
HAL Id: hal-00752639
https://minesparis-psl.hal.science/hal-00752639v1

Submitted on 16 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiling Dynamic Mappings with Array Copies
Fabien Coelho

To cite this version:
Fabien Coelho. Compiling Dynamic Mappings with Array Copies. Principles and Pratice of Par-
allel Programming, PPoPP’97, Jun 1997, Las Vegas, Nevada, United States. pp.Pages 168 - 179,
�10.1145/263767.263786�. �hal-00752639�

https://minesparis-psl.hal.science/hal-00752639v1
https://hal.archives-ouvertes.fr


Compiling Dynamic Mappings with Array Copies
�TR EMP CRI A ���� To appear in PPoPP��	


Fabien Coelho �coelho�cri�ensmp�fr�

Centre de Recherche en Informatique� �Ecole des mines de Paris�
��� rue Saint�Honor�e� F�		�
� Fontainebleau cedex� France�
phone� ���j
� � �� �� �� ��� fax� ���j
� � �� �� �	 
�

URL� http���www�cri�ensmp�fr�pips

Abstract

Array remappings are useful to many applications on dis�
tributed memory parallel machines� They are available in
High Performance Fortran� a Fortran�based data�parallel
language� This paper describes techniques to handle dy�
namic mappings through simple array copies� array remap�
pings are translated into copies between statically mapped
distinct versions of the array� It discusses the language re�
strictions required to do so� The remapping graph which
captures all remapping and liveness information is pre�
sented� as well as additional data��ow optimizations that
can be performed on this graph� so as to avoid useless remap�
pings at run time� Such useless remappings appear for arrays
that are not used after a remapping� Live array copies are
also kept to avoid other �ow�dependent useless remappings�
Finally the code generation and runtime required by our
scheme are discussed� These techniques are implemented in
our prototype HPF compiler�

� Introduction

Array remappings� i�e� the ability to change array map�
pings at runtime� are de�nitely useful to applications and
kernels such as ADI �	
�� linear algebra solvers �	��� �d FFT
�	�� signal processing �	�� or tensor computations ��� for ef�
�cient execution on distributed memory parallel computers�
HPF �	�� 	�� provides explicit remappings through realign
and redistributedirectives and implicit ones at subroutine
calls and returns for array arguments� This paper discusses
compiler handling of remappings and associated data �ow
optimizations�

�hpf� align with B�� A
�hpf� distribute B�block���

			
� A is remapped
�hpf� realign A�i�j� with B�j�i�
� A is remapped again
�hpf� redistribute B�cyclic���

Figure 	� Possible direct A remapping

�hpf� align with B�� C
�hpf� distribute B�block���

			
� C is remapped
�hpf� realign C�i�j� with B�j�i�
� C is remapped back to initial�
�hpf� redistribute B���block�

Figure �� useless C remappings

�hpf� align with T �� 

�hpf� A�B�C�D�E
�hpf� distribute T�block�

			 A B C D E 			
�hpf� redistribute T�cyclic�

			 A D 			

Figure �� Aligned array remappings

��� Motivation

Remappings are costly at runtime because they imply com�
munication� Moreover� even well written HPF programs
may require useless remappings� In Figure 	 the change
of both alignment and distribution of A requires two remap�
pings while it could be remapped at once from �block��� to
���cyclic� rather than using the intermediate ���block�
mapping� In Figure � both C remappings are useless because
the redistribution restores its initial mapping� In Figure �
template T redistribution enforces the remapping of all �ve
aligned arrays� although only two of them are used after�
wards� In Figure � the consecutive calls to subroutine foo
remap the argument on entry in and on exit from the rou�
tine� and both back and forth remappings could be avoided
between the two calls� Moreover� between calls to foo and
bla� array Y is remapped from �cyclic� to �block� and
then from �block� to �cyclic���� while a direct remap�
ping would be possible� All these examples do not arise
from badly written programs� but from a normal use of HPF
features� They demonstrate the need for compile�time data
�ow optimizations to avoid remappings at run time�



real Y���
�hpf� distribute Y�block�
interface
subroutine foo�X�
real X���

�hpf� distribute X�cyclic�
end subroutine
subroutine bla�X�
real X���

�hpf� distribute X�cyclic����
end subroutine

end interface
			 Y 			
call foo�Y�
call foo�Y�
call bla�Y�
			 Y 			

Figure �� Useless argument remappings

�hpf� template T��T�
�hpf� align with T� �� A

			 A 			
if �			� then

�hpf� realign with T� �� A
			 A 			

endif
�hpf� redistribute T�

			 A 			

Figure �� Ambiguity of remappings

��� Related work

Such optimizations to avoid useless remapping commu�
nications� especially interprocedural ones� have been dis�
cussed �		� 	��� It is shown �		� that the best approach
to handle subroutine calls is that callers must comply to
callee requirements� We follow this approach� In contrast
to these papers we rely on standard explicit interfaces to
provide the needed information about callees while enabling
similar optimizations� We do not expect real applications
to provide many remapping optimization opportunities at
the interprocedural level� Moreover requiring mandatory
interprocedural compilation is not in the spirit of the HPF
speci�cation� Also� the techniques presented in these papers
cannot be extended directly to HPF because HPF two�level
mapping makes the reaching mapping problem not as sim�
ple as the reaching de�nition problem� Both the alignment
and distribution problems must be solved to extract actual
mappings associated to arrays in the program�

The Static Distribution Assignment scheme �	�� to han�
dle dynamic array references is very similar to our approach
which uses distinct copies for each array mapping� Both
schemes have been developed concurrently� Such techniques
require well behaved programs� remappings should not ap�
pear anywhere in the program� to avoid references with am�
biguous mappings as shown in Figure �� We go a step further
by suggesting ��� that the language should forbid such cases�
This is supported by our experience with real applications
that require dynamic mappings� ambiguous mappings are
rather bugs to be reported�

Our approach is unique from several points� First� our

�hpf� distribute A�block�
			 A 			
if �			� then

�hpf� redistribute A�cyclic�
			 A 			

endif
			
� no reference to A
			

�hpf� redistribute A�cyclic����
			 A 			

Figure 
� Other ambiguity of remappings

optimizations are expressed on the remapping graph which
captures all mapping and use information for a routine� This
graph can be seen as the dual of a contracted control��ow
graph as noted in �	��� The advantage is that our graph
is much smaller than the usual control��ow graph� Second�
read and write uses of arrays are distinguished� enabling the
detection of live copies that can be reused without commu�
nication in case of a remapping� Third� our runtime can
handle arrays with an ambiguous mapping� provided that it
is not referenced in such a state� This requirement is weaker
than the one for well behaved programs �	�� 		�� since it
enables cases such as Figure 
�

��� Outline

This paper describes a practical approach to handle HPF
remappings� All issues are addressed� languages restrictions
�or corrections� required for this scheme to be applicable� ac�
tual management of simple references in the code� data��ow
optimizations� down to the runtime system requirements�
This technique is implemented in our HPF compiler ����

First� Section � presents the language restrictions� the
handling of subroutine calls and our general approach to
compile remappings� Second� Section � focuses on the de��
nition and construction of the remapping graph which cap�
tures all necessary remapping and liveness information on a
contracted control �ow graph� Third� Section � discusses
data��ow optimizations performed on this small graph�
These optimizations remove all useless remappings and de�
tect live or may�be�live copies to avoid further communica�
tion� Finally� Section � outlines runtime requirements im�
plied by our technique� before concluding�

� Overview

This paper focuses on compiling HPF remappings with array
copies and on suggesting optimization techniques to avoid
useless remappings� The idea is to translate a program
with dynamic mappings into a standard HPF program with
copies between di�erently mapped arrays� as outlined in Fig�
ure �� the redistribution of array A is translated into a copy
from A� to A�� the array references are updated to the ap�
propriate array version�

��� Language restrictions

In order to do so� the compiler must know statically about
mappings associated to every array references� Thus the

�



�
� dynamic mappings
�
�hpf� distribute A�cyclic�

			 A 			
�hpf� redistribute A�block�

			 A 			

�
� static mappings
�

allocatable A��A�
�hpf� distribute A��cyclic�
�hpf� distribute A��block�

allocate A�
			 A� 			

� remapping
allocate A�
A� � A�
deallocate A�

� done
			 A� 			

Figure �� Translation from dynamic to static mappings

HPF language must be restricted to enable the minimum
static knowledge required to apply this scheme� Namely�

	� References with ambiguous mappings due to the
control��ow of the program are forbidden� Hence the
compiler can �gure out the mapping of array references
and substitute the right copy�

�� Interfaces describing mappings of arguments of called
subroutines are mandatory� Thus all necessary infor�
mation is available for the caller to comply to the ar�
gument mapping of its callees�

�� Transcriptive mappings associated to subroutine argu�
ments are forbidden� This feature can be replaced by a
more precise mapping descriptions �
�� or could be en�
abled but would then require an interprocedural com�
pilation such as cloning �	���

Condition 	 is illustrated in Figure �� Array A mapping is
modi�ed by the redistribute if the realign was executed
before at runtime� otherwise A is aligned with template T�
and get through T� redistribution unchanged� However there
may be an ambiguity at a point in the program if the array
is not referenced� in Figure 
 after the endif and before the
�nal redistribution the compiler cannot know whether Array
A is distributed block or cyclic� but the mapping ambiguity
is solved before any reference to A�

With these language restrictions the bene�t of remap�
pings is limited to software engineering issues since it is
equivalent to a static HPF program� It may also be ar�
gued that expressiveness is lost by restricting the language�
However it must be noted that� �	� software engineering
is an issue that deserves consideration� ��� the current sta�
tus of the language de�nition is to drop remappings as a
whole �by moving them out of the core language as sim�
ple approved extensions �	��� because they are considered
too di�cult to handle� ��� we have not encountered any
real application so far that would bene�t from the full ex�
pressiveness of arbitrary �ow�dependent remappings� Thus

�
� implicit remapping
�

interface
subroutine CALLEE�A�
intent�in�� real�� A���

�hpf� distribute A�block�
end subroutine

end interface

real B���
�hpf� distribute B�cyclic�

			
call CALLEE�B�
			

�
� explicit remapping
�

real B���
�hpf� dynamic B
�hpf� distribute B�cyclic�

			
�hpf� redistribute B�block�
� liveness� B is read

call CALLEE�B�
�hpf� redistribute B�cyclic�

			

