles, Q0.75 and Q0.25:

IQR = Q0.75 −Q0.25 (7)

A lower IQR means that the NPRI gives a
sharper indication of the expected energy im-
balance while a higher value means that the
uncertainty of the expected energy imbalance
is larger. How the sharpness varies between
the 5 classes is given here by IQR1−5. An
increase of the IQR with class number indi-
cates that the uncertainty about the energy
imbalances increases with risk index value,
thus with increasing ensemble spread.

B. Exploration of risk indices

After validating the NPRI approach, a num-
ber of explorations can be made.

1) Combination of WPF models: Besides
using the same model for producing wind po-
wer forecast ensembles to compute risk indices
and to compute energy imbalances it is also of
interest to use two different models for these
two purposes.

2) Other temporal scales: In addition to
computing risk indices on a look-ahead time
window length of 24 hours, lengths of 12 and
48 hours are also examined.

3) Alternative risk indices: Even if the NPRI
is found to work well also for the test cases in
this study, it is of interest to examine whether
other definitions of risk indices could be useful.
Two such alternatives are presented here.

The MaxMin index is a simple index that
uses the difference between the maximum and

minimum values of the J ensemble members,
including the control member, for each predic-
tion time t and each look-ahead time k as the
measure of the ensemble spread. The index is
then used in a similar way as the NPRI by cal-
culating the mean of the differences between
maximum and minimum of the ensemble mem-
bers over a look-ahead time window [k1, k2]:

MaxMin(t, k1, k2) =

1

k2 − k1 + 1

k2∑
k=k1

(
max

j
P̂

(j)
t+k|t −min

j
P̂

(j)
t+k|t

)
(8)

A modification of the MaxMin index is to
calculate the difference between the maximum
and minimum value of ensemble predictions
over a whole look-ahead time window. This
index is defined as the MaxMinMax index:

MaxMinMax(t, k1, k2) =

max
[k1,k2]

(
max

j
P̂

(j)
t+k|t

)
− min

[k1,k2]

(
min
j
P̂

(j)
t+k|t

)
(9)

It can be expected to be useful in order to
inform on the risk for large variations in the
power output over a look-ahead time window.

C. Using risk indices in decision making

One of the most important aspects of risk
indices is their use in an operational context.
A proposal of a method to use risk indices in
decision making processes is to give warnings
or alerts when the probability for a given en-
ergy imbalance is larger than a certain value.
According to previous findings it is reasonable
to give alerts for large energy imbalances when
the NPRId value is large.

In order to use this approach a criterion for
when an alert should be given is needed. The
proposal here is to give alerts when there is a
probability equal or larger to y for an energy
imbalance Dt+k2

t+k1
that is x times larger than

usual. Mathematically this can be formulated
as:

f
(
Dt+k2

t+k1

)
=


1, p

(
Dt+k2

t+k1
> x ·Dk2

k1

)
> y

0, p
(
Dt+k2

t+k1
> x ·Dk2

k1

)
≤ y

(10)
where D

k2

k1
is the long-term average energy

imbalance. The parameters x and y can then
be varied depending on the user’s sensitivity
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for large energy imbalances and risk aversion
policy.

To investigate whether an alert was correct,
or whether it was a wrong decision to not give
an alert, a table with the frequencies of correct
alerts and correct false alerts can be made.
Such tables, sometimes referred to as confu-
sion matrices [7], are often used in statistical
decision making processes and are organized
as shown in Table I.

TABLE I: A confusion matrix presenting pos-
sible errors in statistical decision making pro-
cesses.

Alert needed Alert not needed
Alert made True alert (TP) False alert (FP)

Alert not made False non alert (FN) True non alert (TN)

The first row of the matrix presents the two
cases that can occur when a decision to make
an alert is taken. If this decision is found to be
justified, this is referred to as a True Positive
(TP). On the other hand, if this decision turns
out to be false, a so called False Positive (FP)
is generated. When a decision to not make
an alert is taken, two cases can also occur.
Either an alert was needed, generating a False
Negative (FN), or the decision to not make
an alert is found to be correct, giving a True
Negative (TN).

