B Eatrice Creusillet

Fran Cois Irigoin

Interprocedural Analyses of Fortran Programs

Keywords: Interprocedural analysis, parallelization, re-engineering, pips

Interprocedural analyses (IPA) are becoming more and more common in commercial compilers. But research on the analysis of Fortran programs is still going on, as a number of problems are not yet satisfactorily solved and others are emerging with new language dialects. This paper presents a survey of the main interprocedural analysis techniques, with an emphasis on the suitability of the analysis framework for the characteristics of the original semantic problem. Our experience with the pips interprocedural compiler workbench is then described. pips includes a make-like m e c hanism, PipsMake, which t a k es care of the interleavings between top-down and bottom-up analyses and allows a quick prototyping of new interprocedural analyses. Intensive summarization is used to reduce storage requirements and achieve reasonable analysis times when dealing with real-life applications. The speed/accuracy tradeo s made for pips are discussed in the light of other interprocedural tools.

Introduction

Real life applications are split into several procedures to factorize code as much as possible and to improve readability. Traditional compilers only provide separate compilation, and procedure boundaries prevent many analyses and optimizations, such as constant propagation for instance, although they are of paramount importance in parallelizing compilers 12,[START_REF] Nguyen | An interprocedural parallelizing compiler and its support for memory hierarchy research[END_REF] to achieve reasonable performances. They are also more and more necessary for sequential machines. Interprocedural techniques have been introduced to cope with this problem.

To our knowledge, the oldest article about interprocedural analyses was written more than twenty years ago by Allen 2]. Since then, research has focused on three aspects of interprocedural techniques: Frameworks (how to perform these analyses), semantic problems (what information to propagate), and the representation of problem solutions, which is critical because the amount of gathered information is much larger than with intraprocedural analyses.

Today, many commercial compilers include some interprocedural optimizations. In 1991, the convex Application Compiler was the rst on the market 58] it includes several complex analyses, such a s i n terprocedural pointer tracking or array section analysis. The acknowledged origins for this compiler have to befound in several research projects: ptran 72], ParaScope 20], Parafrase-2 68], and pat 74]. Other commercial products, such as the product line developed by Applied Parallel Research, the xlf compiler from ibm (option -qipa), or the sgi, foresys, kap, and vast compilers, have since included various interprocedural analyses.

But most interprocedural techniques are still in the research domain. Several advanced analyses are too costly to be integrated in commercial products. Also, new language dialects such a s hpf are emerging, and with them, new interprocedural semantic problems. Finally, a s problems are beingsolved, new applications are considered. This paper is organized as follows. In Section 1, we survey the main approaches proposed to solve problems due to procedure calls. We emphasize the relationship between the interprocedural framework and the characteristics of the semantic problem. This study is restricted to the analysis of Fortran-like programs, but we also cite papers about other languages when the presented techniques can readily be applied. As an example, we use in Section 2 the interprocedural framework of pips, the open compiler workbench developed at Ecole des mines de Paris. We rst explain how i n terprocedural analyses are performed, and how they are supported by an interprocedural engine, PipsMake. The main analyses used for program parallelization or re-engineering are then described, as well as recent and planned developments. Finally, pips is evaluated along with similar research tools.

A Survey of Interprocedural Techniques

When dealing with a semantic problem whose solutions involve information from several procedures, two decisions have to be made. The rst one is the choice of the interprocedural technique: Inlining or interprocedural analysis or a mix of them (Section 1.1). Secondly, an interprocedural framework must bechosen (Section 1.3), depending on some of the characteristics of the semantic problem (Section 1.2).

Many semantic problems bene t from interprocedural techniques. The most important o n e s are described in Section 1.4.

Inlining? Interprocedural Analysis? Or Cloning?

Since procedure boundaries are handled very conservatively by traditional compilers, the rst and most intuitive approach to handle procedure calls is to expand them inline, that is to replace each call by the corresponding code, in a recursive top-down or bottom-up manner. The main advantage is that usual intraprocedural analyses and transformations can be applied on the resulting code, hopefully with the same precision. However, there are several drawbacks 41, 61]: 1. Inlining is not always possible, due to array reshaping1 , or recursive procedures in languages other than fortran 77.

2. The resulting code is usually much larger than the original2 . If a procedure a calls procedure b t ab times, and procedure b calls procedure c t bc times, then c is expanded t ab t bc . The growth of the code is thus potentially exponential, and this increases the complexity of subsequent analyses.

