\

Scanning polyhedra with DO loops

Corinne Ancourt, Frangois Irigoin

» To cite this version:

Corinne Ancourt, Frangois Irigoin. Scanning polyhedra with DO loops. Principles and Pratice of
Parallel Programming, PPoPP’91, Apr 1991, Williamsburg, Virginia, United States. pp.Pages 39 -
50, 10.1145/109626.109631 . hal-00752774

HAL Id: hal-00752774
https://minesparis-psl.hal.science /hal-00752774

Submitted on 16 Nov 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://minesparis-psl.hal.science/hal-00752774
https://hal.archives-ouvertes.fr

Scanning Polyhedra with DO Loops

Corinne Ancourt

Francois Irigoin*

ENSMP/CRI
77305 Fontainebleau Cedex
France

Abstract

Supercompilers perform complex program transforma-
tions which often result in new loop bounds. This paper
shows that, under the usual assumptions in automatic
parallelization, most transformations on loop nests can
be expressed as affine transformations on integer sets
defined by polyhedra and that the new loop bounds can
be computed with algorithms using Fourier’s pairwise
elimination method although it is not exact for inte-
ger sets. Sufficient conditions to use pairwise elimina-
tion on integer sets and to extend it to pseudo-linear
constraints are also given. A tradeoff has to be made
between dynamic overhead due to some bound slack-
ness and compilation complexity but the resulting code
is always correct. These algorithms can be used to in-
terchange or block loops regardless of the loop bounds
or the blocking strategy and to safely exchange array
parts between two levels of a memory hierarchy or be-
tween neighboring processors in a distributed memory
machine.

Introduction

Optimizing transformations used by parallelizers to gen-
erate efficient code for supercomputers are applied in
three steps. Dependence analysis provides conditions
for transformations to preserve the sequential program
semantics. Then the best transformation in a class is
chosen with respect to a particular architecture. Finally
the chosen transformation is applied to the program, at
the source or machine code level.

This paper deals mainly with the third point which
either introduces new conditions for transformation le-
gality, or often is neglected or oversimplified, specifically
for intricate transformations requiring new loop bounds
generation. Related work is quite limited and is dealt

*E-mail: <ancourt@ensmp.fr> <irigoin@ensmp.fr>

with when appropriate. It is shown that a limited num-
ber of simple algorithms, easy to prove, based on lin-
ear algebra theory, can be used to solve in a unified
way many loop bound generation problems, for differ-
ent kinds of loop nest transformations. The goal is not
to provide algorithms finely tuned for a specific trans-
formation in a specific case but to present powerful but
simple tools which can be used to experiment compli-
cated transformations quickly.

Dependence theory and program transformations are
now covered by an extensive bibliography and are quite
well-known in the parallel programming community. It
was not deemed necessary to recall the basics (see [22]
or [2] or [32] for instance).

Three different code generation problems are intro-
duced by examples and then formalized in section 1.
The first problem is to enumerate with DO loops the
tiles generated by a tiling transformation'. The second
one is to enumerate, using DO loops again, the iter-
ations contained in one tile, or more generally in any
iteration set, in any given order such as defined by a
loop interchange. The third one is to precisely enumer-
ate the array elements accessed within a nest of loop
so as to maintain the memory consistency and to copy
them efficiently between two level of a memory hierarchy
or between neighboring nodes of a distributed memory
machine.

As a side effect, a generalized version of supernode
partitioning[15] is introduced to encompass in a unique
framework all tiling transformations from strip-mining
to combinations of loop skewing, interchanging and jam-
ming.

Then, in section 3, an algorithm based on Fourier’s
pair-wise elimination is described to compute loop
bounds for scanning any polyhedron defined by a system
of linear inequalities, such as those obtain after a loop
nest linear rescheduling. This algorithm is used again
in section 4 to obtain an approrimate tile enumeration
set of loops but care is taken at the tile level to enu-

Tt is not clear how these transformations should be called.
They have also been called blocking and partitioning transfor-
mations, but blocking has no mathematical flavor and partition-
ing is too general. We hope nobody is going to introduce space
tessellation!

merate only existing iterations. Finally a more complex
algorithm is necessary in section 5 to preserve memory
consistency when generating software data prefetch and
store between a global and a local memory[4]. Pseudo-
linear constraints have to be used to define the exact
set of elements to move, the integer affine image of a
polyhedron.

1 Overview of the Problems

To efficiently execute programs on multiprocessors, a
mix of techniques has been advocated. Consider for
instance program 1, which is an abstraction of a PDE
solver with a 9 point stencil depicted in figure 1. To
reduce the amount of communication with respect to
the amount of computation on a distributed memory
machine, Terrano suggests, in [27], to use an hexagon
tiling.

DOI =1, N
DOJ=1, N+1-1
A(I,J) = PHI(A(I-2,7),A(I-1,J),A(I,]),
A(I+1,J),A(I+2,J),A(1,3-2)
A(T,J-1),A(T,J+1) ,A(T,J+2))
ENDDO
ENDDO Figure 2: Program 1

Such a tiling is shown in figure 3 for program 1’s trian-
gular iteration set, assuming N=25. Each dot represents
one iteration of the loop body. Each tile contains the
dots which fall inside plus dots on some of the bound-
aries. Although it would have been graphically nicer to
translate the boundaries so as to have no dots on them,
they are drawn according to the set of constraints used.

