N

N

Using Algebraic Transformations to Optimize
Expression Evaluation in Scientific Codes
Julien Zory, Fabien Coelho

» To cite this version:

Julien Zory, Fabien Coelho. Using Algebraic Transformations to Optimize Expression Evaluation
in Scientific Codes. International Conference on Parallel Architectures and Compilation Techniques,
PACT’98, Oct 1998, Paris, France. p. 376 - 384. hal-00752802

HAL Id: hal-00752802
https://minesparis-psl.hal.science /hal-00752802

Submitted on 16 Nov 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://minesparis-psl.hal.science/hal-00752802
https://hal.archives-ouvertes.fr

Research Report EMP CRI A/307/
Using Algebraic Transformations to Optimize
Expression Evaluation in Scientific Codes

Julien Zory - Fabien Coelho
Centre de Recherche en Informatique
Ecole Nationale Supérieure des Mines de Paris
35, rue Saint-Honoré, F-77305 Fontainebleau Cedex, France

{Julien.Zory,Fabien.Coelho}@cri.ensmp.fr

April 1998

Abstract

Algebraic properties such as associativity or distributivity allow the manipulation of a set of
mathematically equivalent expressions. However, the cost of evaluating such expressions on a
computer is not constant within this domain. We suggest the use of algebraic transformations
to improve the performances of computationally intensive applications on modern architecture
computers. We claim that taking into account instruction level parallelism and new capabilities
of processors when applying these transformations leads to large run-time improvements. Due
to a combinatorial explosion, associative-commutative pattern-matching techniques cannot sys-
tematically be used in that context. Thus, we introduce two performance enhancing algorithms
providing factorization and multiply-add extraction heuristic and choice criteria. This paper de-
scribes our approach and a first implementation. Experiments on real codes, including a SPEC
FP95 excerpt, are very promising as we automatically obtain the same results than hand made
transformations, with up to 70% performance improvements.

Keywords : Algebraic transformations, Expression evaluation, Instruction Level Paral-
lelism, Multiply-add instructions.

1 Introduction

Many scientific and engineering applications involve the repeated evaluation of possibly large ex-
pressions. Thanks to some of the mathematical properties of the involved operators, such as
commutativity and associativity, there are often many ways to compute an expression. FEven if
expressions are mathematically equivalent, their computational costs may be significantly different.
However, the choice between these mathematically equivalent expressions introduces a large pro-
gramming overhead for scientists. In fact, they must have a good knowledge of both the compilation
techniques and the hardware capabilities to benefit from these optimizations. Finally, their code
becomes more difficult to understand and maintain. On the other hand, from the compiler point
of view, these algebraic transformations are high-level code modifications. Most of the compilers
have an internal representation based on three-address code which prevents them from simply using
information such as the distributivity.

We investigate here the use of source-to-source algebraic transformations to minimize the exe-
cution time of expression evaluation on modern computer architectures by choosing a better way
than the initial one, to compute the expressions. This work is mainly motivated by the current

processors evolution. Indeed, the ever increasing use of pipelining, instruction level parallelism,
new hardware capabilities, etc. entails new compilation technique requirements. In particular, we
claim that algebraic transformations taking into account the underlying architecture capabilities
significantly improve the performance of computationally intensive applications.

Experiments on IBM RS6K Power2 chips with an application kernel and a benchmark excerpt
from SPEC FP95 provide over 60% improvements simply by modifying expression evaluation. We
present two algorithms performing the same transformations. The first one factorizes expressions
and the second one extracts multiply-add operations. Both algorithms take into account architec-
ture parameters such as Instruction Level Parallelism, in order to choose better transformations
according to performance purposes.

The remainder of the paper is organized as follows. Section 2 describes two experiments and the
results we obtained with hand made transformations. Algebraic transformation issues and imple-
mentation details are stated in Section 3. We then present two algorithms performing factorization
and multiply-add extraction and discuss choice criteria in Section 4. The related work is given in
Section 5 and we conclude with future research directions in Section 6.