Such matrices can in this context be used to
compare risk indices from different WPF mod-
els, different definitions of risk indices and so
forth when giving alerts. The option with largest
frequencies of correct decisions, TP and TN,
would then be preferable. For end-users of a
wind power forecast, different possible deci-
sions incorporate different strategies and the
two types of errors could also be associated
to different costs. Whether the chosen method
gives few FP or few FN can therefore be con-
sidered when determining the best approach.

V. CASE STUDY

The WPF models, wind farms and data used
in the case study are here described.

A. WPF models

The findings presented in Section II motivate
a comparison between results obtained by us-
ing two different WPF models, one optimized
to produce as accurate forecasts as possible,
and one that preserves the ensemble spread

well. Predictions are therefore made with both
an advanced statistical model, Random Forest
(RF), and a simple physical model, the Power
Curve (PC) model.

RF is a regression method that uses classi-
fication trees to establish the relation between
the observations and a set of explanatory vari-
ables in order to make predictions. The model
is tuned to minimize the forecast error in terms
of RMSE [8]. Predictions of wind speed and
direction at 10 meter above ground level are
used as explanatory variables here together
with the last available measurement of wind
generation. The control member of the NWPs
is used for model learning and power pre-
dictions are then derived for all the 51 en-
semble members. Since the relations between
the explanatory variables vary as a function
of look-ahead time, the model is trained and
predictions are made for each look-ahead time
separately.

The PC model uses the relationship between
wind speed and power in the theoretical power
curves of the turbines to predict the power
output from wind speed predictions. The ad-
vantage is that no statistical training is made
and the PC model can therefore be directly
applied on all the NWP ensemble members.
The theoretical power curves of the individual
turbines are aggregated to get an approxima-
tion of the total power curve for a wind farm.
The power curves are provided at the turbine
hub height and the predicted wind speeds are
therefore first converted to hub height using a
logarithmic relation between wind speed u at
heights z1 and z2:

u(z2) =
ln(z2/z0)

ln(z1/z0)
u(z1) (11)

where z0 is the roughness length of the site [3].

B. Wind farms and data

In [1] risk indices were investigated on a
Danish offshore wind farm. This study is carried
out on three French onshore wind farms lo-
cated in different areas of France with different
terrain complexities and local meteorological
conditions. Table II presents basic character-
istics of these farms.

TABLE II: Characteristics of the wind farms.

Farm Terrain type # of turbines Pn [MW]
WF-1 flat 5 12.2
WF-2 complex 9 8.1
WF-3 flat 4 10.12
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The data used covers the 18 months from July
2004 to December 2005 with NWPs issued
twice a day, at noon and at midnight, giving
a total of 1080 records. When using statistical
WPF models such as RF that need model
learning, it is important to perform training and
testing of the model on different and inde-
pendent data sets. Data containing NWP and
power measurements are therefore split into
two sets, with a portion of 2/3 of the available
time-series used for the learning part and the
remaining for testing. This gives 360 wind po-
wer ensemble predictions for model evaluation
and computation of risk indices.

The temporal and spatial resolutions for
ECMWF meteorological ensembles are
coarser than for single forecasts. The temporal
resolution is 6 hours which is far larger than
the resolution of the power measurements of
10 minutes. Some compromise is therefore
required. One option is to linearly interpolate
the weather forecasts to match the resolution
of the power measurements. This is however
not preferable since it is rather unlikely that
this transformation is representative of the
true evolution of the meteorological variables.
The opposite option is to keep the 6 hour
resolution from the NWP and adapt the
resolution of the power measurements to
that. The average power output for each
hour is therefore computed and the hours
corresponding to the NWP data are extracted.
This option is therefore mainly considered and
an investigation with a temporal resolution of 1
hour, which is more suitable in an operational
context, show that the results are in general
the same.

The spatial resolution of the NWP data is 1o

in both longitude and latitude corresponding to
about 75 - 80 km in East-West direction and
110 km in North-South direction. The NWP are
taken from the point in the grid situated closest
to the wind farm. This is a relatively simple
option but results show that using weighted
means of a number of grid points surrounding
the farm gives qualitatively similar results.

VI. RESULTS

Before presenting the results in terms of risk
indices, the evaluations of the models in terms
of average error and preservation of ensemble
spread, are presented.