These constraints can be strict or non-strict depend-
ing on their position with respect to the tile. For in-
stance, tiles from figure 3 are defined by the following
system of inequalities S (like shape):

—3<j<3
S={ 0<i+j<6
0<i<6

which leads to dissymmetric tiles as shown in figure 4.
This dissymmetry is also visible if only non-strict com-
parisons are used to define a tile:

—3<j<2

0<i+j<5 (1)
0<i<5

v .
1

Figure 3: Hexagonal tiling for program 1

1

Figure 4: Tteration set for one tile

As in most tiling proposed up to now, all tiles are
identical. They define a lattice which can be visualized
by choosing an arbitrary origin for them. In figure 3,
origins are highlighted by small circles when some it-
erations fall within the corresponding tile. Notice for
instance that tile C contains four elements on its top
left boundary, while tile A contains all its 27. Tile B
is somewhere in the middle with 15 elements. Tile D is
empty: none of its elements belongs to the iteration set.
It should not be enumerated to cover the iteration set.

Unusual iteration sets, as shown in program 2, may
also produce some unexpected empty tiles like tile E in
figure 6. Such loop bounds are not very likely to appear
in a program, at least if it has not been automatically
generated by a formal calculus tool. However, it is im-
portant to notice a potential problem: although tile E
does intersect with the iteration set, no integer point
belongs to that intersection.

DO I =1, 25
DO J =28 -6 1,27 -5 %I
A(I,J) = PHI(A(I-2,J),A(I-1,J),A(I,T),
A(I+1,7),A(I+2,7),A(I,J-2)
A(T,J-1),A(T,J+1) ,A(T,J+2))
ENDDO Figure 5: Program 2

Figure 6: Possible tiling anomaly

1.1 Tile Set

As mentioned above, tile origins belong to a lattice de-
fined by two generator vectors. Many equivalent choices
are possible for these vectors and the following pair is
chosen to explain how the set of non-empty tiles is de-

rived:
-3 9
Gy

The origin of the lattice is (arbitrarily) chosen at point
(1,1) to simplify the calculations (see figure 3). Let’s
call t; and ¢, the coordinates of the tile origins in their
own space, where each integer point can be mapped one-
to-one with a tile. These tile coordinates are linked to
the iteration coordinates (i, jo) by the following equa-
tions:
19 = 1—3t1 4+ 9
{ Jjo = 146t —9%

Theses equations can be used in conjunction with a sim-
ple system B which is derived from the loop bounds of
program 1 and which defines the iteration set:

1<i<25
B_{ 1<j<26—i

and with a second system which defines the set of integer
points belonging to a tile of a given origin (g, jo) (see
system 1 and figure 4):

—3<j—jo<2
0<i—ig+j—Jo<5
0<i—ig<5

to characterize the set of non-empty tiles, tiles (¢1,2)
which contains at least one iteration (7, j). The tile ori-
gin coordinates (g, jo) are eliminated from the system:

1<i<25
1<j<26—i
—3<j—1—6t +9 <2 (2)

0<i+j+2-3t <5
0<i—1+4+3t -9t <5

To generate efficient loop bounds for ¢; and t2, i.e.
to scan the non-empty tiles, variable ¢ and 7 must be
eliminated. In other words, a four dimensional polyhe-
dron over (i, j, t1,t2) must be projected on the subspace
(t1,ts).

The resulting set of tiles is displayed in figure 7 which
translates into the following loop bounds:

DO T1 =0, 8
DO T2 = (T1+1)/3, 2*T1/3
to
p
[)
Ao o
Be o
e o
e o o
e o o
o o o
t

Figure 7: Non-empty tile set

Thus there is a need for an algorithm taking as input
an iteration set defined by a system of linear inequalities
B and a uniform tiling defined by a lattice L and giving
as output loop bounds B7 to scan non-empty tiles.

Let T be the tile space, (S, §) the system defining the
shape of a tile and ¢ be theqcoordinates of a tile. Let
I be the iteration space, (B, b) the system derived from
the loop bounds, and 7" the coordinates of an iteration.
The desired new loop bounds (B, ET) are defined by:

{feT|Fel st. BP<bAST-LH <5 = (3)

{'e T|Brt' < by}

Lots of notations seem to have been suddenly introduced
but most of them were introduced with the equations
related to program 1 and its hexagonal tiling. Systems
of linear constraints are represented as a matrix of coef-
ﬁcierlts like B and a, possibly symbolic, constant term
like b.

1.2 Iteration Set Local to a Tile

Within a tile, different reorderings are usually compat-
ible with the semantics of the initial program. Loop
interchange[29][1] which let the compiler move a par-
allel loop inwards to use a vector unit is probably the
simplest one. The hyperplane method[18][19] and its
simplified version obtained by a combination of loop
skewing[29][30] and loop interchange, as well as loop
permutation[5] are based on more complex change of
bases.

These transformations must map integer points onto
integer points on a one-to-one basis to preserve the it-
eration set and the program semantics. The change of
basis matrix U must be unimodular as is explained by

Banerjee for combination of loop interchanges[6], and
more generally for global code generation for nested
loops[16] and loop reordering[12][13]. The same cri-
terion is also used to define more general linear loop
transformations[28].

For instance, it might be decided to execute iterations
of program 1 on a front by front basis, where iterations
belonging to the same front are executed in parallel.
This transformation is neither always legal nor desir-
able, but this is not the point here.

Fronts are shown on one tile in figure 3 by lines at
45°. This new execution ordering can be generated by
replacing the initial basis. The new one should have a
first basis vector linking a front to the next one and a
second basis vector linking an iteration to a neighboring
one that can be executed in parallel.