2 Motivating Examples

Experiments have been performed on several processors of the RISC IBM-RS6K family. We mea-
sured performance on Power2 (thin and wide nodes) and P2SC (Power2 Super Chip) implementa-
tions (which are in fact quite similar except from the data cache size and bus width). All Power2
architectures use five basic units, including a floating point unit (fpu) with dual floating point
execution units. Fach of them can decode and execute floating-point instructions and has the ca-
pability of executing a floating-point multiply-add (fma) instruction every cycle. This means that
the Power2 processors have a peak MFLOP /s rating of four times the MHz rate. The native IBM
XL Fortran (x1£f) compiler has been used to generate optimized object code by specifying appro-
priate compiler options (-qarch=pwr2 -03 -ghot). The source-to-source preprocessor KAP [17] for
IBM XL Fortran has been used as well.

2.1 Experiments with APPLU (SPEC FP95)

We focus here on a small excerpt from APPLU (see Figure 1), a solver for five coupled parabolic-
elliptic partial differential equations from the Spec FP95 benchmarks suite, written in standard
Fortran 77. The code contains many subroutines, and most of them are computationally intensive
and may benefit from our techniques. This excerpt involves quite a large expression which is
computed for each iteration within a loop nest. The very same expression appears several times in
the source code. Its naive evaluation requires 12 x 5n° additions and 30 x 5n% multiplications (see
Figure 2).

Version Evaluation time (seconds) | Improvement
Initial 0.78 -
Invariant code motion 0.49 37%
Factorized 0.35 55%
Factorized + fma 0.26 67%

Table 1: Experimental results for the applu excerpt on a P2SC 595 (160 MHz).

[...]1
do j
eta

2, ny -1

(dfloat(j-1)) / (ny - 1)
doi=2, nx -1

xi = (dfloat(i-1)) / (nx - 1)
do k =1, nz

zeta = (dfloat(k-1)) / (nz - 1)
dom=1,5
ue(m,k) = ce(m,1)
+ ce(m,2) * xi
+ ce(m,3) * eta
+ ce(m,4) * zeta
+ ce(m,5) * xi * xi
+ ce(m,6) * eta * eta
+ ce(m,7) * zeta * zeta
+ ce(m,8) * xi * xi * xi
+ ce(m,9) * eta * eta * eta
+ ce(m,10) * zeta * zeta * zeta
+ ce(m,11) * xi * xi * xi * xi
+ ce(m,12) * eta * eta * eta * eta
+ ce(m,13) * zeta * zeta * zeta * zeta
end do
[...]

Figure 1: An excerpt from the APPLU benchmark.

Figure 2: APPLU - Original structure.

The simplest way to improve the performances of this loop nest is to apply invariant code motion
techniques in order to move the products on variables zt, eta and zeta outermost. The number of
multiplications is then reduced to 12 x 5n2 4+ 3n3 + 3n? + 3n. However, as the IBM x1f compiler
assumes that the multiplication is left associative (i.e. # X y X z = (z X y) X z), this optimization
is not applied and performance is very low. A hand made transformation based on invariant code
motion gives us a 37% performance improvement!.

Thanks to the distributive law, we can further reduce the number of operations which are
necessary to evaluate that expression. Figure 3-a shows the new structure of the expression when
factorization has been applied?. The number of multiplications decreases to 12 x 5n> but the
number of additions is left unchanged. This transformation leads to a 55% improvement.

Furthermore, Figure 3-b illustrates the benefit of using floating point multiply-add instructions
after the factorization process. This transformation reduces the total number of operations to 12 x
5n? fused multiplication-additions. The IBM x1f compiler tries to extract that kind of operations
(z X y+ z) from the code but it does not find all of them and does not take advantage of available
choices to select the best solutions. We improved the performance up to 67% by manually inserting
appropriated parentheses to help the compiler during the fma extraction process (for instance

!Experiments are made with nx = ny = nz = 100 and double precision floats.
2Note that this transformation of a polynome corresponds to the Hérner computation method.

Factorization

E j () Invanant code motion

4+ fma extraction

5 b g m m

s

Factorlzatlon 4+ fma extraction
Figure 3: Transformations for APPLU.

21 X (23 X 3 X x4+ @5) + 6 + x7 X xg is rewritten ((z1 X (22 X (23 X 24) + @5) + z6) + 27 X 23)).
Table 1 summarizes our experimental results with APPLU.