A. Model performance

The difference in model performance in
terms of prediction error is shown in Figure
2 where the Normalized Mean Absolute Error
(NMAE) is presented for the RF control mem-
ber, the PC control member, the PC ensemble
mean and climatology for 0 to 120 hours ahead
for WF-3.
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Fig. 2: NMAE for WF-3 using the Power Curve
(PC) model, Random Forest (RF) and climatol-
ogy.

The RF model is found to give lower forecast
errors than the PC model, especially up to 60
hours ahead. An increasing improvement with
look-ahead time using the ensemble mean for
the PC model can also be observed. Similar
trends are found for the other two farms.

How well the models preserve the ensemble
spread is investigated by studying whether the
observations fall with the same rate over the
whole set of ensemble members. This informa-
tion is displayed in Talagrand diagrams [2]. In
order to perform this, the n ensemble members
are sorted according to their value for each
run and each look-ahead time and the position
of the observation among the ensemble mem-
bers predictions is determined. For n ensemble
members, this gives n + 1 possible positions
for the observation. If the ensemble members
where correct in a probabilistic sense and the
members represented all possible outcomes
well, the observations would be found as many
times in each of the n+ 1 positions.

Talagrand diagrams for the RF model and
the PC model ensembles are shown for WF-
3 in Figure 3. Counts are shown in relative
frequencies with a line included to indicate the
ideal case with equal number of observations
in all positions.
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(b) Power Curve model

Fig. 3: Talagrand diagrams for the predictions
made by Random Forest and the Power Curve
model for WF-3.

Both diagrams are U-shaped which shows
that the observations are found more often out-
side the range of ensemble members than they
should. This trend, which is also often observed
for meteorological ensembles [2], confirms that
the wind power ensemble predictions are not
correct in a probabilistic sense. The behaviour
is much stronger for the predictions made by
the RF model, illustrating that the ensembles
generated by RF have more difficulty predicting
low and high power than the PC model. This
strengthens the idea that the PC model is a
better option in order to get more dispersed
ensemble members.

B. Validation of the NPRI

Figure 4 show plots of the NPRId for day 3
ahead when using either RF or the PC model.
The energy imbalances are computed on the
control member of the ensembles.
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Fig. 4: NPRId for day 3 for WF-3 from predic-
tions made with Random Forest and the Power
Curve model.

As observed, the average relative energy
imbalance increases almost linearly with class
nr, thus with increasing NPRI and increasing
ensemble spread. The RMI, which measures
the rate of increase, is larger in the PC case
than in the RF case, equal to 5.15 compared
to 2.50. This shows that risk indices based on
the PC model ensembles better distinguishes
between low and high energy imbalances. The
energy imbalances are however larger, as it
was observed in Figure 2 where the forecast
errors using the PC model were larger than
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those using the RF model for the considered
look-ahead time window.

The next remark to be made is that the
NPRI values are significantly larger using the
PC model compared with the RF model. This
confirms that the PC model generates more
dispersed ensembles.

In terms of sharpness of the distributions, the
IQR1−5 are slightly lower for RF, equal to 23
- 97 % compared to 30 - 112 % for the PC
model. There is a relatively large difference be-
tween the classes, with decreasing sharpness
for higher classes, which gives a useful distinc-
tion in the uncertainty of the expected energy
imbalance for different NPRId values. It can
for example be observed in Figure 4a that the
energy imbalance is never above average, 100
%, when the NPRId is in the first class while
it can be expected to be larger than average
when the NPRId is in the last class.

The values of the upper quantiles of the en-
ergy imbalance distributions are also of interest
since they provide information about the proba-
bility or risk for large energy imbalances. It can
for example be seen in Figure 4a that there is
about 10 % risk for an energy imbalance twice
as large as normal when the NPRId is found
in class 4. The risk for such a large energy
imbalance is very low for lower classes while it
is higher when the NPRId is found in class 5.

The results for the other two farms are similar
but with slightly lower RMIs for WF-1 and even
lower RMIs for WF-2. The IQR1−5 are larger
for those farms than for WF-3, especially for
the first classes. The lower ratios and wider
imbalance distributions can be explained by
the fact that the level of predictability for WF-1
and WF-2 are lower than for WF-3, with larger
average errors for those farms.