The following pair of vectors U; and the resulting
change of coordinates meet these conditions:

(0 1 i=1
[h—<1 —1) {j:h—b

and define a new local iteration set for a tile, shown in
figure 8, whose constraints are:

0<1,<5
3<Il—1y<2
0<l <5

SU; =

Since 3 is bounded it is easy to derive new loop bounds

Figure 8: Skewed Iteration Set

for such an execution pattern:

DO L1

=0, 5
DO L2 =

MAX(0, L1 - 2), MIN(5, L1 + 3)

However, it is not always that easy. Let’s assume the
desired change of basis is defined by:

Uy — 2 1 i=2l1 + 1o
27\ 1 1 j=hL+1
and define a new local iteration set for a tile, whose
constraints are:

=B3<h+1;<2
0<3ly+2l <5
0<2l1+1, <5

SUs =

These constraints cannot be direcly used to generate
loop bounds because they all use I; and Iy whereas the
bounds of the external loop should only refer [;.

Such unsuitable constraints are sometimes due to the
partitioning. Let’s assume the best partitioning for pro-
gram 1 were a square partitioning, where squares are de-
fined by diagonals and anti-diagonals. Each constraint
would contain either ¢ — j or ¢ + j and it would not be
possible to use them as loop bounds, even if the initial
iteration ordering was preserved within each tile.

Thus there is a need for an algorithm taking as input
a polyhedron defined by a system of inequalities and
an ordered set of variables, and giving as output the
same polyhedron defined by a new system of inequalities
such that each variable is bounded by a min and a max
expressions which only contain variables of higher rank
in the ordering. There are no constraints on non ordered
variables. They are used symbolically as part of the
constant term. Such a system can be used to directly
derive loop bounds.

The input polyhedron can result either of a tiling
transformation and be the shape of tile S or of a change
in the execution ordering and be the product BU of the
initial iteration domain B by a change of basis matrix
U or of a combination of both and be SU.

1.3 Array Elements Accessed Within a
Tile

Program 1 was tiled as shown in figure 3 to execute on a
multiprocessor machine. Different kinds of multiproces-
sors exist but whether the machine has a shared global
memory and fast local memories or it is a distributed
memory machine, there is a need to define which array
elements are necessary to execute one tile and where
they can be found.

As a first example, figure 9 shows which elements of
array A should be available in the local memory of a
processor before it can execute one hexagonal tile. Note
that this set is non-convex. Four elements are missing
in the bottom-left and top-right corners.

k J
- e & o o ..
1 o o o o o

Figure 9: Non-convex array access pattern

As a second example, consider the following contrived
code as defined by Jalby & al. in [10] and the resulting
accessed set shown in figure 10. Only a small subset
of accessed elements is displayed to show clearly the

non-convexity. Since linear loop bounds define convex
iteration sets, these array subsets cannot be easily enu-
merated with DO loops.

DOI =1, 10
DO J =1, 20

DO K =1, 39

A(3*I+K, J+K) = ...
ENDDO

ENDDO

ENDDO

72
62
52
42

¥

001 353156 %38 91001013104

Figure 10: Non-convex array access pattern

As it might be necessary to move these sets exactly to
preserve memory consistency and efficiently so as not to
waste memory or interconnection network bandwidth, it
would be useful to have an algorithm taking as input an
iteration set defined by a system of linear inequalities B
and a set of references Ry, Ra,... to an array A and giving
as output a set of possibly non-linear loop bounds C
and one array reference R such that each array element
accessed by the input is accessed once and only once by
the output.

{@aeAF' eI st. C@') A @=Rr+7} =
{@e AFreI st Bir<b
/\((_I:ZRl(’Z”)-FFl Vd’:RQ(T’)+Fz)}

For distributed memory machine, a pseudo-linear
mapping function can also be given as input to restrict
the elements accessed by the output loop and reference
to those available on a given processor.

1.4 Loop Bound Generation Issues

A few points should be outlined before we proceed.
First of all, the bounds of a loop nest define special
constraints: each loop index can only appear in inner
loop bounds and, as a result, the corresponding con-
straint matrices are row-echelon. Thus most systems of
linear inequalities cannot be directly used to generate
loop bounds.

Second, the projection, or more generally the affine
image, of a polyhedron is not a polyhedron as is shown
by figure 10. Since linear loop bounds generate convex
sets, they cannot be used to enumerate such sets but
they can be used to enumerate a superset.

Failing to eliminate variables by projection results in
extra loops. For instance, a two dimensional array ref-
erenced within three nested loops should be copied with
only two loops. At least one of the initial loop indices
should be eliminated.

Elimination is not always possible. It may be neces-
sary to use pseudo-linear constraints with modulo con-
ditions, to add a test to guard the loop body and, if
worse comes to worse, to generate an extra-loop.

Vector and matrix notations are used because the al-
gorithms do not depend on the number of loops or vari-
ables. Examples are 2-dimensional only because it is
almost impossible to draw properly 3-D cases.

2 Lattices for Tiling Transforma-
tions

It is assumed above that a tiling is defined by a lattice L
and a set of constraints S. L and S are not independent
and should be derived automatically for each automatic
tiling method.

Many multidimensional blocking schemes have
been proposed: supernode partitioning[15], loop
tiling[31][33], loop quantization, mitred quantization[3],
strip-mine and interchange, unroll and jam, wavefront
blocking[24]. But up to now, these tiling methods share
a few common properties.

Tiles should be equal up to an integer translation, so
as to have some implicit load balancing and a unique
code for all blocks. The tile space T should be an in-
teger vector space to make block numbering easy and
the tile set should be a polyhedron to remain in a linear
framework. A linear relation between an iteration’s co-
ordinates, its block coordinates and its local coordinates
is useful to test tile membership and to generate loop
bounds for each tile.