3. Even when the resulting code is not overwhelmingly larger, the complexity of subsequent analyses may grow dramatically because their complexity is higher than O(n). A second approach 3 , is to compute summaries of the procedure behaviors, to translate them as accurately as possible into the callers' or callees' name space depending on the direction of the analysis, and to use the translated summaries as abstractions of procedures. This method has the opposite advantages and consequences of inlining. It does not have its complexity limitations, since no code is duplicated, and since summaries are usually more compact than the code they abstract. Basically, if procedure sizes are bounded, and if summaries have a c o n s t a n t or bounded size, interprocedural analyses are linear versus the sizes of the programs. Moreover, there is no restriction on the input code (see Item 1 on Page 4). However, much precision may belost, due to (1) summarization techniques, (2) translation processes, and (3) simpli cation of the program structure representation.

Between these two approaches, a recent technique lessens the drawbacks of interprocedural analysis, but preserves a reasonable complexity. Selective cloning [START_REF] Haghighat | Symbolic Analysis for Parallelizing Compilers[END_REF][START_REF] Cooper | The Parascope parallel programming environment[END_REF] duplicates procedures on the basis of calling contexts. For example, a heuristic based on integer variable values has proved useful in an automatic parallelizer, without increasing the program size dramatically 41]. However, even if this approach alleviates some precision problems (see Section 1.3), its decision heuristics are usually based on another interprocedural information, and subsequent program analyses and transformations may require an interprocedural propagation of information.

It would seem obvious that the best solution certainly is a mix of these techniques. In the convex Application Compiler, interprocedural analysis results are rst used to decide to inline some functions, and then to duplicate some others. But whatever solution is chosen, apart from an impractical systematic inlining, some interprocedural analyses are necessary. The main existing techniques are surveyed in the next sections.

Characteristics of Interprocedural Problems

Some interprocedural problems are intrinsically much more di cult to solve than other ones. For instance it is easier to precisely compute the set of variables that may be modi ed by a procedure call, than the set of variables that are always modi ed 64] because in the last case the internal control ow of the called procedures must be taken into account.

Two main criteria have been proposed to classify interprocedural problems: Flow sensitivity and context sensitivity (also called path speci city) 8, [START_REF] Morel | Interprocedural elimination of partial redundancies[END_REF][START_REF] Marlowe | An e cient h ybrid algorithm for incremental data ow analysis[END_REF].

An interprocedural problem is said to be ow sensitive if it cannot besolved precisely without considering the internal control ows of procedures. The above mentioned may be m o di ed problem is ow insensitive, while the must be m o di ed problem is ow sensitive. For example, in the procedure bar in Figure 1, j and k both belong to the may be modi ed variable set because there exists at least one instruction which modi es them. But only j belongs to the must be modi ed set because k is modi ed only along one control ow path (the true test branch) and not along the other one (the false test branch). Interprocedural context sensitive (or path speci c) analyses are analyses whose results depend on the execution path taken to reach a point in the program. Suppose we want to compute the value of x after each call to foo in the example of Figure 2. Let us assume that foo increments its parameter. A c o n text insensitive algorithm does not distinguish the two paths E-R and E'-R' through foo, and considers that the value of x before the calls is either 5 o r 7 because of arcs E and E', and therefore that it is either 6 o r 8 after each call. In fact, this algorithm takes into account t wo unrealizable paths: One from the rst call to the return node for the second call (E-R'), and another one from the second call to the return node for the rst call (E'-R). However there are only two possible paths, namely E-R and E'-R'.

Of course, these two criteria must be taken into account when chosing or implementing an interprocedural analysis framework.

Interprocedural Analysis Frameworks

Many interprocedural analysis frameworks have beende ned (some examples can be found in [START_REF] Morel | Interprocedural elimination of partial redundancies[END_REF][START_REF] Callahan | ParaScope: A parallel programming environment[END_REF][START_REF] Hall | E cient call graph analysis[END_REF][START_REF] Tu | Automatic Array Privatization and Demand-Driven Symbolic Analysis[END_REF]). They di er in several ways: The degree of summarization and the accuracy of the translation across procedure calls are two important issues, and directly depend on the speci c semantic problem and the representation of its solutions. But the representation of the program structure on which the information is conveyed and the ability to perform or not ow sensitive o r c o n text sensitive analyses are also of importance. These last two problems are related [START_REF] Hall | Interprocedural analysis for parallelization[END_REF][START_REF] Hall | E cient call graph analysis[END_REF], as shown in this section.