2.2 Experiments with ONDE24 (IFP)

ONDE24 is a 2-Dimensional Acoustic Wave Modeling application from Institut Francais du Pétrole.
This code is written in standard Fortran 77 and its main time consuming part is the loop nest given
in Figure 4-a. For each point in the whole NPXNP area, the new pressure value U is computed from
its neighbors and from the velocity V (see the pattern in Figure 4-b). Evaluating this expression
requires 10 additions and 4 multiplications as depicted in Figure 4-c. As stated above, the Power2
architecture can execute two multiply-add operations every cycle, so we need at least 5 cycles
to evaluate that expression. Thus, the maximal MFLOP /s rate for this code is %X MHz rate.
However, the maximal MFLOP/s rate compared to the actual performance we measured shows
that neither the IBM compiler nor the KAP preprocessor generate efficient code. In fact, we
learned by looking at the intermediate assembly code that the compiler was not able to generate
the fma instructions properly.

In order to help the compiler, fma constructions were suggested by inserting appropriated
parentheses. As shown in Table 3 such a simple transformation improves the performances of
the whole application up to 70%. Multiply-add instructions are really efficient, but also very

[...]
DO J = 3,NP-2
DO I = 3, NP-2
U(I,J,KP) =

$ 2 * UCI,J,KM) - U(I,J,KP)
$ - V(I,D) * (60%U(I,J,KH)
$ -16%(U(I+1,7,KM) + U(I-1,3,KM)
$ + UCT,J-1,KM) + UCT,J+1,KH))
$ + UCI+2,J,KH) + UCI-2,3,KH)
$ + UCT,J-2,KH) + UCT,J+2,KH))
ENDDO
ENDDO
[...]
(a) code (b) pattern (c) original structure
Figure 4: ONDE24 kernel.
Processor MHz Rate | MFLOP /s Peak | max MFLOP /s | measured MFLOP /s
Power2 wide node 590 66 266 186 44
P2SC thin node 595 120 480 336 70
P2SC thin node 595 160 640 448 91

Table 2: Performance study for ONDE24.

difficult to extract. There is more than one way to extract multiply-add instructions. Figure 5
presents four different fma transformations of the original ONDE24 expression which lead to really
different performance (spread is about 20%). We have to choose between two transformations
each time we have something like 2y X 25 4+ 235 X 4. These experiments show us that for the same
amount of computation but with expressions which are not identically balanced, we obtain different
performance. The first transformation on Figure 5-a is the most efficient and is in fact the best
balanced one. We will further discuss this point later in this paper (see section 4.2).

Version (Figure) | P2SC 595 (120 MHz) | Power2 590 (66 MHz)
MFLOP/s MFLOP/s
Initial 4 70 44
First transformation H-a 110 75
Second transformation 5-b 91 71
Third transformation 5-c 90 -
Fourth transformation 5-d 87 -

Table 3: ONDE24 performance after the transformations.

3 Optimizing Expressions

As demonstrated above, a very simple transformation can significantly improve the performance of
expression evaluation. Our aim is to exploit algebraic properties to rearrange expressions according
to performance constraints. First of all, reducing the whole number of operations is most often
interesting. Then, it might be efficient to replace some costly operators by others which compute the

-
o

ﬁﬁg

Versmn 1. Versmn 2.
Versmn 3. Versmn 4.

Figure 5: Multiply-add extractions.

same value more quickly. Due to instruction level parallelism, it becomes more and more important
to take into account the structure of the involved expressions.

3.1 Definitions

Given two expressions, predicting which one is the most computationally expensive is very difficult.
Several parameters such as the number of operators, the operation latency, the critical path length,
the register pressure, etc. must be considered. An expression has a real cost which corresponds to
its evaluation time on a given processor. Predicting this real cost is obviously very difficult and time
consuming. However, theoretical values can be used to describe more or less the expression and
give an estimated cost. Assuming that the processor provides as many functional units as we need,
the critical path is the most important value. However, when only one functional unit is available,
the total weight becomes preponderant. As most processors have more than one degree of internal
parallelism, but none of them is unlimited in the number of functional units, both parameters must
be considered. Then, we use a gravity measure including both the weight of the operations, and
their average level in the expression tree. We experience that it is quite a good estimated cost
which emphasizes the degree of parallelism within the instruction.