2.1 Using Multidimensional
Hyperplane Partitioning

The simplest way to partition a space in tiles is to use
a family of regularly spaced hyperplanes. A unique
vector h can define the hyperplanes orientation, their
spacing via its norm and their ordering via its direc-
tion. This simple transformation was called hyperplane
partitioning[15] and is a generalization of strip-mining
with no restriction on the stripe direction.

A few hyperplane partitionings can be combined to
define smaller tiles. Their definition vectors can be put
together in a matrix H” and the tile coordinates ¢ of

an iteration 7 are given by a pseudo-linear many-to-
one mapping using the floor function £ = |[H'7]. H
must be free and H must meet some condition with the
dependencies for the transformation to be legal, but this
does not matter here.

We claim that any tile obtained by one of the tech-
niques above can also be defined by a unique matrix
H and that it is thus sufficient to be able to derive
code from any matrix H to generate code for these
techniques. However, most tilings which are applied by
hand, like the hexagon tiling shown in figure 3, cannot
be that simply generated. They can be dealt with only
if L and S are explicitly given.

HT defines a surjection from the iteration space I onto
the integer tile space T'. Each integer point ¢ of 7' must
be reached for some integer point 77 of I. To relate
t, the coordinates of tile containing 7, 7 itself and the
local coordinates [it is necessary to get rid of the non-
linearity due to the floor operator and to introduce some
lattice L.

2.2 Examples

For instance, strip-mining loop J from program 1 by a
factor of 3 is equivalent to defining H?; while moving
the I loop at innermost position can be expressed by
HT22

170 1 1
mo= 3 (8 0) HT = 300

—e —o—o o— >—I
. —o—o o—

Figure 11: Tiling HY

Z

£

I .

Figure 12: Tiling H%

Figure 13: Tiling H” 3

2.3 Shape Constraints

The shape system of constraints S is easy to derive from
HT. By definition a point 7’ belongs to a tile of origin

-

7, if:
O0<=HT@-7,) <1
Let k be the smallest integer such that kH7” is an integer

matrix. Then S is defined by the the following matrix
and vector:

(Mgr)a-m<($70)

2.4 Pseudo-Inverse Matrix

A solution to find a linear relation between 7 and £ is to
compute the pseudqo—inverse of HTand to introduce an
auxiliary variable A:

§ = HTHX 7= HX = HHTH)'3

Since H is free, HT H can be inverted but 7 is not nec-
essarily an integer point of the iteration space I. For
instance the following tiling H”'3 which defines a 1-D
space of antidiagonal stripes of width 3 in a 2-D space
leads to a non-linear equation which produces non inte-
ger 7, for odd t.

1 1/3)\ -
T _ 7y =
H'; = 3(11) zs_2<3>t

Tilings HTl, HT, and HT; for program 1 are shown
in figures 11, 12 and 13. Elements belonging to the same
tile are connected.

2.5 Smith Normal Form

Smith proved that any integer linear application can be
described by a quasi-diagonal matrix? called D like di-
agonal if adequate unimodular changes of basis P and @
are performed in the domain and image spaces®. Multi-
plying H” by k as above to get the smallest proportional
integer matrix and preserving a transpose sign on D to
remember its usage, we get:
T 1 T
H' = —PD"Q
k

We may assume that D7 has no null rows because the
corresponding dimensions would be useless in the tile
space but it may have null columns. If there are no null
columns, DT is an invertible square matrix and it de-
fines bounded tiles which were called supernode in [15].
When DT has only one non zero coefficient, it defines a
basic hyperplane partitioning. Using the pseudo-inverse
as in the previous section but in the Smith bases P and
Q,7" and t' are related by the following equations:

7/ = kD(DTD)"'{"

2See [26] for a precise definition.

3This means that any multidimensional hyperplane partition-
ing can be seen as a simple set of strip-mined loops if the proper
basis are chosen.

The last coordinates of 7/ are all zero and the first ones
are equal to k/d; x s; where d; is the i-th diagonal term
of D. To get integer coordinates for all s}, k£ must be
a multiple of d;’s LCM: this means that, for a given
direction, not all hyperplane spacings are possible when
each tile must contain as many points as any other one.
The two unimodular bases P and () will preserve these
integer coordinates. Using the changes of basis § =
Ps’ and 7' = @7, the relation between 7 , the tile
origin coordinates in the iteration space, and t, the tile
coordinate in the tile space, becomes:

1

7, = kQ7'D(DTD) ' P15 (4)

and the lattice is defined by:
L = Q'D(DTD)”' P!

With example H? = (1/3,1/3), equation (4) defines
an integer origin for each stripe, i.e. a proper stripe
numbering.

Q:(}é) P=(1) DT=(10) k=3

With supernode partitioning[15], D is a square invert-
ible matrix and equation (4) becomes much simpler and

implies that (HT)_1 be integer:

7= k(DT '3 = (HT) "5

Thus it is possible to derive a lattice matrix L and a
tile shape S from any legal multidimensional hyperplane
partitioning H” and from any tiling obtained automat-
ically.

3 Scanning a Polyhedron

A naive solution would be to project the polyhedron on
each basis vector to find two loop bounds for each loop
and to add a test to the loop body to make sure the
iteration has to be executed.

Very specific algorithms were developped to handle
special changes of basis, the permutations obtained
when interchanging loops. Different kinds of loop
bounds are distinguished: rectangular ones, triangular
ones and so one. Each case is handled by a specific
algorithm.

Another algorithm, solving the same problem for two
dimensional spaces, is outlined in [28]. It is based on

generating systems. Images of extreme vertices are ex-
treme vertices of image polyhedron and loop bounds can
be derived from them. This algorithm is not as general
as the following one because it assumes that the gener-
ating system is known, which is usually true when loop
bounds are available.