Interprocedural analyses can be performed on the program call graph, where nodes represent individual procedures, and edges represent call sites 4 . Each edge is labeled with the actual parameters associated to the corresponding call site.

Call graphs can beconstructed very e ciently [START_REF] Reps | Precise interprocedural data ow analysis via graph reachability[END_REF][START_REF] Hall | Interprocedural compilation of Fortran D[END_REF], and can provide su cient information for many program optimizations, including parallelization. However, they do not allow ow sensitive interprocedural analyses, because they do not take into account the intraprocedural control ow of individual procedures.

To perform ow sensitive analyses, such as array region analyses 5 , interprocedural representations of the program must therefore provide information about the internal control ow of procedures, as well as the external control ow. The most precise approach is to take i n to account the whole internal control ow graph of every procedure. However, resulting data ow analyses may be as complex as on a fully inlined program.

To reduce this complexity, one solution is to use a less precise abstraction of the program structure, in order to reduce its size. This can be done either at the interprocedural level, or even at the intraprocedural level. In this last case, the size of the representation of each procedure is reduced. Several sparse interprocedural representations have beendesigned for particular classes of problems, such as the program summary graph 19], the system dependence g r aph 34, 10], : : : Intraprocedural sparse representations include the ssa form 3, 32, 76] and the sparse data ow evaluation graph 24]. The uni ed interprocedural graph 48] provides a demand-driven uni ed representation which combines the advantages of the sparse representations without restricting the scope of the possible analyses. The rationale of these approaches is to avoid computing irrelevant i n termediate results, while still performing a global analysis.

Reducing the cost of interprocedural data ow analyses can also be achieved by demand-driven techniques, such as those presented in 33] and 69]. Incremental analysis 15, 59, 7 5] addresses the problem of avoiding unnecessary recomputations of data ow solutions in case of local program changes but it requires an initial exhaustive solution. Another solution to reduce the cost of interprocedural analyses is to perform them in parallel [START_REF] Gu | Experience with e cient d a t a o w analysis for array privatization[END_REF][START_REF] Landi | A safe approximation algorithm for interprocedural pointer aliasing[END_REF].

When the representation of the program interprocedural control ow is approximative, and when the problem is context sensitive, the ability to avoid taking into account unrealizable paths 55, 70] is an issue. Several solutions have beenproposed for this problem, the most common approach being to tag solutions with path history or path speci c information [START_REF] Morel | Interprocedural elimination of partial redundancies[END_REF][START_REF] Sarkar | PTRAN | the IBM parallel translation system[END_REF][START_REF] Johnson | Exploitation of symbolic information in interprocedural dependence analysis[END_REF]. However, this may result in an exponential growth of the numberof solutions at each node, and thus in overwhelming execution times and memory requirements. Selective cloning 41, 27] also appears as a partial solution, since it reduces the numberof unrealizable paths taken into account. From our experience with the pips parallelizer, combining results from several analyses can also lessen the problem. This is the case with preconditions and transformers in pips (see Section 2.3). They correctly handle the case of Figure 2 although neither analysis is context sensitive.

Many other problems may also beaddressed by interprocedural tools, but are not developed here: Recursivity, formal procedures 6 , or unavailable source code for called procedures.

Some Usual Interprocedural Problems

For the last two decades, the interprocedural analysis of scienti c programs has been chie y driven by research on automatic parallelization, parallelizing large loops containing procedure calls being of the utmost importance to achieve good performances.

