Julien Zory
email: fjulien.zory@cri.ensmp.fr

Fabien Coelho
email: fabien.coelhog@cri.ensmp.fr

Using Algebraic Transformations to Optimize Expression Evaluation in Scientific Codes

Keywords: Algebraic transformations, Expression evaluation, Instruction Level Paral- lelism, Multiply-add instructions

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Many scienti c and engineering applications involve the repeated evaluation of possibly large expressions. Thanks to some of the mathematical properties of the involved operators, such a s commutativity and associativity, there are often many w ays to compute an expression. Even if expressions are mathematically equivalent, their computational costs may be signi cantly di erent. However, the choice between these mathematically equivalent expressions introduces a large programming overhead for scientists. In fact, they must have a g o o d k n o wledge of both the compilation techniques and the hardware capabilities to bene t from these optimizations. Finally, their code becomes more di cult to understand and maintain. On the other hand, from the compiler point of view, these algebraic transformations are high-level code modi cations. Most of the compilers have a n i n ternal representation based on three-address code which p r e v ents them from simply using information such as the distributivity.

We i n vestigate here the use of source-to-source algebraic transformations to minimize the execution time of expression evaluation on modern computer architectures by c hoosing a better way than the initial one, to compute the expressions. This work is mainly motivated by the current processors evolution. Indeed, the ever increasing use of pipelining, instruction level parallelism, new hardware capabilities, etc. entails new compilation technique requirements. In particular, we claim that algebraic transformations taking into account the underlying architecture capabilities signi cantly improve the performance of computationally intensive applications.

Experiments on IBM RS6K Power2 chips with an application kernel and a benchmark excerpt from SPEC FP95 provide over 60% improvements simply by modifying expression evaluation. We present t wo algorithms performing the same transformations. The rst one factorizes expressions and the second one extracts multiply-add operations. Both algorithms take i n to account a r c hitecture parameters such as Instruction Level Parallelism, in order to choose better transformations according to performance purposes.

The remainder of the paper is organized as follows. Section 2 describes two experiments and the results we obtained with hand made transformations. Algebraic transformation issues and implementation details are stated in Section 3. We then present t wo algorithms performing factorization and multiply-add extraction and discuss choice criteria in Section 4. The related work is given in Section 5 and we conclude with future research directions in Section 6.

Motivating Examples

Experiments have been performed on several processors of the RISC IBM-RS6K family. W e m e asured performance on Power2 (thin and wide nodes) and P2SC (Power2 Super Chip) implementations (which are in fact quite similar except from the data cache size and bus width). All Power2 architectures use ve basic units, including a oating point unit (fpu) with dual oating point execution units. Each of them can decode and execute oating-point instructions and has the capability of executing a oating-point m ultiply-add (fma) instruction every cycle. This means that the Power2 processors have a peak MFLOP/s rating of four times the MHz rate. The native I B M XL Fortran (xlf) compiler has been used to generate optimized object code by specifying appropriate compiler options (-qarch=pwr2 -O3 -qhot). The source-to-source preprocessor KAP 17] f o r IBM XL Fortran has been used as well.

Experiments with APPLU (SPEC FP95)

We focus here on a small excerpt from APPLU (see Figure 1), a solver for ve coupled parabolicelliptic partial di erential equations from the Spec FP95 benchmarks suite, written in standard Fortran 77. The code contains many subroutines, and most of them are computationally intensive and may bene t from our techniques. This excerpt involves quite a large expression which i s computed for each iteration within a loop nest. The very same expression appears several times in the source code. Its naive e v aluation requires 12 5n 3 additions and 30 5n 3 multiplications (see Figure 2).

Version

Evaluation time (seconds) Improvement The simplest way to improve the performances of this loop nest is to apply invariant code motion techniques in order to move the products on variables xi, eta and zeta outermost. The number of multiplications is then reduced to 12 5n 3 + 3 n 3 + 3 n2 + 3 n. H o wever, as the IBM xlf compiler assumes that the multiplication is left associative (i.e. x y z = (x y) z), this optimization is not applied and performance is very low. A hand made transformation based on invariant c o d e motion gives us a 37% performance improvement1 .

Thanks to the distributive l a w, we can further reduce the number of operations which a r e necessary to evaluate that expression. Figure 3-a shows the new structure of the expression when factorization has been applied 2 . The number of multiplications decreases to 12 5n 3 but the number of additions is left unchanged. This transformation leads to a 55% improvement.