The basic idea here is to use a projection algorithm to
find loop bounds for each dimension. Fourier pairwise
elimination[9] cannot be used without care because it is
only valid for rational and real polyhedra and provides a
simple inclusion instead of an equality for integer points.

row_echelon(S)
/* S, S’ and SP are lists of parametric linear
constraints over a n-dimensional space*/
S’ := SP := S;
/* compute projections in reverse order to avoid
redundant computations */
for i := n-1 to 1 by -1 do
SP := fourier(SP, i+l);
S’ := union(S’,SP);
done

/* sort constraints in S’ by increasing constraint rank */

S’ := sort(S’);
/* try to eliminate redundant constraints innermost
first because they would be executed more often */
for i := number_of_constraints(S’) to 1 by -1 do
/* let S’(i) be the i-th comnstraints in S’ */
if not last(S’,S’(i)) then
S’ (i) := complement(S’(i));
if fourier_empty_p(S’) then
/* 0 is the trivial constraint 0 <= 0 */
S’ (i) := 0;
else
/* restore its original value */
S’ (i) := complement(S’(i));
endif
else
/* preserve S’(i) as a unique lower or upper
loop bound */
endif
S’ (i) := normalize(S’(i),rank(S’(i)));
done
return S’;
end

Figure 14: Algorithm row_echelon

Let’s detail algorithm row_echelon informally. System
S’ always defines the same set of integer points. It is ini-
tialized as S and is then augmented by the projections
of S on smaller and smaller subspaces. The last projec-
tion provides constant bounds for the outermost loop,
and the next to the last provides bounds using only the
outermost index for the second loop, and so on.

Fourier-Motzkin pair-wise projection algorithm is
used and useless points can be added at any time. How-

ever the initial system S is included in S’ and useless
iterations generated by the outer loops result in empty
ranges for the inner loops.

In general, the total number of constraints in S’ after
this first phase is huge. Hopefully many of them are
redundant. However, they can not all be eliminated
because at least one MIN and one MAX constraints are
needed for each index variable. Hence, the test with
last.

The redundancy test does not have to be exact. The
better it is, the more constraints are eliminated. How-
ever, the generated loops are always correct when too
many constraints are used. A very simple redundancy
test, called fourier_empty_p based on Fourier-Motzkin
feasability test, is shown. Faster tests should be used.

Finally the constraints must be normalized to have +1
or —1 as coefficient for the corresponding index variable.

A first version of this algorithm is presented in [12].
It uses the same idea but useless projections are per-
formed. It was implemented in an experimental phase
of PTRAN to compute loop bounds after loop inter-
change and the hyperplane method[13].

4 Tiling

Algorithm tiling is very simple once fourier and
row_echelon are available. The lattice relations between
the tile space and the iteration space and the constraints
defining a tile shape are used to build large linear sys-
tems containing all necessary inequalities

The key point is that an approximate algorithm,
Fourier-Motzkin pairwise projection, is used to compute
the bounds to scan the tiles and that exact bounds are
used to scan iterations within each tile.

To show correctness is to prove equality (3). Right to
left inclusion is obvious because the iteration set con-
ditions are used in each tile and because row_echelon
does not perform any projection. Left to right inclusion
is due to the proper inclusion for fourier: there may
be too many tiles in Bg but each iteration 7 € B has a
tile in Bg.

Two kinds of optimization can be performed to de-
crease the control overhead due to BS. First, inequali-
ties redundant with respect to BT can be eliminated. In
the most favorable case, it means that the iteration set
bounds B are not used at all. Second, a set of tests can
also be computed to distinguish between full tiles whose
integer points must all be computed (once again, B can
be ignored) and partial tiles which intersect one of the
iteration set boundaries.

Note that the system B’ is likely to be much more in-
tricate than a system directly derived from usual linear
loop bounds (see for instance figure 7) and that algo-
rithm row_echelon must cope with it. Note also that
system BS is likely to be complicated and that some kind
of loop reordering might have to be applied to exploit,

for instance, a multiprocessor with vector units. Once
again, algorithm designed to only deal with so-called
real programs are likely to fail when their input code
has been automatically generated. .

tiling(B, HT)
/* B, BS and BT are arrays of constraints, L and S
define the tiling */

/* compute loop bounds BS for tile enumeration */
build B’ over T x I according to system (3)

0 B t b
(—SL s)(z)5<§>
/* eliminate unwanted variables using standard projection */

for all i in I do
B’ := fourier(B’,i);

/* apply previous algorithm to get a system of loop bounds */
BT := row_echelon(B’);

/* compute loop bound BT for one tile’s iteration
enumeration */

build system B’’ using iteration set and tile
membership conditions:

BS := row_echelon(B’’);
return BS, BT;
end

Figure 15: Algorithm tiling

5 Affine Image

The key idea is to build a large polyhedra in the product
of the domain and image spaces and to eliminate vari-
ables from the domain space in the constraints without
introducing new image elements. First the application
equations can be solved using Hermite or Smith Normal
form. Then inequalities have to be dealt with.

5.1 Legal Integer Pairwise Elimination

Great care must be taken not to modify the affine image
integer point set when one variable from the domain
polyhedra is eliminated. To preserve these image points,
integer divisions must be introduced.

n
Let E; = «aj + Z aji i
I=1,1#k

be an integer linear expression, R a set of constraints,
aj; and «; integers, a,i, and ag positive integers and iy,
a variable.