Figure �� Translation of a subroutine call

it makes sense to keep the simple and interesting aspects of
remappings� Further powerful extensions can be delayed un�
til applications need them and when compilation techniques
are proven practical and e�cient�

These language restrictions are also required to compile
remappings rather than to rely on generic library functions�
Indeed� for compiling a remapping into a message passing
SPMD code ��� both source and target mappings must be
known� Then the compiler can take advantage of all avail�
able information to generate e�cient code� The implicit
philosophy is that the compiler handles most of the issues
at compile time� with minimum left to run time� But the
language must require the user to provide the necessary in�
formation to the compiler� If not� only runtime�oriented ap�
proaches are possible� reducing the implementor�s choices�
but also performances�

��� Subroutine arguments

Subroutine argument mappings will be handled as local
remappings by the caller� This is possible if the caller knows
about the mapping required by callee dummy arguments�
hence the above constraint to require interfaces describ�
ing argument mappings� The intent attribute �in� out or
inout� provides additionnal information about the e�ects
of the call onto the array� It will be used to determine live
copies over call sites without interprocedural techniques�

Subroutine calls are translated as explicit remappings in
the caller as suggested in Figure �� Our scheme respects
the intended semantics of HPF argument passing� the ar�
gument is the only information the callee obtains from the
caller� Thus explicit remappings of arguments within the

�



callee will only a�ect copies local to the subroutine� Un�
der more advance calling conventions� it may be thought of
passing live copies along the required copy� so as to avoid
further useless remappings within the subroutine�

��� Discussion

The current HPF speci�cation includes features �inheritdi�
rective for transcriptive mappings� possible ambiguous map�
pings� etc�� that make the runtime approach mandatory�
at least for handling all cases� Another side�e�ect of op�
tional interfaces� transcriptive mappings and weak descrip�
tive mappings is that the compiler must make the callee
handle remappings as a default case� But the callee has
both less information and optimization opportunities �		��

These features improve expressiveness� but at the price
of performance� Delaying to run time the array mapping
handling of references means delaying the actual address
calculations and reduces compile time optimizations which
are mandatory to cache�based processors� Also compiling for
an unknown mapping makes many communication optimiza�
tions impractical� Expensive and more complex techniques
can be used to generate good code when lacking information�
partial or full cloning of subroutines to be compiled with dif�
ferent assumptions� that requires a full interprocedural anal�
ysis and compilation �	��� Another technique is run time
partial evaluation that dynamically generates an optimized
code once enough information is available ���� However even
though there are overheads and the runtime is complex�

As HPF is expected to bring high performance� tran�
scriptive and ambiguous mappings seem useless� They re�
strict the implementor choices and possible optimizations�
Moreover no real�life application we have encountered so far
require them to reach high performance levels�

� Remapping graph GR

This section de�nes and describes the construction of the
remapping graph� This graph is a subgraph of the control
�ow graph which captures remapping information such as
the source and target copies for each remapping of an array
and how the array is used afterwards� that is a liveness in�
formation� Subsequent optimizations will be expressed on
this small graph�

��� De�nition

In the following we will distinguish the abstract array and its
possible instances with an associated mapping� Arrays are
denoted by capital typewriter letters as A� Mapped arrays
are associated a subscript such as A�� Di�erently subscripted
arrays refer to di�erently mapped instances�

The remapping graph is a very small subgraph of the
control �ow graph� The vertices of the graph are the remap�
ping statements whether explicit or added to model implicit
remappings at call sites� There is a subroutine entry point
vertex v� and an exit point ve� An edge denotes a pos�
sible path in the control �ow graph with the same array
remapped at both vertices� The vertices are labeled with
the remapped arrays� Each remapped array is associated
one leaving copy and reaching copies at this vertex� Arrays
are also associated a conservative use�information� Namely
whether a given leaving copy may be not referenced �N��
fully rede�ned before any use �D�� only read �R� or maybe
modi�ed �W��

A f	� �g
R
� �

Figure �� Label representation

Figure � shows a label representation� Array A remap�
ping links reaching copies f	� �g to the leaving mapping ��
the new copy being only read �R�� The vertex is a remap�
ping for array A� It may be reached with copies A� and A� and
must be left with copy A�� As this copy will only be read� the
compiler and runtime can decide to keep the reaching copy
values which are live� A shorthand is used in some �gures
when several arrays share the same reaching and leaving
mappings� All concerned arrays are speci�ed as a pre�x�
and the use information over the arrow is speci�ed for each
array� respectively�

This provides a precise liveness information that will be
used by the runtime and other optimizations to avoid remap�
pings by detecting and keeping live copies� However it must
be noted that this information is conservative� because ab�
stracted at the high remapping graph level� The collected
information can di�er from the actual runtime e�ects on the
subroutine� an array can be quali�ed as W from a point and
not be actually modi�ed� The remapping graph de�nition
is more formally presented in Appendix A�

��� Construction

The remapping graph described above holds all the remap�
ping and liveness information� The next issue is to build
this graph� The construction algorithm builds the remap�
ping graph and updates the control graph to �	� switch array
references to the appropriate copy� distributed as expressed
by the program� ��� re�ect implicit remappings of array ar�
guments through explicit remappings and ��� check the con�
ditions required for the correctness of our scheme�

Subroutine argument mappings are handled as local
remappings by the caller� Implicit remappings are trans�
lated into explicit ones at call site in the caller� The actual
array argument is copied if needed into a copy mapped as the
corresponding dummy argument before the call� and may
be copied back on return� The intent attribute �in� out or
inout� provides information about the e�ects of the call onto
the array and will be used to determine live copies� Within
the subroutine compilation� three added vertices �call vc� en�
try v� and exit ve� model the initial and �nal mappings for
the dummy arguments and local variables� Dummy argu�
ments and local arrays are associated their initial mapping
on exit from vertex v�� vc and ve allow to attach dummy
arguments the use information derived from the intent at�
tribute to model imported and exported values�

Then the construction starts by propagating the initial
mapping copy of the array from the entry point of the sub�
routine� The GR construction algorithm pushes array ver�
sions along the control graph and extract a simpler graph
to re�ect the needed runtime copies to comply to the in�
tended semantics of the program� This construction can
be described as a set of data��ow problems detailed in Ap�
pendix B� Mappings are propagated from the entry point
and updated at remapping statements� This can be de�
composed into two data�ow problems� one for alignments
and one for distributions� However our implementation per�
forms both propagation concurently� focussing directly on

�



array mappings� The propagation tags array references with
their associated mappings and performs some transforma�
tions to handle subroutine calls� Second� the use informa�
tion is propagated backwards from references to remapping
statements� Finally the contracted graph is de�ned by prop�
agating remapping statements over the control graph�

��� Example

Let us focus on the routine in Figure 	� It contains four
remappings� thus with the added call� entry and exit ver�
tices there are seven vertices in the corresponding remapping
graph� There are three arrays� two of which are local� The
sequential loop structure with two remappings is typical of
ADI�

Figure 		 shows the resulting remapping graph� The
liveness information is represented above the arrow� The
rationale for the 	 to E and � to E edges is that the loop
nest may have no iteration at runtime� thus the remappings
within the array may be skipped� Since all arrays are aligned
together� they are all a�ected by the remapping statements�
Four di�erent versions of each array might be needed with
respect to the required di�erent mapping� However� the live�
ness analysis shows that some instances are never referenced
such as B� and C��

� Data �ow optimizations

The remapping graph GR constructed above abstracts all the
liveness and remapping information extracted from the con�
trol �ow graph and the required dynamic mapping speci�ca�
tions� Following �		� we plan to exploit as much as possible
this information to remove useless remappings that can be
detected at compile time� or even some that may occur un�
der particular run time conditions� These optimizations on
GR are expressed as standard data �ow problems �	�� 	�� 	��

��� Removing useless remappings

Leaving copies that are not live appear in GR with the N �not
used� label� It means that although some remapping on an
array was required by the user� this array is not referenced
afterwards in its new mapping� Thus the copy update is not
needed and can be skipped� However� by doing so� the set
of copies that may reach latter vertices is changed� Indeed�
the whole set of reaching mappings must be recomputed�
It is required to update this set because we plan a compila�
tion of remappings� thus the compiler must know all possible
source and target mapping couples that may occur at run
time� This recomputation is a may forward standard data�
�ow problem� It is detailed in appendix C� First useless
remappings are removed �unused leaving mappings�� Sec�
ond reaching mappings are computed again from remaining
leaving mappings� This optimization is shown correct� All
remapping that are useless are removed� and all those that
may be useful are kept� Thus it is optimal� provided that
remappings remain in place�

Figure 	� displays the remapping graph of our example
after optimization� From the graph it results that array A
may be used with all possible mappings f� 	� �� �g� but array
B is only used with f� 	g and array C with f� �g� Array C
is not live but within the loop nest� thus its instantiation
can be delayed� and may never occur if the loop body is
never executed� Array B is only used at the beginning of the
program� hence all copies can be deleted before the loop�

Figure 	�� Example after optimization

The generation of the code from this graph is detailed in
Section ��

��� Dynamic live copies

Through the remapping graph construction algorithm� array
references in the control graph GC were updated to an array
version with a statically known mapping� The remapping
graph holds the information necessary to organize the copies
between these versions in order to respect the intended se�
mantics of the program� The �rst idea is to allocate the
leaving array version when required� to perform the copy
and to deallocate the reaching version afterwards�

However� some copies could be kept so as to avoid useless
remappings when copying back to one of these copies if the
array was only read in between� The remapping graph holds
the necessary information for such a technique� Let us con�
sider the example in Figure 	� and its corresponding remap�
ping graph in Figure 	�� Array A is remapped di�erently in
the branches of the condition� It may be only modi�ed in
the then branch� Thus� depending on the execution path
in the program� array copy A� may reach remapping state�
ment � live or not� In order to catch such cases� the liveness
management is delayed until run time� dead copies will be
deleted �or mark as dead� at the remapping statements�

Keeping array copies so as to avoid remappings is a nice
but expensive optimization� because of the required mem�
ory� Thus it would be interesting to keep only copies that
may be used latter on� In the example above it is useless
to keep copies A� or A� after remapping statement � because
the array will never be remapped to one of these distribu�
tion� Determining at each vertex the set of copies that may
be live and used latter on is a may backward standard data
�ow problem� leaving copies must be propagated backward
on paths where they are only read� This is detailed in Ap�
pendix D�

��� Other optimizations

Further optimization can be thought of� as discussed in �		��
Array kill analysis� for instance based on array regions ��� ���
tells whether the values of an array are dead at a given point
in the program� This semantical analysis can be used to