At rst, the main purpose was therefore to analyze interprocedural dependences. And alias analysis [START_REF] Burke | An interval-based approach to exhaustive and incremental interprocedural data-ow analysis[END_REF][START_REF] Cooper | E cient computation of ow insensitive i n terprocedural summary information[END_REF][START_REF] Ryder | Constructing the call graph of a program[END_REF][START_REF] Maydan | Accurate Analysis of Array References[END_REF] as well as summary data ow information or interprocedural side-e ects (sdfi) 2 8] o n s c a l a r v ariables were among the main analyses. To enhance the results of these analyses, and to enable other useful code transformations such as partial redundancy elimination 63], many other interprocedural scalar analyses have also been introduced. They range from constant propagation [START_REF] Burke | Interprocedural optimization: Eliminating unnecessary recompilation[END_REF][START_REF] Graham | Orchestrating interactions among parallel computations[END_REF][START_REF] Benkner | Processing array statements and procedure interfaces in the PREPARE High Performance Fortran compiler[END_REF][START_REF] Gupta | Parallelizing data ow analysis[END_REF][START_REF] Carini | Automatic inlining[END_REF], to subexpression availability and variable values 47], ranges 13], or preconditions [START_REF] Irigoin | Interprocedural analyses for programming environments[END_REF][START_REF] Hind | Interprocedural array analysis : How much precision do we n e e d ?[END_REF] propagation. To handle arrays more accurately than sdfi, o w insensitive array r e g i o n analysis was introduced by Triolet 77], followed by many others [START_REF] Callahan | ParaScope: A parallel programming environment[END_REF][START_REF] Ancourt | How to add a new phase in PIPS: The case of dead code elimination[END_REF][START_REF] Harrold | E cient computation of interprocedural de nition-use chains[END_REF][START_REF] Lee | Region analysis: a parallel elimination method for data ow analysis[END_REF].

Today, many commercial products include some interprocedural ow insensitive analyses, as complex as array region analyses, or pointer tracking in the most advanced tools such as the convex Application Compiler. But research prototypes are still ahead, in particular for symbolic analyses 40, 54] and ow sensitive array region analyses [START_REF] Grove | Interprocedural constant propagation: A study of jump functions implementations[END_REF][START_REF] Hall | Managing Interprocedural Optimization[END_REF][START_REF] Triolet | Direct parallelization of call statements[END_REF][START_REF] Creusillet | Array Region Analyses and Applications[END_REF] which are mainly used for array privatization in parallelizing tools. Also, the compilation of fortran dialects such as hpf raises new interprocedural problems 1, 44, 9].

Conclusion

A w i d e v ariety o f i n terprocedural frameworks exists. They are more or less adapted to a speci c interprocedural problem. The choice mainly depends on the characteristics of the problem, such as ow sensitivity or context sensitivity, but also on the desired complexity/precision ratio, given that the quality of the underlying intraprocedural analysis sets an upper bound on the precision of the interprocedural analysis.

Many ow sensitive analyses are still too complex for commercial products, which only implement ow-insensitive interprocedural analyses. But as good experimental results are published [START_REF] Hall | Detecting coarsegrain parallelism using an interprocedural parallelizing compiler[END_REF][START_REF] Binkley | Interprocedural constant propagation using dependence graphs and a dataow model[END_REF], and as the power and the memory sizes of computers increase, such analyses will undoubtedly appear in commercial tools. Not long ago, even ow insensitive array region analyses were considered too time and space consuming. They are now implemented in all leading research parallelizer projects, and can befound in some commercial compilers 58].

2 An Example: The PIPS Compiler Workbench It is more and more widely acknowledged that not only program optimizations for parallel and sequential target machines, but also program maintenance and reverseengineering bene t from interprocedural techniques. To experiment various applications without having to build a new tool each time, a common infrastructure is necessary. pips is such a source-to-source fortran open compiler workbench. The project began in 1988, with the generation of code for parallel vector computers with shared memory. Its infrastructure has since proven good enough not to require any major change. Today, its main use is code generation for distributed memory machines. Another current research track is the restructuring and reverse-engineering of production codes.

In this section, we focus on pips interprocedural characteristics. In Sections 2.1 and 2.2, we describe its interprocedural infrastructure. We then present in Section 2.3 the main interprocedural analyses available in pips. A fourth section deals with the recent and planned developments. Finally, the fth section is devoted to an informal comparison with similar interprocedural tools.

PIPS Interprocedural Framework

pips uses an implicit call graph. It allows ow and context sensitive analyses, since the program representation contains the individual control ow graphs of all the procedures. Summarization is used to keep a linear complexity for all interprocedural analyses when the program size increases. This is achieved by eliminating control information, and by a voiding list data structures whose size could increase with the procedure height in the call graph. Translation across procedure boundaries is performed at each call site using the correspondences between formal and actual parameters, and between common declarations 7 .

For downward analyses (see Figure 3), the callers are analyzed rst the information at each call site is propagated to the called subroutine to form a summary when there are several call sites for a single procedure, the summaries corresponding to the call sites are merged, after being translated into the callee's name space, to form a unique summary. This summary is then used to perform the intraprocedural analysis of the called procedure.