Let w; be the weight associated with each node ¢ in the tree that represents an expression (for
instance, w; = 1 for an addition and w; = 10 for a division). Let d; be the depth of a node ¢ in the
tree. We call Wg = 377, w; the total weight for an expression £/ with n nodes. The critical path

.. . . " i xd;
length is given by C'y = max/_, d; and the gravity measure is Gg = 721:11/;;0 .
useful for estimating the evaluation cost of an expression. Nevertheless, better estimators could be

. These values are

used if necessary.

3.2 Algebraic transformations

Due to the relationship between Sciences and Mathematics, many scientific codes may benefit from
algebraic transformations. One of the main issues of this study is to consider the associative and
commutative laws in order to rearrange the structure of the involved expressions. Moreover, we
benefit from the distributivity in order to reduce the number of operations that are really necessary
to evaluate an expression. Neutral and identity elements are sometimes worth taking into account
(for instance @ + zy = 2(1 4 y) is an efficient transformation if (1 + y) can be computed outermost
within a loop nest). Other properties are useful too when trying to improve expressions evaluation
performance. For instance, it can be very efficient to replace a divide operation a/b by its inverse
operator @ x b~! if b= can be computed earlier or is used several times. In the same way, a
square calculus a® will be efficiently replaced by a multiplication a * a. In fact, these operations are
mathematically equivalent but they lead to different performance due to operation latency. This
kind of transformations are also useful when manipulating logical operators such as AND, OR,
NOT, NOR or any other algebra.

3.3 Preprocessing

Our goal is to rearrange expressions according to performance purposes. As scientists are usually
not directly concerned by performance issues, they may have written their expressions according
to other requirements such as legibility, or expressions may have been automatically generated by
an automatic tool. We must then ensure that the expression we work on can be freely rearranged.
For instance, we use the distributive law in order to distribute expressions such as z(y+ z) + y * k
in case a factorization on y would be more interesting. Moreover, during this preprocessing phase,
we try to simplify expressions as much as possible using most of above algebraic properties.

Pattern-matching techniques are well fitted to these needs. Although the associative-commutative
matching problem is known to be NP-complete [8], there are several available implementations of
pattern-matching algorithms. We chose Storm, a many-to-one associative-commutative matcher [9]
which is using a discrimination net mechanism [5]. As Storm accepts input terms and outputs their
matches, we just have to insert rewriting rules in order to implement our algebraic transformations.

The internal representation we use takes into account properties of operators such as associa-
tivity and commutativity. The expression is transformed step by step until no more rule can be
applied. We do not specify any order in the rule applications. The rewriting engine provides a
mechanism allowing the manipulation of several rule bases. Moreover, functions can be associated
with rules and automatically applied in order to check the validity of a match or to guide the
rewriting process.

4 Algorithms

The above preprocessing phase applies algebraic transformations step by step. Since there is no
need to choose between several incompatible transformations, pattern-matching techniques are well
fitted. However, as algorithms presented below must make decisions, a combinatorial explosion in
the number of matches prevents us from using the same techniques. This section gives an overview
of two heuristics which automatically transform expressions in order to factorize and extract fma
constructions. Both algorithms include choice criteria that are necessary to achieve better perfor-
mance. The number of mathematically equivalent expressions with respect to the different choices
of factorization and multiply-add constructions is very large. Due to this combinatorial explosion,
we cannot explore all of them. Thus, our approach relies on an iterative process : each modification

step tries to make the best local decision. The whole transformation may be not optimal but these
heuristics lead to good pratical results.

4.1 Factorization

In order to reduce the number of operations which are necessary to compute an expression, our goal
is to transform expressions such as z X mtexXy+...+x Xy, +zinto x x (y1 +y2...+ yn) + z.
This algebraic transformation is allowed because the distributive law is true on (+, x). However,
we may also consider the same distributive law with other operators such as (max, +) [4]. Inverse
operators have to be considered as well (for instance 2 X y —2 X z = 2 X (y — 2)).

4.1.1 Algorithm overview

Although we have to look for a pattern z in a tree, several factors prevent us from using the
associative-commutative matching techniques : First, most pattern-matching tools do not provide
enough expressivity to express patterns such as : 2 + & X g3+ X g2+ ...+ 2 X y, + 2z where
x is optional and n is unknown. This implies that the factorization would have to be done step
by step (using & X y; + @ X y, several times), and that duplicate patterns would be used to solve
the optional terms problem. Moreover, we always want to have the choice between all possible
factorizations (i.e. we can’t be satisfied with systematically choosing the first one). Then, when
considering expressions like 73 X @3... X 1, X y1 + ... 4 41 X 42... X %, X ¥, the number of matches
(27 — 1) x n!) becomes very large. Nevertheless, we do not need to consider all of them because a
lot of matches are equivalent from the factorization point of view.