Furthermore, Figure 3-b illustrates the bene t of using oating point m ultiply-add instructions after the factorization process. This transformation reduces the total numb e r o f o p e r a t i o n s t o 1 2 5n 3 fused multiplication-additions. The IBM xlf compiler tries to extract that kind of operations (x y + z) from the code but it does not nd all of them and does not take advantage of available choices to select the best solutions. We i m p r o ved the performance up to 67% by manually inserting appropriated parentheses to help the compiler during the fma extraction process (for instance x 1 (x 2 x 3 x 4 + x 5) + x 6 + x 7 x 8 is rewritten ((x 1 (x 2 (x 3 x 4) + x 5) + x 6) + x 7 x 8)).

Table 1 summarizes our experimental results with APPLU.

Experiments with ONDE24 (IFP)

ONDE24 is a 2-Dimensional Acoustic Wave Modeling application from Institut Francais du P etrole. This code is written in standard Fortran 77 and its main time consuming part is the loop nest given in Figure 4-a. For each point in the whole NP NP area, the new pressure value U is computed from its neighbors and from the velocity V (see the pattern in Figure 4-b). Evaluating this expression requires 10 additions and 4 multiplications as depicted in Figure 4-c. As stated above, the Power2 architecture can execute two m ultiply-add operations every cycle, so we n e e d a t l e a s t 5 c y c l e s to evaluate that expression. Thus, the maximal MFLOP/s rate for this code is 14 5 MHz rate. However, the maximal MFLOP/s rate compared to the actual performance we measured shows that neither the IBM compiler nor the KAP preprocessor generate e cient code. In fact, we learned by looking at the intermediate assembly code that the compiler was not able to generate the fma instructions properly.

In order to help the compiler, fma constructions were suggested by inserting appropriated parentheses. As shown in Table 3 such a simple transformation improves the performances of the whole application up to 70%. Multiply-add instructions are really e cient, but also very di cult to extract. There is more than one way to extract multiply-add instructions. Figure 5 presents four di erent fma transformations of the original ONDE24 expression which lead to really di erent performance (spread is about 20%). We h a ve t o c hoose between two transformations each time we h a ve something like x 1 x 2 + x 3 x 4 . These experiments show us that for the same amount of computation but with expressions which are not identically balanced, we obtain di erent performance. The rst transformation on Figure 5-a is the most e cient and is in fact the best balanced one. We will further discuss this point later in this paper (see section 4.2).

Version

Optimizing Expressions

As demonstrated above, a very simple transformation can signi cantly improve the performance of expression evaluation. Our aim is to exploit algebraic properties to rearrange expressions according to performance constraints. First of all, reducing the whole number of operations is most often interesting. Then, it might be e cient to replace some costly operators by others which compute the same value more quickly. Due to instruction level parallelism, it becomes more and more important to take i n to account the structure of the involved expressions.

De nitions

Given two expressions, predicting which one is the most computationally expensive is very di cult. Several parameters such as the number of operators, the operation latency, the critical path length, the register pressure, etc. must be considered. An expression has a real cost which corresponds to its evaluation time on a given processor. Predicting this real cost is obviously very di cult and time consuming. However, theoretical values can be used to describe more or less the expression and give a n estimated c ost. Assuming that the processor provides as many functional units as we need, the critical path is the most important v alue. However, when only one functional unit is available, the total weight becomes preponderant. As most processors have more than one degree of internal parallelism, but none of them is unlimited in the number of functional units, both parameters must be considered. Then, we u s e a gravity measure including both the weight of the operations, and their average level in the expression tree. We experience that it is quite a good estimated cost which emphasizes the degree of parallelism within the instruction.

Let w i be the weight associated with each n o d e i in the tree that represents an expression (for instance, w i = 1 for an addition and w i = 10 for a division). Let d i be the depth of a node i in the tree. We call W E = P n i=1 w i the total weight for an expression E with n nodes. The critical path length is given by C E = m a x n i=1 d i and the gravity measure is G E = P n i=1 w i d i W

. These values are useful for estimating the evaluation cost of an expression. Nevertheless, better estimators could be used if necessary.