For upward analyses (see Figure 4), the leaves of the call tree are analyzed rst. The procedure summaries are then used at each call site, after the translation process, during the intraprocedural analysis of the callers. 7 When the translation is not possible (because the variable is declared in a SAVE statement, or because it belongs to a COMMON not declared in the caller) a unique global identi er is used.

PIPS Interprocedural Engine

With pips infrastructure, the programmer does not have to worry about the orchestration of various interdependent analyses (or phases), about the call graph traversal order, and about the availability o f other analysis results (or resources). A make-like mechanism, called PipsMake, automatically determines the order in which the di erent phases must bescheduled for the di erent procedures to have the resources ready when needed initially or after some minor changes of sources 17] or analysis options. The ordering is automatically deduced from a speci cation le, written by the phase designers, using a call-by-need interpretation. For instance, the following production rule for array regions: speci es that the production of the resource regions for the current subroutine (or module) is performed by the function regions, and that it requires the program symbol table (entities), several other pieces of information about the current module (transformers and preconditions), and the summary regions of all the callees. This rule therefore describes a backward propagation. Similarly, a forward analysis would be described by a production rule depending on information from the callers. The programmer of the new phase must solely provide the function regions which performs the intraprocedural propagation of the resource and translates the summary regions of the callees into the current module name space. PipsMake automatically calls the function regions after having computed the other necessary resources, or after having checked that they are available and up-to-date. This allows a quick prototyping of both forward and backward analyses on the program call graph, provided that the program is non-recursive. In addition, the simplicity of the scheme from the designer point o f view promotes reuse of analysis results. Another advantage of this architecture is that it is demand-driven at the procedure level: Resources are computed or re-computed only once and only when requested by other analyses or transformations. This simple scheme based on summaries provides the exibility and speed necessary for interactivity when dealing with source changes and new option selections because each intraprocedural analysis is performed fast enough. A lower level of granularity for incremental recompilation would not improve the response time in a useful way.

PIPS Interprocedural Analyses

Since interprocedurality was at the origin of the pips project, all its analyses are interprocedural but the dependence analysis 8 . This section provides a description of the analyses that have proven to be useful for program transformations such as the parallelization of fortran codes or the understanding of program behavior, which is a crucial issue for the maintenance of application codes. E ects, transformers, preconditions and array region analyses are described below. No alias analysis is performed, because the fortran 77 standard forbids interprocedural aliasing of modi ed variables (see 5], paragraph 15.9.3.6).

Memory E ects

This abstraction describes the memory operations performed by statements or procedures. An e ect on a memory reference is a read or write e ect. pips also provides information about the likeliness of the reference: must e ects are always performed by all executions, while may e ects may b e performed by some execution, or even never. Procedure summaries are obtained by eliminating e ects on local variables. These summaries are then translated in the caller's name space for each call site, describing the e ects of each call statement.

This information can be used to parallelize loops containing procedure calls thanks to the translation process. E ects are also used to support other analyses, such as preconditions, to avoid propagating information about a variable if it is neither used nor modi ed in a subroutine and its descendents.

Transformers Summary e ects are the sets of variables read or written by procedures. But they do not describe how these variables are modi ed. In pips, this is the role of transformers. Transformers abstract the e ects of instructions and procedure calls upon the values of integer scalar variables by a ne approximations of the relations that exist between their values before and after any execution of a statement or procedure call. For example, the dummy procedure foo: subroutine foo(i,j) if (i.le.10) then i = 10 else i = i+1 endif j = j+1 end is abstracted by the transformer T(i,j) f10<=i, i#init<=i, j==j#init+1g. It means that the value of i after any call to foo is greater than 10 and greater than its value before any call, and that the value of j is incremented by 1.

Real, logical and string variables are not taken into account because the control ow at the loop level is mainly derived from integer values. Moreover, dusty decks and validation programs provided by users do not often use logical and character strings, and deriving information about oating point values is very di cult.

Transformer analysis is a backward analysis, and its results are mainly used by t wo other types of analyses: preconditions and array region analyses. Transformers are called return functions in 18].

Preconditions

Many program analyses and transformations can beimproved when the relations between variable values are known. This is the case for loop parallelization which bene ts from the knowledge of loop bound values, as well as array subscript symbolic constants. Dead code elimination and code specialization are also greatly enhanced by this type of information.