The main part of our algorithm is presented in Figure 6. The factorization function returns
a list of possible factorizations for a given node (we note (z, list of y;, z) the factorization for an
expression F such as £ =z X Y. y; + z). The notation ni[ny — ns] describes the substitution of
a node ny by a node ns within ny. This algorithm is not optimal and some factorizations might
be missing (for instance the ones like (z + y) X (# + k)). Considering that a node has n sub-
terms and each of them has m children, the complexity of this algorithm is O(n?m?) under the
following hypotheses. We assume that a comparison between two subtrees only takes a constant
time O(1). Even if this is not exactly the case, this assumption is quite reasonable when using an
appropriate hash value and a clever data structure. This algorithm is far from our implementation
which has been optimized in many ways. For instance, it is more efficient to keep track of the
list of candidates during the whole scan. Moreover, we build a list of already tested terms X in
order to avoid duplicated factorizations. We also provide a parametric implementation of operator
manipulation so as to use the same algorithm with other algebra such as (max, +), (OR, AND)...

4.1.2 Choice criterion

As more than one factorization is often found within an expression, the choice problem must be
considered. In fact, two different factorizations might be incompatible. For instance, only one
factorization is kept in @ X b4+ a x 21 + b X x3. The result is then a x (b4 z1) + b X 23 or
ax x1+ b X (a+ xz). Even if the number of operations is exactly the same in both cases, the
real cost of the expression may be significantly different depending on the respective costs of the
involved terms (for instance, expressions are not identically balanced).

We use the minimization of the gravity GG as a criterion to choose between two factorizations.
Considering the general case presented in Figure 7, we can show that G4 < Gy & (W, + W) <
(W, 4+ Wy) (see proposition in appendix). Indeed, looking for the transformation minimizing G is

Function list_of_candidates(n)

- Input: n is a node

- QOutput: a list of candidates for the factorization
if (operator(n) is "-") then n = child of(n) end if
if (operator(n) is "#") then return children of(n)

else return singleton(n)
end if

Function Factorization(n)
- Input: n is a node
- Output: a list of possible factorizations for this node
if (operator(n) is "+") then
let list of terms = children of(n)
let Z1 =0
for each term in list of terms
let list of successors = successors of term in list of terms
for each X in list_of_candidates(term)
let Z2 =0
let list of Y = (nil)
for each successor in list of successors
if (Xappears in list_of_candidates(successor)) then
add successor[X found—"1"] to list of YV
else
o = Jo "+" successor
end if
end for each successor
if (list of Y is not empty) then
add term[X _tested—"1"] to list of YV
(X, list of Y,Z1 "+" Z5) is a candidate for factorization
end if
end for each X
Z1 = Z1 "+" term
end for each term
end if

Figure 6: Factorization algorithm.

equivalent to comparing the sum of the weight W for each term Y involved in the factorization.
We used W, (' and G as criteria for our first experiments. Even if it seemed to be sufficient, it
might be necessary to build more precise ones (for instance something describing the degree of
internal parallelism that the target processor is providing). Nevertheless, our implementation has
been build in such a way that we can change the criterion without modifying anything else.

This factorization algorithm has been tested with several expressions extracted from real appli-
cations. It automatically found all factorizations and made the right decisions. The results were
very promising as they were as good as hand made optimizations.

4.2 Multiply-add extraction

The new generation of processors offers more and more instruction level parallelism. Moreover,
some architectures provide a new kind of instructions that allow the simultaneous execution of an
addition and a multiplication. Thanks to these instructions, constructors can claim that the peak

(a) original (b) factorization 1 (c) factorization 2

Figure 7: Incompatible factorizations.

MFLOP /s rate has doubled. However, if the compiler is not able to extract this kind of construction
(i.e. z X y 4 z) from the original code, the performance of the code is not so good. In fact, our
experiments show that existing back-end passes in the IBM compiler can only find multiply-adds
when the structure of the expression is really simple.