The RMIs obtained here can be compared
to the ratio of 4.2 obtained in [1]. In terms of
sharpness of the distributions, the results are
similar to the ones observed in that study. This
validates the NPRI approach and shows that
the impacts from the model on the average
error and the ensemble spread are crucial.

VII. EXPLORATION OF RISK INDICES

Even though the NPRI approach can be con-
sidered as validated it is interesting to explore
it into the different directions outlined in Section
IV.

A. Combination of WPF models
The PC model is found to give more useful

information on the size of the expected energy

imbalance depending on the ensemble spread
than the RF model. However, since the energy
imbalances are larger, the question is then
whether it is preferable to produce forecast that
gives more information of the expected errors
with the drawback of producing less accurate
forecasts. The ideal case would of course be
to have a model or a combination of models
giving accurate forecasts while still distinguish-
ing well between more and less predictable
situations. Since the two models used here
have different characteristics it is interesting to
study whether they could be combined using
energy imbalances from the RF model predic-
tions and compute the NPRI form the PC model
predictions.

The results of this investigation are shown
in Table III where statistics for NPRId for day
2 ahead for the three wind farms using either
the RF model or the PC model to compute the
NPRId are presented. The energy imbalances
are computed from the RF model control fore-
cast in both cases.

TABLE III: NPRId using either Random Forest
(RF) or the Power Curve (PC) model to gener-
ate the ensembles. The energy imbalances are
calculated on the standard RF control forecast
in both cases. Results are for day 2 ahead.

NPRId NPRId
Wind farm RF PC
WF-1 2.67 2.57

RMI WF-2 2.01 1.76
WF-3 2.49 2.39
WF-1 23 - 81 24 - 94

IQR1−5[%] WF-2 27 - 65 30 - 62
WF-3 25 - 91 28 - 85

Even though some minor differences between
the two options are observed, the perfor-
mances are very similar with slightly lower
RMIs using the PC model for the NPRI and
similar IQR1−5s. There seem thus not to be
any gain in using the PC model predictions as
a complement to the RF predictions. In the re-
mainder of this article, all predictions and NPRI
estimations are therefore made using the RF
model. It could however still be interesting to
investigate other combinations of WPF models
in the future.

B. Other temporal scales

When comparing the results in Table III,
which shows results for day 2 ahead, with
Figure 4, where day 3 ahead were displayed
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for WF-3, it can be noted that the results for
day 2 ahead and day 3 ahead are similar. This
shows that the NPRId approach is valid for
both these windows.

In order to investigate the impact of the
length of the look-ahead time window a com-
parison is made with window sizes of 48, 24
and 12 hours with windows centred around
48 hours ahead. The NPRI is calculated on
predictions made with a 1 hour resolution for
the three farms and the results are shown in
Table IV.

TABLE IV: Results of NPRI for three different
window lengths, all centred around 48 hours
ahead.

Wind farm 24 - 72 h 36 - 60 h 42 - 54 h
WF-1 2.12 2.43 2.62

RMI WF-2 1.65 2.00 2.22
WF-3 2.17 2.23 2.47
WF-1 27 - 63 27 - 72 26 - 99

IQR1−5[%] WF-2 30 - 42 35 - 61 34 - 81
WF-3 21 - 42 22 - 74 29 - 77

The RMI decreases with longer look-ahead
time window giving a smaller distinction be-
tween energy imbalances in different classes,
a trend that is apparent for all three farms. The
distributions also get narrower for longer look-
ahead time windows, especially for the higher
classes. These results are due to the fact that
the energy imbalance and the average spread
of ensemble members are evened out over
longer time windows. The results show also
that using shorter look-ahead time windows
than 24 hours could be an interesting option
motivating further attention.

C. Alternative risk indices

Statistics of the performances of the MaxMin
index and the MaxMinMax index introduced in
Section IV are shown in Table V together with
the NPRId for day 3 ahead for the three farms.

TABLE V: Results for NPRId, the MaxMin
index and the MaxMinMax index for day 3
ahead for the three farms.