In pips precondition analysis labels each statement with a condition on the variable current values holding true before any of its executions. This condition involves equality constraints as well as inequalities. Therefore, values of symbolic constants and inequalities from test conditions are both preserved. This type of analysis greatly bene ts from interprocedural techniques. In many programs, many variables used either in loop bounds, in tests conditions or in array subscripts, are initialized in a separate procedure. Tests also often restrict the conditions under which procedures may be called.

Precondition analysis is a forward analysis, and relies on transformers to derive post-conditions for statement or procedure calls from their preconditions. The information available in initialization routines is moved upwards to the main procedure using transformers, and propagated downwards towards the leaf procedures by preconditions. The whole analysis is thus completed in two traversals of the call graph.

Recent and Planned Developments

We have only described some of the many analyses available in pips. Other analyses include interprocedural symbolic complexity and reduction detection, or intraprocedural dependence and array data ow analyses 67]. pips also includes an impressive s e t of intraprocedural program transformations, including source code generation, which heavily rely on the previously described interprocedural analyses.

The latest developments essentially focus on these program transformations: Array privatization for loops and procedures (see Section 2.3) or partial evaluation, dead code elimination 6] and code restructuring based on preconditions or use-def chains, for example. The recursive application of transformations and their interaction with the analyses on which they rely, creates a new problem in an interprocedural setup.

For example, restructuring a monoprocedural program A using its preconditions can result in more accurate preconditions, which can themselves be used to restructure A, and so on. This is one of the simplest schemes. Suppose now that A is called by B. Restructuring A modi es its code, and thus invalidates its transformers, as well as the transformers of B, since transformer analysis is a backward analysis. This may result in more precise preconditions in B, and therefore in more precise preconditions in A, which can benow beused to restructure A, and so on.

Handling such problems involves an extension of PipsMake to deal with the x points of analysis and transformation phases.

Also, recent d e v elopments in the array region area have s h o wn that representation independence could be improved 30]. For instance, di erent array region representations such as intervals, convex polyhedra, list of convex polyhedra or Presburger formulae, have been made usable by a generic interprocedural array region engine. Although the saving expressed in lines of code is limited because the programming e ort is more at the operator level than at the engine level, and because operators obviously depend on the representation, this is very useful for experiments. This exibility could beused in commercial products to let the user make speed/accuracy tradeo s. However, the dependence between di erent kinds of analyses makes such clear interface non trivial. For instance, region analysis uses precondition analysis. The combination of a polyhedral representation for regions and of a Presburger-based representation for preconditions, as well as all three other di erent possible combinations are not obvious and would require additional conversion operators.

Representation independence could be used to move pips away from its original linear algebra framework and into polynomial representations as in Parafrase-2 (see next section) or into Presburger-based representations. Such a move has been shown necessary in 14], but we feel that linear algebra and polyhedra are an interesting tradeo in the accuracy/speed space and that their potential has not yet beenmeasured.

PIPS and Other Research Tools

FIAT/SUIF

suif is an intraprocedural compiler for parallel machines developed at Stanford. To enable the parallelization of loops containing procedure calls, fiat 46], an interprocedural engine, has been added on top of it. fiat is a framework which allows prototyping of ow insensitive a n d o w sensitive i n terprocedural data ow analyses. The programmer has only to provide the initialization functions, the meet operator, the transfer function, and the direction of the analysis. Much like PipsMake, fiat is demanddriven: The programmer does not have t o w orry about the ordering of interprocedural analyses.

Several interprocedural analyses are available in fiat/suif. The rst backward analysis computes a transfer function which bears some resemblance with pips transformers, but in its handling of test conditions. Then some kind of preconditions are computed, which give each variable value in terms of loop invariants and indices of enclosing loops. An additional phase propagates inequality constraints from test conditions. Several backward interprocedural array regions analyses are nally performed.

The support of automatic selective procedure cloning and, hence, of some context sensitivity is a distinctive advantage of this framework. Unfortunately, fiat/suif had not yet beenreleased in the public domain for trial when we wrote this paper.

Parascope and the D System

Parascope and the D system are beingboth developed at Rice University. They use fiat as an interprocedural engine, like fiat/suif.

Parascope provides several interprocedural analyses: mod/ref analysis (i.e. effects), array region analyses based on regular section descriptors (RSD) 21], alias analysis, constant propagation and symbolicvalue analysis.

The D system is built in the context of Parascope, and aims at compiling Fortran D programs. Fortran D is an hpf-like dialect, and requires speci c interprocedural analyses, such as reaching decomposition or overlap analyses.