4.2.1 Algorithm overview

Algebraic transformations using associative and commutative laws can be useful when extracting
multiply-add constructions. We just have to look for a simple pattern in a tree but the number
of matches would be too important if we used Storm (the decision must be made between all fma
constructions). Because the multiplication is a commutative-associative operator with at least two
sub-terms, it is not possible to ask for a pattern such as +(z, x(y)). Thus, for the expression
i1+ ...+ lm+J1 X J2... X j, there are (27 — 2)(2" — 2) matches for a pattern z + y x z.

Our algorithm is presented in Figure 8. The multiply-add extraction function returns, for one
node, the best multiply-add transformation according to a given criterion (see below). The notation
(z,y, z) is used to describe the fma construction corresponding to @ X y 4+ z. Considering that a
node has n sub-terms and each of them has m children, the complexity of this algorithm is O(n.m).

4.2.2 Choice criterion

First, we have to choose, between all the candidates, the multiplication that leads to the best result.
As in section 4.1 we want to minimize the evaluation cost of the expression. Thus, we choose the
same criterion: we try to minimize the gravity &' of our expression. Considering the general case
depicted in Figure 9, we have Gy < Gy & W, + W, > W, + Wy, (the proof is similar with the one
presented in Appendix). Then choosing the transformation that leads to the minimal gravity is
equivalent to selecting the multiplication with the maximal weight W. The heaviest multiplication
is placed closest to the root and the remaining lighter ones are kept beneath, so as to reduce G
globally.

Moreover, when the multiplication has more than two sub-terms, we use the associative law in
order to obtain a well-balanced tree. Given n terms t; and a cost measure ¢; we want to build two
subsets of equivalent total cost. The measure we use can be either W, C' or G depending on the
precision we are looking for. Such a method is quite similar to the PARTITION problem which is
well-known to be NP-Complete [15]. We chose the very classical greedy partitioning heuristics (see
example on Figure 10) that fills 2 buckets using costs of decreasing order, choosing each time the
less filled bucket to store the new cost in it. Any other algorithm could be used to perform this
partitioning.

10

Function list_of_candidates(n)

- Input: n is a node

- Output: a list_of_candidates for fma extraction
let list of candidates = (nil)
let list of terms = children of(n)
for each term in list of terms

if (operator(term)is "#") then

add term to list of candidates

end if

if (operator(term)is "=" and operator(child of(term)) is "*") then
add child of(term) to list of candidates

end if

end for each term
return list of candidates

Function multiply-add extraction(n)

- Input: n is a node
- QOutput: a multiply-add extraction

if (operator(n) is "+") then
let list of terms = list_of_candidates(n)
node = choose candidate according to criterion from list of candidates
(b1,b2) = heuristic_balance(node)
(b1,b2,n[node — "0"]) is a fma construction

end if

Figure 8: Multiply-add extraction algorithm.

Finally, once the multiplication has been selected, another choice arises concerning the addition
sub-terms : both solutions are presented in Figure 9. In the first case, all the sub-terms are left
beneath the multiply-add construction. However, if the sub-term weights for the nodes ny,no...,n;
(which are not multiplications) are quite large, it may be more interesting to place them over the
fma construction (see the second case on Figure 9). Thus, a local decision is made in order to
minimize the global gravity measure of the expression. The node with the lowest weight is still
kept beneath in order to allow one more multiply-add construction. We can show that choosing
the best transformation according to this gravity criterion is equivalent to compare the sum of the
weights for all multiplications plus the one of the lightest node ny to the sum of the remaining node
weights ny...n; (G1 < Gy < i Wt Wigwest > Wothers). This heuristics once more attempts to

minimize the whole gravity of the expression by iteratively making the best local decision.

(a) original (b) multiply-add 1 (c) multiply-add 2

Figure 9: Incompatible multiply-add.

11

Figure 10: Heuristics example.

Our first experimental results on real applications show that multiply-add extraction signif-
icantly improve performance. Qur algorithm automatically extracts multiply-add constructions
and improves performance up to 70%. In fact, we observed that a good decision between several
multiply-add transformations in order to keep a well balanced expression is very important (see
Figure 5 and Table 3). A wrong decision can decrease the performances down to 20% even if the
same number of fma is found.