Wind farm NPRId MaxMin MaxMinMax
WF-1 2.08 2.32 1.93

RMI WF-2 2.01 1.83 1.64
WF-3 2.50 2.44 2.00
WF-1 33 - 69 36 - 69 43 - 68

IQR1−5[%] WF-2 35 - 71 40 - 67 48 - 74
WF-3 23 - 97 24 - 95 32 - 87

The performances of the two alternative indices
are found to be relatively good compared to
the NPRId, especially for the MaxMin index
with similar performance both in terms of RMI
and IQR1−5. The MaxMinMax index performs
worse than the other two in terms of RMI and
has also wider distributions for lower classes.

Since the NPRId and the MaxMin index
show similar performance, it is important to
examine whether they are correlated or not.
Studying the correlation shows that the two
indices are almost equally correlated with the
energy imbalance and the relation between
the two indices is strong. This implies that
the indices measure roughly the same thing
and confirms that the distance between the
maximum and minimum of the ensemble mem-
bers gives almost the same information as the
standard deviation in informing on the level of
energy imbalance. Since the distance between
the maximum and minimum value is easier
to interpret for an observer than the standard
deviation, the MaxMin index can be a very
useful alternative to NPRId.

VIII. USING RISK INDICES IN DECISION
MAKING

The results of the method for using risk
indices in decision making processes, outlined
in Section IV, are presented here.

As observed in Figure 4a, it can be motivated
to give warnings or alerts for large energy
imbalances when the NPRId is large. Using
the approach presented in Section IV by giving
alerts when the probability for an energy imbal-
ance larger than 1.5 times the usual is larger
than 0.2 is evaluated on day 2 ahead for WF-
3. The results are shown in Table VI with the
number of the four possible outcomes. Three
fourths (3/4) of the NPRId - energy imbalance
pairs have been used to build up the imbalance
distributions and the approach is evaluated
on the remaining quarter, corresponding to 90
cases.

TABLE VI: Results from issuing alerts when
the probability for an energy imbalance larger
than 1.5 times usual is higher than 0.2. The
results are given for day 2 ahead for WF-3.

Alert needed No alert needed
∑

Alert made 4 1 5
No alert made 15 70 85∑

19 71 90
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Alerts were made in 5 of the 90 cases and
this decision was found to be correct in 4 of
these. When it was decided to not give an alert,
this was correct in 70 of the 85 cases. The
results are thus relatively good with particularly
a low number of false positives.

Using this decision option on the other farms
results in larger shares of alerts and larger
portions of FP. The approach of giving alerts
is interesting and requires more attention, for
example by examining other risk strategies. It
is then vital to evaluate the results on longer
data sets.

IX. CONCLUSIONS AND PERSPECTIVES

This work has been an extension of the
work made in [1]. The concept and use of
risk indices has been validated and based on
the findings presented in this paper, further
research in the field can be carried out. Several
interesting contributions have been made and
many of the ideas proposed and evaluated
here merit further investigation.

The main purpose of this work has been
to analyze how risk indices, based on wind
power forecast ensembles, can be used to give
information about the uncertainty of wind power
forecasts. The risk indices have been found not
only able to give an indication of the expected
energy imbalance but also to be useful in giving
information about the related uncertainty. The
indices are especially found to be useful to give
an indication about the risk for large forecast
errors.

Wind power forecast ensembles are found
not to capture the whole range of possible
outcomes. The choice of prediction model, par-
ticularly how the ensemble spread is preserved
when wind power ensembles are derived from
NWP ensembles, is therefore of major impor-
tance. Further investigation of the use of more
advanced prediction models that still preserves
the ensemble spread relatively well is neces-
sary. Also of interest is whether other combina-
tions of models than the one investigated here
could give better results.

The extension of the previously used defini-
tion of a risk index into other temporal scales
show that increasing the scales averages out
the risk indices values and makes them less in-
formative. The energy imbalances are however
also evened out over larger time windows.

Concerning alternative risk indices, it is
found that the more simple MaxMin index could
be an interesting alternative to the NPRId.

Finally, it has been found that confusion ma-
trices can be useful to evaluate the ability of
risk indices when giving alerts in cases when
there is a high risk for large forecast errors.
This approach of using risk indices in decision
making is promising and merit more attention.
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