Parafrase-2

Parafrase-2 is an optimizing and parallelizing source-to-source compiler developed at the University of Illinois at Urbana-Champaign. It includes many phases, some of which a r e i n terprocedural, especially a powerful symbolic analysis based on polynomials 40].

Polaris

Polaris too is being developed at the University of Illinois. Most Polaris phases are intraprocedural and require inline expansion to parallelize loops e ciently. However, automatic inlining is provided, and some interprocedural phases, such a s c o n s t a n t p r o pagation, have been implemented lately or are planned, such as array region analyses based on lists of regular section descriptors (RSDs).

Panorama

The Panorama parallelizing compiler has been initiated at the University of Minnesota, to support systems with memory hierarchies. It performs several interprocedural analyses, such as use-def chains 49] and ow-sensitive array region analysis based on lists of guarded regular section descriptors (gRSDs). Interprocedural analyses are performed on the program hierarchical supergraph, which is an extension of Myers' supergraph. As such, it provides the necessary framework to perform ow and context sensitive analyses. But no interprocedural engine such as fiat or PipsMake is used, and each analysis must rede ne its own traversal of the hierarchical supergraph.

Relationships with PIPS

It is impossible to compare di erent interprocedural tools in a scienti c way. They do not provide exactly the same sets of analyses. And when two tools support the same interprocedural analysis, its precision depends on several factors, such as the quality of preliminary analyses, the quality of the intraprocedural propagation, the characteristics of the chosen representation (whether it can include symboliccontext information or not, for example), and the precision of the translations across procedure boundaries.

In this context, pips interprocedural framework is unique compared to the other approaches. Firstly, it provides an interprocedural demand-driven engine which also ensures the consistency of the database for a given option selection and source editing. This feature is unique among interprocedural tools because pips was designed primarily to study interprocedural issues. Along with the program representation as a call graph, this engine allows ow sensitive analyses. Secondly, pips o ers a comprehensive set of interrelated interprocedural analyses (e ects, transformers, preconditions and array regions) and of transformations exploiting the symbolic information gathered, e.g. partial evaluation. These features do not come at the expense of execution time and pips can be used interactively as well as in batch mode. As long as no code transformation is applied, each analysis is applied only once on each module. At a g i v en average module size, summarization results in a linear complexity against the program size for all interprocedural analyses.

Apart from its interprocedural features, pips o ers a numb e r o f a d v antages. It was designed as an open workbench to support student c o n tributions and distributed development. Extensions can bedeveloped without linking with pips source because every useful data structure can bestored on disk and retrieved by another program. And pips is a source-to-source tool and great care was taken to produce user-recognizable source code. The control structure of the code and comments are preserved as long as possible.

However, the use of summarization, to keep summaries small, combined with a pure interprocedural framework without cloning often prevents interprocedural path di erentiation, whereas other parallelizers [START_REF] Ferrante | The program dependence graph and its use in optimization[END_REF][START_REF] Hall | Managing Interprocedural Optimization[END_REF] partially achieve this goal through automatic selective procedure cloning. Since pips is an interactive tool, manual cloning was tried and more accurate results were obtained, especially for forward interprocedural analyses, such as preconditions and out regions, and for intraprocedural transformations. Since pips does not use an explicit interprocedural control ow graph, cloning [START_REF] Allen | Interprocedural data ow analysis[END_REF]

Conclusion

Interprocedural analyses have come of age. Thanks to cpu and memory technology improvements, futuristic approaches of the eighties are now implemented in commercial compilers. Time and space complexities of such analyses are still issues, but they are not perceived any longer as impossible to tackle.

Most research compiler prototypes take interprocedural issues into account and some classi cation e ort has now beenundertaken to better understand the relationship between the many interprocedural analyses published since 1974 60]. But this e ort must bepursued, in particular for interdependent analyses which may override the existing classi cation.

The current interprocedural frameworks for scienti c programming in Fortran are surveyed in this paper. Few experimental results about e ectiveness 51, [START_REF] Hall | Detecting coarsegrain parallelism using an interprocedural parallelizing compiler[END_REF][START_REF] Binkley | Interprocedural constant propagation using dependence graphs and a dataow model[END_REF] have been published and additional research i n t h e i n terprocedural analysis area is necessary before a really formal comparison can be made. In particular, the speed/accuracy ratio is still an issue, but has not yet beenextensively studied 38]. For that purpose, more generic tools for the experimentation of interprocedural analyses, such as fiat 46], pag 4], or pips, should be made available.