Algebraic transformations

Due to the relationship between Sciences and Mathematics, many scienti c codes may bene t from algebraic transformations. One of the main issues of this study is to consider the associative a n d commutative l a ws in order to rearrange the structure of the involved expressions. Moreover, we bene t from the distributivity in order to reduce the number of operations that are really necessary to evaluate an expression. Neutral and identity elements are sometimes worth taking into account (for instance x + xy = x(1 + y) is an e cient transformation if (1 + y) can be computed outermost within a loop nest). Other properties are useful too when trying to improve expressions evaluation performance. For instance, it can be very e cient to replace a divide operation a=b by its inverse operator a b ;1 if b ;1 can be computed earlier or is used several times. In the same way, a square calculus a 2 will be e ciently replaced by a m ultiplication a a. In fact, these operations are mathematically equivalent but they lead to di erent performance due to operation latency. This kind of transformations are also useful when manipulating logical operators such as AND, OR, NOT, NOR or any other algebra.

Preprocessing

Our goal is to rearrange expressions according to performance purposes. As scientists are usually not directly concerned by performance issues, they may h a ve written their expressions according to other requirements such as legibility, or expressions may h a ve been automatically generated by an automatic tool. We m ust then ensure that the expression we w ork on can be freely rearranged.

For instance, we use the distributive l a w in order to distribute expressions such a s x(y + z) + y k in case a factorization on y would be more interesting. Moreover, during this preprocessing phase, we try to simplify expressions as much as possible using most of above algebraic properties.

Pattern-matching techniques are well tted to these needs. Although the associative-commutative matching problem is known to be NP-complete 8], there are several available implementations of pattern-matching algorithms. We c hose Storm, a many-to-one associative-commutative matcher 9] which is using a discrimination net mechanism 5]. As Storm accepts input terms and outputs their matches, we just have to insert rewriting rules in order to implement our algebraic transformations.

The internal representation we use takes into account properties of operators such as associativity and commutativity. The expression is transformed step by s t e p u n til no more rule can be applied. We do not specify any order in the rule applications. The rewriting engine provides a mechanism allowing the manipulation of several rule bases. Moreover, functions can be associated with rules and automatically applied in order to check the validity of a match or to guide the rewriting process.

Algorithms

The above preprocessing phase applies algebraic transformations step by step. Since there is no need to choose between several incompatible transformations, pattern-matching techniques are well tted. However, as algorithms presented below m ust make decisions, a combinatorial explosion in the number of matches prevents us from using the same techniques. This section gives an overview of two heuristics which automatically transform expressions in order to factorize and extract fma constructions. Both algorithms include choice criteria that are necessary to achieve better performance. The number of mathematically equivalent expressions with respect to the di erent c hoices of factorization and multiply-add constructions is very large. Due to this combinatorial explosion, we cannot explore all of them. Thus, our approach relies on an iterative process : each modi cation step tries to make the best local decision. The whole transformation may be not optimal but these heuristics lead to good pratical results.

Factorization

In order to reduce the number of operations which are necessary to compute an expression, our goal is to transform expressions such a s x y 1 + x y 2 + : : : + x y n + z into x (y 1 + y 2 : : : + y n) + z. This algebraic transformation is allowed because the distributive l a w i s t r u e o n (+). However, we m a y also consider the same distributive l a w with other operators such a s (m a x +) 4]. Inverse operators have to be considered as well (for instance x y ; x z = x (y ; z)).

Algorithm overview

Although we h a ve to look for a pattern x in a tree, several factors prevent us from using the associative-commutative m a t c hing techniques : First, most pattern-matching tools do not provide enough expressivity to express patterns such a s : x + x y 1 + x y 2 + : : : + x y n + z where x is optional and n is unknown. This implies that the factorization would have to be done step by step (using x y 1 + x y 2 several times), and that duplicate patterns would be used to solve the optional terms problem. Moreover, we a l w ays want t o h a ve the choice between all possible factorizations (i.e. we can't be satis ed with systematically choosing the rst one). Then, when considering expressions like i 1 i 2 : : : i p y 1 + : : : + i 1 i 2 : : : i p y n the number of matches ((2 p ; 1) n!) becomes very large. Nevertheless, we do not need to consider all of them because a lot of matches are equivalent from the factorization point of view.

The main part of our algorithm is presented in Figure 6. The factorization function returns a list of possible factorizations for a given node (we n o t e (x, list of y i , z) the factorization for an expression E such a s E = x P i y i + z). The notation n 1 n 2 ! n 3] describes the substitution of a n o d e n 2 by a node n 3 within n 1 . This algorithm is not optimal and some factorizations might be missing (for instance the ones like (x + y) (z + k)). Considering that a node has n subterms and each of them has m children, the complexity of this algorithm is O(n 2 m 2) under the following hypotheses. We assume that a comparison between two subtrees only takes a constant time O(1). Even if this is not exactly the case, this assumption is quite reasonable when using an appropriate hash value and a clever data structure. This algorithm is far from our implementation which has been optimized in many w ays. For instance, it is more e cient t o k eep track of the list of candidates during the whole scan. Moreover, we build a list of already tested terms X in order to avoid duplicated factorizations. We a l s o p r o vide a parametric implementation of operator manipulation so as to use the same algorithm with other algebra such as (max, +), (OR, AND). . .