Theorem 1

E, + app iy, < 0 (C1)
Let S = E, —agix < 0 (C2)
R
Ey + agr — 1 - FE
q q < p
and S/k — { gk R? Apk (CIQ)

where Sy, is derived from S using integer divisions* to
eliminate iy,. Then:

proj(LS1%,ix) = proj(LS/el.ix)

The pseudo-linear system S5, does not necessarily de-
fine a polyhedron since integer divisions may introduce
holes into a convex polyhedron. Therefore, this elim-
ination operation is not an internal operation. Thus,
we introduce sufficient conditions to eliminate variable
by simple pair-wise elimination without modifying the
projection. They will be used to eliminate as many vari-
ables as possible while preserving the projection and the
system linearity. These conditions are given in the next
two theorems.

Theorem 2

Ep + apg e <
Let S = Eq — Qgk ik S 0
R

and S' = { Pk By < = au B
R
where S is obtained from S wusing the pair-wise elimi-
nation method and R is any system.

apk =1Vag =1 =
pT‘Oj(LSJ,ik) = [proj(S,ik)J :proj(LS'J,ik)

This theorem is illustrated by the following figures.

In this first figure, the pairwise elimination of the vari-
able is from the polyhedron R C1[) C2 introduces an
additional integer point to the image polyhedron (poly-
hedron after the projection represented by ~ on the
axis i1). Indeed, the result of the pairwise elimination
method is the segment [4,27], when any integer point
belonging to the polyhedron R({C1(\C2 is the pro-
jection of point 4. The projection of integer points is
different from the projection of real points because the
difference between the slopes of the 2 lines is too small
for containing an integer point for i; = 4.

4Different definitions exist for non-positive integers. Here the
remainder is always assumed to be positive.
2|S] is the set of integer points belonging to S

i (c1)
; —2i1 + 5is < 6

i1

oo PAW AN oo oo oo
(VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV AV

¢
¢
)

Illustration of theorem 2

(C1) (C2)
Z-2 ig—i1§2 —3i2+i1§—5

PAW AN oo oo FaWal :Oll
(VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV AV

)

Illustration of theorem 2

The second figure shows that if one line (C1) has a
slope of 1® , each point of the image polyhedron is ac-
tually the projection of the an integer point of the poly-
hedra R C1(C2, because (C1) contains one integer
point for each value of the projection set.

When the constraint (C'12) resulting from integer
pair-wise elimination can be proved redundant with R,
it is not preserved in the system. A linear condition to
determine that (C'12) is redundant is now presented.

Theorem 3

Let S =

(C) aprEy + aprage —apk < —agpE, redundant® for R

= proj([S],ix) = proj(|R], ir)

In other words, if (C12) is the constraint resulting
from i’s elimination in C'1{) C2 and if constraint C' is
met, then (C12) is redundant for |S]|. This theorem is
illustrated by the following figure:

3that is equivalent of having a coefficient of 1 for the variable
i2 to eliminate
4we use the redundancy criteria described in [7]

(C1) (C2)

Z-2 2i2—i1 S4 —3i2+i1§—5
. i
&Cg) Illustration of theorem 3
Sh
In this example, system S is:
200 —i1 —4 <0 (C1)
S = —3is+11 +5<0 (C2)
R
and condition
(@) 2(i1+5)+6—-2<-3(-i1 —4) = 2<i

which is obviously redundant with R.

The figure shows that, if the constraint (C)
is redundant for R, then (C12) = proj([C1() C2],ix)
is redundant for proj(|S],ix) and
proj(|S'],ix) = proj(R],ix)-

5.2 Using Integer Divisions

When none of these two conditions is met, it is still
possible to eliminate variable iy by combining the two
inequalities and by introducing integer division (theo-
rem 1) to get Syy,.

Assume that 4; is one variable of the inequality (C'12)
appearing either in the left hand side of (C12) or the
right one. It is possible to rewrite (C'12) as api; < Ej
where Ej is a pseudo-linear function of K, Eq, apr, and
Qg -

—i3+321 S 3
Examplel: S1 = o — 311 < =2
—iy < 0
[ia4+2< 34 < 3+i5 (I
— 51 = { i < 0
Inequality (I) is equivalent to % < HT“ which can

be rewritten as i> +4 < 3(3£82) 4+ 2, or iy < 3(£) +1

s + 3i; < 1
i — 31 < 0
—is <0

Example2: S2 =

in< 34 < in+1
—iy < 0

= S2 = { (1)

Inequality (I) is equivalent to 22 < 2+l which
cannot be simply transformed in a linear constraint on

10

i or in a constraint containing integer division. In the
other hand, it can be transformed in constraints using
the function Modulo: (I) <= Mod(i2,3) =0 or 2

This elimination possibility is important. Without
it, some occurrences of variables to project could not
be eliminated using pair-wise elimination without mod-
ifying the projection. On the other hand, constraints
expressions are more complicated and contain integer
divisions.

The algorithm to compute the pseudo-linear con-
straints defining exactly the image polyhedra which
characterizes array elements referenced in a loop nest
is now briefly outlined.

5.3 Computation of the Image Polyhe-

dra Constraints

The set of referenced array elements is the affine image
of the index set I by the access function R. The image
polyhedron is computed from index set I by a change
of basis from index basis i to image basis . If the di-
mension d of the affine image is less than dimension n of
iteration space, then only d loops are enough to scan the
image polyhedron. Thus, n — d variables can be elimi-
nated out of the image polyhedron constraints defined
by system S.

The first step of the algorithm consists in projecting
as many useless variable occurrences as possible using
the pair-wise elimination method for constraints satis-
fying conditions of theorems 2 and 3.