Many issues linked to interprocedural analyses have been dealt with by pips, the interprocedural Fortran 77 source-to-source parallelizer developed at Ecole des mines. It supports a comprehensive set of interprocedural analyses, each with a large numberof accuracy options. Its interprocedural engine, PipsMake, is a unique feature among the other interprocedural tools brie y surveyed in this paper: fiat/suif, Parascope and the D System, Parafrase-2, Polaris and Panorama. pips is a public-domain tool available for SunOS, Solaris, AIX, LINUX and OSF-1 at URL http://www.cri.ensmp.fr/pips designed to explore interprocedural techniques for Fortran programs. Future developments include array p r i v atization at the procedure level, extension of PipsMake to deal e ciently with xpoints of analysis and transformation phases, and speed/accuracy comparison of various array region analyses based on di erent representations.

 Figure 1: Flow sensitivity

Figure 2 :

 2 Figure 2: Unrealizable paths

Figure 4 :

 4 Figure 3: Downward propagation

 Many research F ortran optimizing tools include some kind of interprocedural analyses, but the closest ones to pips certainly are fiat/suif 46, 47], ParaScope 26] and the D system 44], Polaris 11], Parafrase-2 68], and Panorama 65, 37, 38].

 Another solution is to let the compiler automatically inline some functions or some call sites, according to a heuristic. The most advanced compilers seem to be the convex Application Compiler and the ibm xlf compiler. However, the best heuristics are usually based on results from previous interprocedural phases 22].

In an automatic parallelizer for instance, if a loop contains n 1 references to array A, and a procedure which contains n 2 such references is called within, then n 1 n 2 additional dependence tests are necessary to analyze the loop. 4. And nally, the translation mechanisms may reduce the e ciency of subsequent intraprocedural analyses, for example by generating nonlinear terms in array subscript expressions 16].

Partial inlining is more suitable to actually optimize programs. User-controlled inlining is usually available in compilers.

This occurs when an array is not similarly declared in the caller and the callee.

Before any subsequent optimization such as dead code elimination.

This second approach is less widely spread at least in commercial compilers

Mathematically, this is a multigraph, since two nodes can be connected by several edges.

Array region analyses collect information about the way array elements are used and de ned by the program.

Recursivity and formal procedures are not often used in scienti c programs.

pips can automatically parallelize loop nests with procedure calls, but the interprocedural part is carried out by e ect or region analysis.

in regions are similar to upward exposed read regions computed by others 72, 4 2 , 3 7 ,7 8].

out regions are di erent f r o m d o wnward exposed regions, because they also depend on the future of the computation.

Summary preconditions are similar to jump functions 18].

Array Region Analyses

E ects often fail to give precise information about the way array element sets are used and de ned by procedures. And this lack of accuracy often prevents subsequent program transformations such as loop parallelization.

To obtain better accuracy, and to enable advanced program transformations such a s array privatization, several ow sensitive array region analyses have been implemented in pips [START_REF] Creusillet | Array Region Analyses and Applications[END_REF][START_REF] Cooper | Fast interprocedural alias analysis[END_REF]. read and write regions represent the e ects of statements and procedures on array elements as sets. They are mainly used by the dependence analysis phase, but also by hpfc, the pips hpf compiler 25]. In addition, two other types of regions have recently been introduced: in regions contain the array elements imported by the current statement 9 , while out regions contain the elements exported towards the program continuation 10 . in and out array regions ease the program comprehension by hiding internal details of procedures and composite statements (such as loops or tests), and by providing more relevant information to the user than read and write regions. They are also used to privatize array regions in loops 30]. New types of program transformations based on in and out regions are currently being implemented, such as the re-engineering of procedure declarations. This transformation spots global arrays used as temporary variables in procedures and reallocates them as stack-allocated local variables. It is useful for the maintenance and parallelization of dusty deck programs.

Figure 5: Features of some academic projects and selective cloning would be easy to implement. Features described in references and WEB pages about the projects presented above are shown in Figure 2.5. They are informally grouped into categories, some related to the environment, the store and the command domains of denotational semantics. This summary is not provided as a de nite comparison between di erent academic projects which are still evolving, but as a set of pointers for readers interested in a given feature. Obviously we take responsibility f o r any mistake or missing information.