5 Related Work

From the programming language point of view, high-level transformations on arithmetic expressions
are not allowed, because of the natural instability of floating point arithmetics [10]. However, the
Fortran language (section 6.6.4 of [2], section 7.1.7 of [14]) allows compilers to take advantage
of associativity and commutativity and other algebraic properties, provided that the integrity of
parentheses is not violated. It does allow to factorize expressions for instance. An early design of the
C standard also considered allowing such transformations, but this was later rejected (section 3.3
of [3]). However, even if numerical results are modified by the process, there is no reason for them
to be either better or worse than the original one, if no special care was taken by the programmer.
Moreover such transformations would be carried out under high-level compiler optimizations, which
always warn the user about potential result changes.

Since the CDC 6600 [7], many processors present instruction level capabilities by mean of
independent, replicated and pipelined functional units. This evolution led to modern super-scalar
processors and VLIW architectures. As far as expression evaluation is concerned, the floating point
unit part is of more special interest. A typical example is the IBM RS6K power chips, which include
2 parallel and pipelined multiplier-adder requiring 4 independent operations to be filled. Also many
processors, focusing on the scientific computation market, include multiply-add instructions, which
compute in a single step @ X b+ ¢ : the IBM RS6K Power chip, the Intel 860, SGI MIPS R-family
(R5000-R10000), HP PA-RISC [7]. Such special instructions have regained interest with so-called
multimedia extensions as the Intel’s MMX technology [11]. Thus the algorithm presented here are
widely applicable.

Compilers perform a great deal of optimizations for instruction scheduling and register alloca-
tion, which is critical to obtain good performance on modern microprocessors. The transformations
suggested here focus on generating expressions that will give more freedom to these back-end al-
gorithms to perform a better job. This kind of transformations can in some cases decreases the
possibilities of back-end compiler optimizations. However, we think that such high-level transfor-

12

mations are of minimal influence on scheduling and register allocations algorithms. As we improve
the degree of parallelism of the involved expressions (compare for instance Figures 3-b and 3-c),
the necessary unrolling factor is decreased and then the number of registers is also reduced. From
the standard compiler point of view, transformations that take advantage of the associativity and
commutativity of operators are not really simple because a typical intermediate representation does
not expose these properties at all [1]. Expressions are atomized, and pattern-matching on 3-address
code is limited to simple properties such as neutral element detection for an operator. The IBM
RS6K compiler performs basic multiply-add fusion, but does not try to investigate different choices
(one issue is to avoid combinatorial explosions). Associativity of operators is sometimes used to
equilibrate reduction computations, especially in parallel languages [13].

Such transformations involve solving various NP-Complete problems, leading to too high a cost
for compilers. However, high level algebraic transformations are used as means of optimization in
other fields such as optimizing SQL queries. In the field of VLSI DSP synthesis, transformations
such as tree-height reduction [12] and others [18] take advantage of algebraic properties to reduce
the hardware cost of computing an expression, and reduce its latency. These works derive from
compilation techniques [16] of expressions when no limit on the number of functional units is
assumed. Researches in the field of VLIW compilation mainly focus on techniques to enlarge the
basic block length and to avoid branches (if-conversion, speculative execution), as compaction is
well understood and studied. However they benefit from better balanced expression trees and
shorter critical path that expose the maximum parallelism in an expression [16].

6 Conclusion and Future Work

We have shown that the performance of computationally intensive applications can be significantly
improved by choosing clever evaluation strategies of expressions. This choice is most often left to
the programmers, although it requires advanced knowledge of the target architecture (Instruction
Level Parallelism, special instructions, number of registers...) to produce an expression that gives
more opportunities to back-end passes to perform their task optimally.

Since pattern-matching leads to combinatorial explosions and the necessary choices are combi-
natorial themselves, we have suggested and implemented two heuristics that automatically perform
algebraic transformations as a preprocessor phase or under a high level of compiler optimizations.
Simple choice criteria have been discussed too and experiments have emphasized the real impact of a
well-tuned criterion on performance results. Nonetheless, such optimizations are efficient only if the
memory behavior of the corresponding application is good. In fact, improving the way functional
units can be filled is useless if a memory bottleneck arises.

Following our first promising results, we must now extend this approach to other architectures
and algebra. Further experiments are already scheduled® with applications from the SPEC FP95
benchmarks suite and with industrial scientific codes. A more general framework based on algebraic
properties (especially associativity and commutativity) in order to improve the performance of
expression evaluation is also planned. We especially intend to use associative and commutative
laws to promote common sub-expression elimination and invariant code motion.