In the second step, redundant constraints are elimi-
nated. All redundant constraints on a useless variable
can be eliminated if the variable does not appear in a
constraint of superior rank. At least two constraints on
useful variables must be kept to generate loop bounds.

Finally, integer divisions are introduced in constraint
expressions. The remaining useless variables are elim-
inated out of S by combining pairs of constraints and
by introducing integer divisions, if the variable does not
appear in a constraint of superior rank.

The final system may still contain some useless vari-
ables, because we did not manage to prove otherwise.
Occurrences of these variables in the constraints ex-
press, like integer divisions, the non convexity of a poly-
hedron affine image. However, this never happened in
any tested case.

5.4 Generation of the Nested Loops

Let ST be the set of constraints computed by the pre-
vious algorithm for the image polyhedra. Let SI; be
its linear subset, and SI, = ST — S1I; its pseudo-linear
subset.

To generate the nested loops defining the image poly-
hedra, the algorithm row_echelon described in section3
is applied to the SI;. Inequalities of SI> are added as

loops bounds or used in a guard if the variable of higher
rank in the inequality appears in both inequality sides.

5.5 Examples

Let’s consider the program proposed by Jalby & al. in
[10], figure 10, the nested loops generated from the com-
puted image polyhedra are:

DO T1
DO T2

-29, 17

MAX (4, 4+3*IDIV(-T1, 3)),
MIN(60, 48+3*IDIV(2-T1, 3))

A(T2, T1+T2) = ...

The new nested loops access only once each array
element referenced by A in the original program. The
number of generated loops is minimal and equal to the
affine image dimension.

The case where we have several references to the same
array having uniform dependences is interesting because
it can be dealt with the case where we have only one
reference. In the following examples, the two programs
reference the same set of elements of A. To compute the
set of array elements referenced in the first program is
equivalent to evaluate the referenced array elements of
the second.

DOI =1, N DOI =1, N
DO J =1,M DOJ =1, M
= A(I,D) DOX =0, 1
+ A(I+1,0) DOY=0,1-X
+ A(I-1,0) ...= A(I+X-Y,J)
ENDDO ENDDO

To compute the set of elements used in the execution
of one tile, represented in figure 9, the previous trans-
formation is used before applying the preceding algo-
rithms. The nested loops generated from the computed
image polyhedra is:

DO I=n-2,n+7

DO J= MAX(k-2, n+k+1-I,k-n -7 +I),
MIN(7+k,n+k+10-1)

IF (IDIV(I-n-2%J+2%k-6,2) <= IDIV(7-I+n,2)

&% IDIV(-I+n+2*J-2xk-11,2) <= IDIV(2-n+I,2))

= ACI,T)

Conclusion

Three different algorithms generating loop bounds for
three different classes of program transformations have
been presented. They are general because they encom-
pass most transformations and combination of transfor-
mations on nests of loops. They are also general with
respect to loop bounds. They do not require rectan-
gular, triangular or trapezoidal loops. Any polyhedral

11

iteration set is acceptable. MIN and MAX operators may
appear in bound expressions. Their generality and sim-
plicity make complicated optimizations easy to try.

Additional tests and different code versions could be
generated using the same algorithms if ultimate opti-
mization is sought. The same technique could be ex-
tended to deal with loop alignment and loop peeling.
It would also be interesting to use it to generate code
for non-perfectly nested loops by adding guards to non-
innermost statements and by using the new guards to
move the statements out of the loops using a redun-
dancy test.

It would be interesting to use these algorithms to
generate code for the partitioning strategy studied and
successively improved by [21], [23], [25] and [11]. This
partitioning assumes that independent sets of iterations
exist because the dependence vector are long enough.
Set, origins are all in one tile and each set is defined by
a lattice. This is dual to the tiling problem studied here,
since the outer loops are used to scan one tile while the
inner loops are used to scan the intersection of a lattice
and of an iteration set.

The correctness of these algorithms is easy to prove
because they are based on well-known linear algebra
concepts. A tradeoff between accuracy in redundance
checking and complexity is possible, but correctness is
always preserved. Worst case complexity is clearly expo-
nential in the space dimensions and constraint number
but it is not too much of an issue; the number of loop
nests increases linearly with the program size, and not
like its square as for dependence testing. Also an expo-
nential worst case complexity may produce a polynomial
average complexity as is observed in linear programming
for the simplex algorithm. If bound constraints are di-
agonal (i.e. rectangular loops) or if bounds coefficients
are 1 or —1 (i.e. rectangular loops), complexity is not a
problem.

Our algorithm usefulness may be questionned since
real programs do not contain complicated loop bounds
and subscript expressions. Faster algorithms, dealing
with simple usual cases, might be preferred. But how-
ever simple real cases are, compiler algorithms should
be able to cope with unexpected ones, at least by de-
tecting them. Also, however complex these algorithms
seem to be, they are pretty straightforward and easy to
write and shorter in lines of code than others. Moreover
the tricky cases they can handle may let people try new
optimizations, based for instance, on 3-D tilings, and,
mainly, may occur when a suite of program transforma-
tions are applied. The initial code is simple but it does
not stay so during the restructuring process.

Algorithms row_echelon and tiling were first imple-
mented in an experimental phase of the IBM PTRAN
system. A second implementation is underway in the
PIPS project [17]. Algorithm image is implemented on
a stand-alone basis. It should be used in a second phase

of the PIPS project to generate data exchanges between
local memories and a global memory.