Choice criterion

As more than one factorization is often found within an expression, the choice problem must be considered. In fact, two di erent factorizations might be incompatible. For instance, only one factorization is kept in a b + a x 1 + b x 2 . The result is then a (b + x 1) + b x 2 or a x 1 + b (a + x 2). Even if the number of operations is exactly the same in both cases, the real cost of the expression may be signi cantly di erent depending on the respective costs of the involved terms (for instance, expressions are not identically balanced).

We use the minimization of the gravity G as a criterion to choose between two factorizations. Considering the general case presented in Figure 7, we can show that G 1 G 2 , (W y + W z) (W x + W k) (see proposition in appendix). Indeed, looking for the transformation minimizing G is Function list of candidates(n) -Input: n is a node -Output: a list of candidates for the factorization if (operator(n) is "-") then n = child of(n) end if if (operator(n) is "*") then return children of(n) else return singleton(n) end if Function Factorization(n) -Input: n is a node -Output: a list of possible factorizations for this node if (operator(n) is "+") then let list of terms = children of(n) let Z1 = 0 for each term in list of terms let list of successors = successors of term in list of terms for each X in list of candidates(term) let Z2 = 0 let list of Y = (nil) for each successor in list of successors if (Xappears in list of candidates(successor)) then add successor X found!"1"] to list of Y else Z2 = Z2 "+" successor end if end for each successor if (list of Y is not empty) then add term X tested!"1"] to list of Y (X,list of Y,Z1 "+" Z2) is a candidate for factorization end if end for each X Z1 = Z1 "+" term end for each term end if equivalent to comparing the sum of the weight W for each t e r m Y involved in the factorization. We used W, C and G as criteria for our rst experiments. Even if it seemed to be su cient, it might be necessary to build more precise ones (for instance something describing the degree of internal parallelism that the target processor is providing). Nevertheless, our implementation has been build in such a w ay that we can change the criterion without modifying anything else.

This factorization algorithm has been tested with several expressions extracted from real applications. It automatically found all factorizations and made the right decisions. The results were very promising as they were as good as hand made optimizations.

Multiply-add extraction

The new generation of processors o ers more and more instruction level parallelism. Moreover, some architectures provide a new kind of instructions that allow the simultaneous execution of an addition and a multiplication. Thanks to these instructions, constructors can claim that the peak MFLOP/s rate has doubled. However, if the compiler is not able to extract this kind of construction (i.e. x y + z) from the original code, the performance of the code is not so good. In fact, our experiments show that existing back-end passes in the IBM compiler can only nd multiply-adds when the structure of the expression is really simple.

Algorithm overview

Algebraic transformations using associative and commutative l a ws can be useful when extracting multiply-add constructions. We just have to look for a simple pattern in a tree but the number of matches would be too important i f w e used Storm (the decision must be made between all fma constructions). Because the multiplication is a commutative-associative operator with at least two sub-terms, it is not possible to ask for a pattern such a s + (x (y)). Thus, for the expression i 1 + : : : + i m + j 1 j 2 : : : j n there are (2 m ; 2)(2 n ; 2) matches for a pattern x + y z.

Our algorithm is presented in Figure 8. The multiply-add extraction function returns, for one node, the best multiply-add transformation according to a given criterion (see below). The notation (x, y, z) is used to describe the fma construction corresponding to x y + z. Considering that a node has n sub-terms and each o f t h e m h a s m children, the complexity of this algorithm is O(n:m).

Choice criterion

First, we h a ve t o c hoose, between all the candidates, the multiplication that leads to the best result. As in section 4.1 we w ant to minimize the evaluation cost of the expression. Thus, we c hoose the same criterion: we try to minimize the gravity G of our expression. Considering the general case depicted in Figure 9, we h a ve G 1 G 2 , W x + W y W z + W k (the proof is similar with the one presented in Appendix). Then choosing the transformation that leads to the minimal gravity i s equivalent to selecting the multiplication with the maximal weight W. The heaviest multiplication is placed closest to the root and the remaining lighter ones are kept beneath, so as to reduce G globally.