®The final version of this paper will include more experimental results.

13

Acknowledgments

We would like to thank Jacques Raguideau and Patrick Baudin from Commissariat a Z’Energie
Atomique for their help. The experience about STORM and rewriting rules they gained with the
CAVEAT project [6] has been very useful. We would like to thank Pierre Jouvelot and Francois
Irigoin for their suggestions as well.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, 1986.

[2] ANSI. American National Standard Programming Language Fortran, ANSI ©3.9-1978, 150
1539-1980. New-York, 1983.

[3] ANSI. Rationale for American National Standard for Information Systems, Programming
Language, C. included in ANS X3.159-1989, 1989.

[4] Francois Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat. Synchronization
and Linearity, chapter Max-Plus Algebra, pages 103-154. Wiley, 1992.

[5] Leo Bachmair, Ta Chen, and I. V. Ramakrishnan. Associative-commutative discrimination
nets. In International Joint Conference on Theory And Practice of Software Development,
pages 61-74, April 1993.

[6] Patrick Baudin and Jacques Raguideau. CAVEAT Algebraic Simplification Rules. Tech-
nical Report 0.2.1-7, Commissariat a ’Energie Atomique - Département d’Electronique et
d’Instrumentation Nucléaire, December 1996.

[7] John Bayko. Great Microprocessors of the Past and Present (V 10.11).
http://www.cs.uregina.ca/~bayco/design/design.html, March 1998.

[8] D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems. Journal of
Symbolic Computation, 3:203-216, 1987.

[9] Ta Chen and Siva Anantharaman. STORM : A Many-to-one Associative-Commutative
Matcher. Lecture Notes in Computer Science, 914:414-419, 1995.

[10] Jean-Francois Colonna. The Subjectivity of Computers. Communications of the ACM, 36(8),
August 1993.

[11] Grant Erickson. RISC for Graphics: A Survey and Analysis of Multimedia Extended In-
struction Set Architectures. Electrical Engineering 8362, Dept. of Elec. Eng., University of
Minnesota, December 1996.

[12] Richard Hartley. Subexpression Sharing in Filters Using Canonic Signed Digit Multipliers.
IEFE Circuits and Systems, October 1996.

[13] HPF Forum. High Performance Fortran Language Specification. Rice University, Houston,
Texas, November 1996. version 2.0.

[14] ISO/IEC. International Standard ISO/IEC 1539:1991 (E), second 1991-07-01 edition, 1991.

14

[15] R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer Computa-
tions, pages 85—103, 1972.

[16] David J. Kuck and K. Maruyama. Time Bounds on the Parallel Evaluation of Arithmetic
Expressions. SIAM Journal of Computing, 4(2):147-162, 1975.

[17] Kuck and Associates. KAP for IBM Fortran - User Guide, 3.3 edition, 1996.

[18] Keshab K. Parhi. 7?7 Journal of VLSI Signal Processing, 9:121-143, 1995.

Appendix

Proposition

Let Wi be the total weight for a node N and G’y be its gravity
Let wy, w, be individual weights for + and * operations
Let F be an expression such as F =z xXy+ ez xz+yxk

If Fy and F5 are the two factorized expressions for F such as :
Fi=a2x(y+2)+yxk
FEy=yx(z+k)+axz
then we have

Proof
If T is a transformation from N to N” such as d} = d; + n and w! = w; then we have

Gy X Wi = Z?:l w; X d; = Z?:l(di + n)wZ = (GN + n)WN

From this result, G; and G5 are easily expressed from the values of W and G for nodes
x, y, z and k. As we assume that common subexpression elimination techniques are
applied later, we only consider the deepest node x in Fq (respectively y in Fj).

G o= Wt +2X (Wt wi)+3xws +(Go+2)Wo+(Gr+2) Wi+ (Gy+3) Wy + (G- +3) W2
1 2x (wy Fwe)t Wo Wy + W+ Wy

G = Wt 42X (waFws) F3Xws +H{(Gy+2) Wy +(G42) W4 (G +3) W+ (G +3) Wy
2 2x (wy +wa)t Wo Wy + W+ Wy

A few simplifications give us the result Gy — Gy = (W, + W) — (W, + Wy).

Q.E.D.

15