References

[1]

2]

[12]

[13]

[15]

J. R. Allen, K. Kennedy, Automatic Loop Interchange,
SIGPLAN’84 Symposium on Compiler Construction,
SIGPLAN Notices, 19, 1984

R. Allen, D. Callahan, K. Kennedy, Automatic Decom-
position of Scientific Programs for Parallel Ezecution,
ACM Symposium on Principles of Programming Lan-
guages, Munich, 1987

A. Aiken, A. Nicolau, Loop Quantization: An Analysis
and Algorithm, Tech. Rep. 87-221, Cornell University,
1987

C. Ancourt, Génération de code pour multiprocesseurs a
mémoires locales, These de 'Université Pierre et Marie
Curie, in progress

U. Banerjee, A Theory of Loop Permutations, 2nd
Workshop on Languages and compilers for parallel com-
puting, 1989

U. Banerjee, Unimodular Transformation of Double
Loops, 3rd Workshop on Programming Languages and
Compilers for Parallel Computing, Irvine, 1990

M. C. Cheng, General Criteria for Redundant and
Nonredundant Linear Inequalities, Journal of Optimiza-
tion Theory and Applications, vol. 53, No 1, April 1987.

R. J. Duffin, On Fourier’s Analysis of Linear Inequality
Systems, Mathematical Programming Study 1, North-
Holland, 1974

J.B.J. Fourier, Analyse de travauz de I’Académie Royale
des Sciences, pendant ’année 1824, partie mathéma-
tique, Histoire de 1’Académie Royale des Sciences de
I'Institut de France, 1827.

K. Gallivan, W. Jalby and D. Gannon, On the Prob-
lem of Optimizing Data Transferts for Compler Mem-
ory Systems, Proceeding of the ACM Int’l Conf. on Su-
percomputing, St-Malo, 1988.

E. D’Hollander, Partitioning and Labeling of Inder Sets
in DO Loops with Constant Dependence Vectors, 1989
Int’l Conference on Parallel Processing, pp. I1I-139, II-
144 (Aug. 1988)

F. Irigoin, Code Generation for the Hyperplane Method
and Loop Interchange, report ENSMP-CAI-88-E102,
CAI, Ecole des Mines de Paris, 1988

F. Irigoin, Loop Reordering with Dependence Direction
Vectors, Journées Firtech Systémes et Télématique Ar-
chitecture Futures: programmation parallele et intégra-
tion VLSI, Paris, 9-10 novembre 1988

F. Irigoin, R. Triolet, Computing Dependence Direction
Vectors and Dependence Cones with Linear Systems,
report ENSMP-CAI-87-E94, CAI, Ecole des Mines de
Paris, 1987

F. Irigoin, R. Triolet, Supernode Partitioning, ACM
Symposium on Principles of Programming Languages,
San-Diego, 1988

12

[16]

[17]

(18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

F. Irigoin, R. Triolet, Dependence Approzimation and
Global Parallel Code Generation for Nested Loops, In-
ternational Workshop on Parallel and Distributed Al-
gorithms, Bonas, Oct. 3-6, 1988, North-Holland

F. Irigoin, P. Jouvelot, R. Triolet, Overview of the PIPS
project, International Workshop on Compilers for Par-
allel Computers, Paris, December 3-5, 1990.

R. Karp, R. Miller and S. Winograd, The Organiza-
tion of Computations for Uniform Recurence Equations,
Journal of the ACM, v. 14, n. 3, pp. 563-590, 1967

L. Lamport, The Parallel Ezecution of DO Loops, Com-
munications of the ACM 17(2), pp. 83-93, 1974

D. Loveman, Program Improvement by Source-to-
Source Transformations, J. of the ACM, V. 20, n. 1,
pp. 121-145

P. A. Padua Haiek, Multiprocessors: Discussion of
Some Theoretical and Practical Problems, PhD Disser-
tation, Report No. UITUCDCS-R-79-990, University of
Tllinois at Urbana-Champaign, 1979

D. A. Padua, M. J. Wolfe, Advanced Compiler Opti-
mizations for Supercomputers, Communications of the
ACM, Vol. 29, n. 12, 1986

J.-K. Peir, Program Partitioning and Synchroniza-
tion on Multiprocessors Systems, Ph.D. Thesis, report
UIUCDCS-R-86-1259, University of Illinois at Urbana-
Champaign (March 1986)

A. Porterfield, Software Methods for Improvement of
cache Performance on Supercomputer Applications,
Rice COMP TR89-93, Rice University, 1989

W. Shang, J. A. Fortes, Independent Partitioning of
Algorithms with Uniform Dependencies, 1988 Int’l Con-
ference on Parallel Processing, pp. 26-33 (Aug. 1988)

A. Schrijver, Theory of Linear and Integer Program-
ming, Wiley, 1986

A. E. Terrano, Optimal Tiling for Iterative PDE
Solvers, Frontiers of Massively Parallel Computation,
1988

M. Wolf, M. Lam, Mazimizing Paralellism via Loop
Transformations, 3rd Workshop on Programming Lan-
guages and Compilers for Parallel Computing, Irvine,
1990

M. Wolfe, Optimizing Supercompilers for Supercomput-
ers, Ph.D. thesis University of Illinois, Urbana, Rep. no
UIUCDCS-R-82-1105, 1982.

M. Wolfe, Loop Skewing: The Wavefront Method Revis-
ited, Int’l Journal of Parallel Programming, V. 15, n. 4,
1986, pp. 279-294

M. Wolfe, Iteration Space Tiling for Memory Hierar-
chies, in Parallel Processing for Scientific Computing,
G. Rodrigue (ed.), STAM, 1989, pp. 357-361

M. Wolfe, Optimizing Supercompilers for Supercomput-
ers, MIT Press, 1989

M. Wolfe, More Iteration Space Tiling, Supercomput-
ing 89, Reno, 1989, pp. 655-664