Moreover, when the multiplication has more than two sub-terms, we use the associative l a w i n order to obtain a well-balanced tree. Given n terms t i and a cost measure c i we w ant to build two subsets of equivalent total cost. The measure we use can be either W, C or G depending on the precision we are looking for. Such a method is quite similar to the PARTITION problem which i s well-known to be NP-Complete 15]. We c hose the very classical greedy partitioning heuristics (see example on Figure 10) that lls 2 buckets using costs of decreasing order, choosing each time the less lled bucket to store the new cost in it. Any other algorithm could be used to perform this partitioning.

Function Finally, once the multiplication has been selected, another choice arises concerning the addition sub-terms : both solutions are presented in Figure 9. In the rst case, all the sub-terms are left beneath the multiply-add construction. However, if the sub-term weights for the nodes n 1 n 2 : : : n i (which are not multiplications) are quite large, it may b e m o r e i n teresting to place them over the fma construction (see the second case on Figure 9). Thus, a local decision is made in order to minimize the global gravity measure of the expression. The node with the lowest weight is still kept beneath in order to allow one more multiply-add construction. We can show that choosing the best transformation according to this gravity criterion is equivalent to compare the sum of the weights for all multiplications plus the one of the lightest node n 1 to the sum of the remaining node weights n 2 : : : n i (G 1 G 2 , P j W + W lowest W others). This heuristics once more attempts to minimize the whole gravity of the expression by iteratively making the best local decision. Our rst experimental results on real applications show that multiply-add extraction significantly improve performance. Our algorithm automatically extracts multiply-add constructions and improves performance up to 70%. In fact, we observed that a good decision between several multiply-add transformations in order to keep a well balanced expression is very important (s e e Figure 5 and Table 3). A wrong decision can decrease the performances down to 20% even if the same number of fma is found.

Related Work

From the programming language point of view, high-level transformations on arithmetic expressions are not allowed, because of the natural instability of oating point arithmetics 10]. However, the Fortran language (section 6.6.4 of 2], section 7.1.7 of 14]) allows compilers to take advantage of associativity and commutativity and other algebraic properties, provided that the integrity o f parentheses is not violated. It does allow to factorize expressions for instance. An early design of the C standard also considered allowing such transformations, but this was later rejected (section 3.3 of 3]). However, even if numerical results are modi ed by the process, there is no reason for them to be either better or worse than the original one, if no special care was taken by the programmer. Moreover such transformations would be carried out under high-level compiler optimizations, which always warn the user about potential result changes.

Since the CDC 6600 7], many processors present instruction level capabilities by m e a n o f independent, replicated and pipelined functional units. This evolution led to modern super-scalar processors and VLIW architectures. As far as expression evaluation is concerned, the oating point unit part is of more special interest. A typical example is the IBM RS6K power chips, which include 2 parallel and pipelined multiplier-adder requiring 4 independent operations to be lled. Also many processors, focusing on the scienti c computation market, include multiply-add instructions, which compute in a single step a b + c : the IBM RS6K Power chip, the Intel i860, SGI MIPS R-family (R5000-R10000), HP PA-RISC 7]. Such special instructions have regained interest with so-called multimedia extensions as the Intel's MMX technology 11]. Thus the algorithm presented here are widely applicable.

Compilers perform a great deal of optimizations for instruction scheduling and register allocation, which is critical to obtain good performance on modern microprocessors. The transformations suggested here focus on generating expressions that will give more freedom to these back-end algorithms to perform a better job. This kind of transformations can in some cases decreases the possibilities of back-end compiler optimizations. However, we think that such high-level transfor-mations are of minimal in uence on scheduling and register allocations algorithms. As we i m p r o ve the degree of parallelism of the involved expressions (compare for instance Figures 3-b and3-c), the necessary unrolling factor is decreased and then the number of registers is also reduced. From the standard compiler point of view, transformations that take a d v antage of the associativity a n d commutativity of operators are not really simple because a typical intermediate representation does not expose these properties at all 1]. Expressions are atomized, and pattern-matching on 3-address code is limited to simple properties such as neutral element detection for an operator. The IBM RS6K compiler performs basic multiply-add fusion, but does not try to investigate di erent c hoices (one issue is to avoid combinatorial explosions). Associativity of operators is sometimes used to equilibrate reduction computations, especially in parallel languages 13].

Such transformations involve solving various NP-Complete problems, leading to too high a cost for compilers. However, high level algebraic transformations are used as means of optimization in other elds such as optimizing SQL queries. In the eld of VLSI DSP synthesis, transformations such as tree-height reduction 12] and others 18] take a d v antage of algebraic properties to reduce the hardware cost of computing an expression, and reduce its latency. These works derive f r o m compilation techniques 16] of expressions when no limit on the number of functional units is assumed. Researches in the eld of VLIW compilation mainly focus on techniques to enlarge the basic block length and to avoid branches (if-conversion, speculative execution), as compaction is well understood and studied. However they bene t from better balanced expression trees and shorter critical path that expose the maximum parallelism in an expression 16].

Conclusion and Future Work

We h a ve shown that the performance of computationally intensive applications can be signi cantly improved by c hoosing clever evaluation strategies of expressions. This choice is most often left to the programmers, although it requires advanced knowledge of the target architecture (Instruction Level Parallelism, special instructions, number of registers...) to produce an expression that gives more opportunities to back-end passes to perform their task optimally.

Since pattern-matching leads to combinatorial explosions and the necessary choices are combinatorial themselves, we h a ve suggested and implemented two heuristics that automatically perform algebraic transformations as a preprocessor phase or under a high level of compiler optimizations. Simple choice criteria have been discussed too and experiments have emphasized the real impact of a well-tuned criterion on performance results. Nonetheless, such optimizations are e cient only if the memory behavior of the corresponding application is good. In fact, improving the way functional units can be lled is useless if a memory bottleneck arises.

Following our rst promising results, we m ust now extend this approach to other architectures and algebra. Further experiments are already scheduled3 with applications from the SPEC FP95 benchmarks suite and with industrial scienti c codes. A more general framework based on algebraic properties (especially associativity and commutativity) in order to improve the performance of expression evaluation is also planned. We especially intend to use associative and commutative laws to promote common sub-expression elimination and invariant code motion.

Figure 1 :

 1 Figure 1: An excerpt from the APPLU benchmark.

Figure 2 :

 2 Figure 2: APPLU -Original structure.

Figure 3 :

 3 Figure 3: Transformations for APPLU.

Figure 4 :

 4 Figure 4: ONDE24 kernel.

Figure 5 :

 5 Figure 5: Multiply-add extractions.

Figure 6 :

 6 Figure 6: Factorization algorithm.

Figure 7 :

 7 Figure 7: Incompatible factorizations.

Figure 9 :

 9 Figure 9: Incompatible multiply-add.

Figure 10 :

 10 Figure 10: Heuristics example.

Table 2 :

 2 Performance study for ONDE24.

	Processor Power2 wide node 590 P2SC thin node 595 P2SC thin node 595	MHz Rate MFLOP/s Peak max MFLOP/s measured MFLOP/s 66 266 186 44 120 480 336 70 160 640 448 91

Table 3 :

 3 ONDE24 performance after the transformations.

Experiments are made with nx = ny = nz = 100 and double precision oats.

Note that this transformation of a polynome corresponds to the H orner computation method.

The nal version of this paper will include more experimental results.

Acknowledgments

We w ould like to thank Jacques Raguideau and Patrick Baudin from Commissariat a l ' Energie Atomique for their help. The experience about STORM and rewriting rules they gained with the CAVEAT project 6] has been very useful. We w ould like to thank Pierre Jouvelot and Fran cois Irigoin for their suggestions as well.

Appendix

Proposition Let W N be the total weight for a node N and G N be its gravity Let w + , w be individual weights for + and operations Let E be an expression such a s E = x y + x z + y k If E 1 and E 2 are the two factorized expressions for E such a s :

If T is a transformation from N to N' such a s d 0 i = d i + n and w 0 i = w i then we h a ve

From this result, G 1 and G 2 are easily expressed from the values of W and G for nodes x, y, z and k. A s w e assume that common subexpression elimination techniques are applied later, we only consider the deepest node x in E 1 (respectively y in E 2).

G 1 = w++2 (w +w)+3 w++(Gx+2)Wx+(G k +2)W k +(Gy+3)Wy+(Gz +3)Wz 2 (w++w)+Wx+Wy +Wz+W k G 2 = w++2 (w +w)+3 w++(Gy+2)Wy+(Gz+2)Wz+(Gx+3)Wx+(G k +3)W k 2 (w++w)+Wx+Wy +Wz+W k A few simpli cations give us the result G 1 ; G 2 = (W y + W z) ; (W x + W k).

Q.E.D.