�



subroutine remap�A�m� � C

parameter�n������
intent�inout��� A
real� dimension�n�n��� A�B�C

	hpf
 align with A�� B�C
	hpf
 distribute � A�block��� � �

��� B written� A read
if ����B read� then

	hpf
 redistribute A�cyclic��� � �
��� A p written� A B read

else
	hpf
 redistribute A�block�block� � �

��� p written� A read
endif
do i��� mp

	hpf
 redistribute A�block��� � �
��� C written� A read

	hpf
 redistribute A���block� � �
��� A written� A C read

enddo
end subroutine remap � E

Figure 	� Code example Figure 		� Remapping graph for Figure 	

	hpf
 distribute A�block� � �
��� A read
if ����� then

	hpf
 redistribute A�cyclic� � �
��� A written

else
	hpf
 redistribute A�cyclic���� � �

��� A read
endif

	hpf
 redistribute A�block� � �
��� A read
end

Figure 	�� Flow dependent live copy Figure 	�� Corresponding GR

avoid remapping communication of values that will never be
reused� Array regions can also describe a subset of values
which are live� thus the remapping communication could
be restricted to these values� reducing communication costs
further� However such compile�time advanced semantical
analyses are not the common lot of commercial compilers�
Our prototype HPF compiler includes a kill directive for
the user to provide this information� The directive creates
a remapping vertex tagged D�

Remappings can be moved around in the control �ow
graph� especially out of loops� From the code in Figure 	�
we suggest to move the remappings as shown in Figure 	
�
This di�ers from �		�� the initial remapping is not moved
out of the loop� because if t � 	 this would induce a useless
remapping� The remapping from block to cyclic will only
occur at the �rst iteration of the loop� At others� the run�
time will notice that the array is already mapped as required
just by an inexpensive check of its status�

	 Runtime issues

The remapping graph information describing array versions
reaching and leaving remapping vertices must be embedded
into the program through actual copies in order to ful�ll the
requirements� Some optimizations described in the previous
sections rely on the runtime to be performed�

interface
subroutine foo�X�

	hpf
 distribute X�block�
end subroutine

end interface
	hpf
 distribute A�cyclic�

��� A
if ����� then

	hpf
 redistribute A�cyclic����
��� A

endif
	 A is cyclic or cyclic���
	 foo requires a remapping

call foo�A�

Figure 	�� Subroutine calls

	�� Runtime status

Some data structure must be managed at run time to store
the needed information� namely� the current status of the
array �which array version is the current one and may be
referenced� and the live copies�

The current status of an array can be kept in a descrip�
tor holding the version number� By testing this status� the
runtime is able to notice which version of an array reaches
a remapping statement� what may be �ow�dependent� This






	hpf
 distribute A�block�
��� A
do i��� t

	hpf
 redistribute A�cyclic�
��� A

	hpf
 redistribute A�block�
enddo
��� A

Figure 	�� Loop invariant remappings

	hpf
 distribute A�block�
��� A
do i��� t

	hpf
 redistribute A�cyclic�
��� A

enddo
	hpf
 redistribute A�block�

��� A

Figure 	
� Optimized version

	 save the reaching status
reaching�A��status�A�

	hpf
 redistribute A�block�
call foo�A�

	 restore the reaching mapping
if �reaching�A���� then

	hpf
 redistribute A�cyclic�
elif �reaching�A���� then

	hpf
 redistribute A�cyclic����
endif

Figure 	�� Mapping restored

descriptor enables the handling of programs with ambiguous
mappings provided that no actual reference to such an array
is performed before a remapping� In order to test whether
a version of a given array is live at a point� a boolean in�
formation to be attached to each array version� It will be
updated at each remapping vertex� depending of the latter
use of the copies from this vertex�

If interpreted strongly� Constraint 	 may imply that ar�
rays as call arguments are considered as references and thus
should not bare any ambiguity� such as the one depicted in
Figure 	�� However� since an explicit remapping of the ar�
ray is inserted� the ambiguity is solved before the call� hence
there is no need to forbid such cases� The issue is to restore
the appropriate reaching mapping on return from the call�
This can be achieved by saving the current status of the ar�
ray that reached the call as suggested in Figure 	�� Variable
reaching�A� holds the information� The saved status is then
used to restore the initial mapping after the call�

	�� Copy code generation

The algorithm for generating the copy update code and live�
ness information management from the remapping graph is
outlined in Figure 	�� Copy allocation and deallocation are
inserted in the control �ow graph to perform the required
remappings� using the sets computed at the GR optimization
phase�

The �rst loop inserts the runtime management initializa�
tion at the entry point� All copies are denoted as not live�
No copy receives an a priori instantiation� The rationale for
doing so is to delay this instantiation to the actual use of
the array� that may occur with a di�erent mapping or never�
as Array C in Figure 	� The second loop nest extracts from
the remapping graph the required copy� for all vertex and all
remapped arrays� if there is some leaving mapping for this
array at this point� Copies that were live before but that are
not live any more are cleaned� i�e� both freed and marked
as dead� Finally a full cleaning of local arrays is inserted at
the exit vertex� Figure � shows a generated copy code for

for A � S�v��
append to v� �status�A����
for a � C�A�

append to v� �live�Aa��false�
end for

end for
for v � V�GR�� fvcg

for A � S�v�
if �LA�v� ���� then

append to v �if �status�A��� LA�v�� then�
append to v �allocate ALA�v� if needed�
append to v �if �not live�ALA�v��� then�
if �UA�v� �� D� then

for a � RA�v�� fLA�v�g
append to v �if �status�A��a� ALA�v��Aa�

end for
end if
append to v �live�ALA�v���true�
append to v �endif�
append to v �status�A��LA�v��
append to v �endif�

end if
for a � C�A��MA�v�

append to v �if �live�Aa�� then�
append to v � free Aa if needed�
append to v � live�Aa��false�
append to v �endif�

end for
end for

end for
for all A

for a � C�A�
append to ve �if �live�Aa� and needed� free Aa�

end for
end for all

Figure 	�� Copy code generation algorithm

if �status�A����� then
allocate A� if needed
if �not live�A��� then
if �status�A���� A��A�
if �status�A���� A��A�
live�A���true

endif
status�A���

endif

Figure �� Code for Figure �

�



the remapping vertex in Figure ��
It must be noted that dead arrays �D� do not require any

actual array copy� thus none is generated� avoiding commu�
nication at run time� Moreover� there is no initial map�
ping imposed from entry in the subroutine� If an array is
remapped before any use� it will be instantiated at the �rst
remapping statement encountered at runtime with a non
empty leaving copy� Finally� care must be taken not to free
the array dummy argument copy which belongs to the caller�

Another bene�t from this dynamic live mapping man�
agement is that the runtime can decide to free a live copy
if not enough memory is available� and to change the corre�
sponding liveness status� If required latter on� the copy will
be regenerated� i�e� both allocated and properly initialized
with communication� Since the generated code does not as�
sume that any live copy must reach a point in the program�
but rather decided at remapping statements what can be
done� the code for the communication will be available�


 Conclusion

In this paper� we have shown a pratical approach to compile
HPF dynamic mappings� It consists of substituting dynamic
arrays by static ones� and of inserting simple array copies
between these arrays when necessary� Implicit remappings
at call site are translated into explicit ones in the caller� We
have discussed the language restrictions needed to apply this
scheme� and argued that no high performance application
should miss the restricted features� We have also presented
optimizations enabled by our technique� to remove useless
remappings and to detect live copies that can be reused with�
out communication� Finally runtime implications have been
discussed�

Most of the techniques described in this paper are
implemented in our prototype HPF compiler ���� It is
available from http���www	cri	ensmp	fr�pips�hpfc	html�
The standard statically mapped HPF code generated is then
compiled� with a special code generation phase for handling
remapping communication due to the explicit array copies�

Acknowledgment

I am thankful to Corinne Ancourt� B�eatrice Creusillet�
Fran�cois Irigoin� Pierre Jouvelot and to the anonymous
referees for their helpful comments and suggestions�

References

�	� Alfred V� Aho� Ravi Sethi� and Je�rey D� Ullman�
Compilers Principles� Techniques� and Tools� Addison�
Wesley Publishing Company� 	��
�

��� Jean�Yves Berthou and Laurent Colombet� Experi�
ences in Data Parallel Programming on Cray MPP ma�
chines� First High Performance Fortran �HPF� Users
Group Conference� Santa Fe� NM� USA� February 	����

��� Fabien Coelho� Contributions to High Performance
Fortran Compilation� PhD thesis� �Ecole des mines de
Paris� October 	��
�

��� Fabien Coelho� Discussing HPF Design Issues� In Euro�
Par���� Lyon� France� pages I���	�I����� August 	��
�
LNCS 		��� Also report EMP CRI A����� Feb� 	��
�

��� Fabien Coelho and Corinne Ancourt� Optimal Com�
pilation of HPF Remappings� Jounal of Parallel and
Distributed Computing� ������������
� November 	��
�
Also TR EMP CRI A���� �October 	�����

�
� Fabien Coelho and Henry Zongaro� ASSUME directive
proposal� TR A ���� CRI� �Ecole des mines de Paris�
April 	��
�

��� Charles Consel and Fran�cois No�el� A General Approach
for Run�Time Specialization and its Application to C�
In Symposium on Principles of Programming Language�
pages 	���	�
� January 	��
�

��� B�eatrice Creusillet� Array Region Analyses and Appli�
cations� PhD thesis� �Ecole des mines de Paris� Decem�
ber 	��
�

��� B�eatrice Creusillet and Fran�cois Irigoin� Interprocedu�
ral array region analyses� Int� J� of Parallel Program�
ming 	special issue on LCPC
� ���
���	����
� 	��
�

�	� S�K�S� Gupta� C��H� Huang� and P� Sadayappan� Im�
plementing Fast Fourier Transforms on Distributed�
Memory Multiprocessors using Data Redistributions�
Parallel Processing Letters� ������������� December
	����

�		� Mary W� Hall� Seema Hiranandani� Ken Kennedy� and
Chau�Wen Tseng� Interprocedural Compilation of For�
tran D for MIMD Distributed�Memory Machines� In
Supercomputing� pages �������� 	����

�	�� HPF Forum� High Performance Fortran Language
Speci�cation� Rice University� Houston� Texas� Novem�
ber 	��
� version ���

�	�� Ken Kennedy� A survey of data �ow analysis tech�
niques� In S� Muchnick and N� Jones� editors� Program
Flow Analysis� Theory and Applications� pages �����
Prentice�Hall� Inc�� Engelwood Cli�s� 	����

�	�� Gary A� Kildall� A uni�ed approach to global program
optimization� In Symposium on Principles of Program�
ming Language� pages 	����
� 	����

�	�� Charles Koelbel� David Loveman� Robert Schreiber�
Guy Steele� and Mary Zosel� The High Performance
Fortran Handbook� MIT Press� Cambridge� MA� 	����

�	
� Ulrich Kremer� Automatic Data Layout for Distributed
Memory Machines� PhD thesis� Rice University� Hous�
ton� Texas� October 	���� Available as CRPC�TR���
����S�

�	�� Peter G� Meisl� Mabo R� Ito� and Ian G� Cumming�
Parallel synthetic aperture radar processing on work�
station networks� In International Parallel Processing
Symposium� pages �	
����� April 	��
�

�	�� Daniel J� Palermo� Eugene W� Hodges IV� and Prithvi�
raj Banerjee� Interprocedural Array Redistribution
Data�Flow Analysis� In Language and Compilers for
Parallel Computing� pages aa�	�aa�	�� August 	��
�
San Jos�e� CA�

�	�� Lo��c Prylli and Bernard Tourancheau� E�cient Block
Cyclic Data Redistribution� In Euro�Par���� Lyon�
France� pages I�	���I�	
�� August 	��
� LNCS 		���
Also INRIA RR ��

�

�



�hpf� distribute T���block�
�hpf� align A�i�j� with T�i�j�

if �			� then
�hpf� realign A�i�j� with T�j�i�

endif
�hpf� redistribute T�block���

Figure �	� Several leaving mappings

A Remapping Graph De�nition

If G is a graph then V�G� is its set of vertices and E�G� its set
of edges� Successors of a vertex are designated by succ�v�
and predecessors by pred�v��

vertices V�GR�� the vertices are the remapping statements�
They can be explicit �realign� redistribute� or
added in place of implicit remappings at call sites�
There is a subroutine entry point vertex v� and an exit
point ve�

edges E�GR�� each edge denotes a possible path in the con�
trol �ow graph with the same array remapped at both
vertices and not remapped in between�

labels� in the remapping graph� each vertex v is associated
S�v�� the set of remapped arrays�

For each array A � S�v� we have some associated infor�
mation �depicted in Figure ���

LA�v�� The �or none� noted �� leaving array copy� i�e�
the copy which must be referenced after the remap�
ping� note that HPF allows several leaving mappings
as depicted in Figure �	� array A is remapped at the
redistribute to �block��� or ���block� depending
on the execution of the realign�

We assume that no such cases occur to simplify this
presentation�

RA�v�� the set of reaching copies for the Array A at Vertex
v�

In the general case with several leaving copies� distinct
reaching copy sets must be associated to each possible
leaving copy�

UA�v�� describes how the leaving copy might be used after�
wards� It may be never referenced �N�� fully rede�ned
before any use �D�� only read �R� or modi�ed �W�� The
use information quali�ers supersede one another in the
given order� i�e� once a quali�er is assigned it can only
be updated to a stronger quali�er� The default value
is N�

This provides a precise live information that will be
used by the runtime and other optimizations to avoid
remappings by detecting and keeping live copies� How�
ever it must be noted that this information is conserva�
tive� because abstracted at the high remapping graph
level� The collected information can di�er from the ac�
tual runtime e�ects on the subroutine� an array can be
quali�ed as W from a point and not be actually modi�
�ed�

Each edge is labelled with the arrays that are remapped
from at the sink vertex when coming from the source vertex�
A�v� v��� Note that

A � A�v� v�� � A � S�v� and A � S�v��

B Remapping Graph Construction

Here is a data �ow formulation of the construction algo�
rithm� First� let us de�ne the sets that will be computed by
the data�ow algorithms in order to build GR�

Reaching�v�� the set of arrays and associated mappings
reaching vertex v� these arrays may be remapped at
the vertex or left unchanged� thus going through the
vertex�

Leaving�v�� the set of arrays and associated mappings leav�
ing vertex v� one leaving mapping per array is assumed
for simplifying the presentation�

Remapped�v�� the set of arrays actually remapped at vertex
v� �note that if several leaving array mappings are al�
lowed� this information is associated to array and map�
ping couples instead of just considering arrays��

EffectsOf�v�� the proper e�ect on distributed variables of
vertex v� i�e� these variables and whether they are
never referenced� fully rede�ned� partially de�ned or
used� This basic information is assumed to be avail�
able�

EffectsAfter�v�� the distributed variables and associated
e�ects that may be encountered after v and before any
remapping of these variables�

EffectsFrom�v�� just the same� but including also the ef�
fects of v�

RemappedAfter�v�� the distributed variables and associ�
ated remapping vertices that may be encountered di�
rectly �without intermediate remapping� after v�

RemappedFrom�v�� just the same� but including also v�

The following function computes the leaving mapping
from a reaching mapping at a given vertex�

Aj � impact�Ai� v�� the resulting mapping of A after v when
reached by Ai� For all but remapping vertices Ai � Aj�
i�e� the mapping is not changed� Realignments of A or
redistributions of the template Ai is aligned with may
give a new mapping� The impact of a call is null�

array�Ai��A� the function returns the array from one of its
copies�

operator �� means but those concerning� that is the opera�
tor is not necessarily used with sets of the same type�

Now� here is the construction algorithm expressed as a
set of data �ow equations�

�



intent UA�vc� UA�ve�
in D N

inout D W
out N W

Figure ��� Array argument use

Figure ��� Initial GR

Input to the construction algorithm

� control �ow graph GC with entry v� and exit ve vertices

� the set of remapping vertices VR� which includes Vertex
v� and Vertex ve�

� the proper e�ects of vertices on distributed variables
EffectsOf�v� �the default for VR is no e�ects��

� for any remapped array at a vertex� there is only one
possible leaving mapping� This assumption simpli�es
the presentation� but could be removed by associating
remapped information to array mappings instead of the
array�

Updating GC �arguments�

�rst let us update GC to model the desired mapping of ar�
guments�

� Add call vertex vc and an edge from vc to v� in GC �

Reaching and Leaving mappings

They are computed starting from the entry point in the
program� Propagated mappings are modi�ed by remapping
statements as modeled by the impact function� leading to
new array versions to be propagated along GC � This propa�
gation is a may forward data�ow problem�

initialization�

� Reaching � 	

� Leaving � 	

� add all argument distributed variables and their asso�
ciated mappings to Leaving�vc� and Leaving�ve��

� update EffectsOf�vc� and EffectsOf�ve� as sug�
gested in Figure ��� If values are imported the array is
annotated as de�ned before the entry point� If values
are exported� it is annotated as used after exit� This
models safely the caller context� The callee is assumed
to comply to the intended semantics�


 call foo�A� �

vb 
 �Afig
W
� k���y


 call foo�Ak���y
va 
 �Afkg � i�

Figure ��� Call with a prescriptive inout�intended argument

� add all local distributed variables and their associated
initial mapping to Leaving�v���

Figure �� shows the initial remapping graph with an
inout intended array argument A and a local array L�

propagation�

� the array mappings reaching a vertex are those leaving
its predecessors�

Reaching�v� �
�

v��pred�v�

Leaving�v��

� the array mappings leaving a vertex are updated with
the statement impact on the array mappings reaching
this vertex�

Leaving�v� � Leaving�v� �
�

a�Reaching�v�

impact�a� v�

Updating references

For all vertices v � V�GC�� VR so that EffectsOf�v� on
is not N�

� if jfm � Leaving�v��array�m� � Agj � 	 then issues
an error� because there is more than one mapping for
a given array

� else substitute the references with the corresponding
array copy�

� note that there may be none if some piece of code is
dead�

Remapped arrays

They are directly extracted from Reaching� they are those
transformed by impact�

Remapped�v� �
�

�
�
pt�m�Reaching�v�m��impact�m�v�

array�m�

Updating GC �calls�

� calls with distributed arguments are managed as shown
in Figure ���

pred�vb� � pred�v�� succ�vb� � fvg� pred�va� �
fvg� succ�va� � succ�v��pred�v� � fvbg� succ�v� � fvag

Remapped�vb� � fAg

� VR is updated accordingly� VR � VR � fvb� vag

	



Summarizing eects

This phase summarizes the use information after remap�
ping statements� and up to any other remapping statement�
Hence it captures what may be done with the considered
array copy�

This phase is based on proper e�ects that are directly ex�
tracted from the source code for direct references� or through
intent declarations in subroutine explicit interfaces� De�
pending on the intent attribute associated to a subroutine
argument the corresponding e�ect is described in Figure ���

intent e�ect
in R

inout W
out D

Figure ��� Intent e�ect

Remapping statements but vc and ve have no proper ef�
fects�

�v � VR � fvc� veg�EffectsOf�v� � 	

This is a may backwards data�ow problem�

initialization� no e�ects 

� EffectsAfter � 	

� EffectsFrom � 	

propagation�

� the e�ects leaving a vertex are those from its successors�

EffectsAfter�v� �
�

v��succ�v�

EffectsFrom�v��

� the e�ects from a vertex are those leaving the vertex
and proper to the vertex� but remapped arrays�

EffectsFrom�v� �

�EffectsAfter�v� �EffectsOf�v��

� Remapped�v�

Computing GR edges

As we expect few remappings to appear within a typical
subroutine� we designed the remapping graph over the con�
trol graph with direct edges that will be used to propa�
gate remapping information and optimizations quickly� This
phase propagates for once remapping statements �array and
vertex couples� so that each remapping statement will know
its possible successors for a given array�

This is a may backwards data�ow problem�

initialization�

� RemappedAfter � 	

� initial mapping vertex couples are de�ned for remap�
ping statement vertices and arrays remapped at this
very vertex�

RemappedFrom�v� �
�

a�Remapped�v�

f�a� v�g

propagation�

� the remapping statements after a vertex are those from
its successors�

RemappedAfter�v� �
�

v��succ�v�

RemappedFrom�v��

� the remapping statements from a vertex are up�
dated with those after the vertex� but those actually
remapped at the vertex�

RemappedFrom�v� �

RemappedFrom�v� �

�RemappedAfter�v��Remapped�v��

Generating GR

From these sets we can derive the remapping graph�

� VR are GR vertices

� edges and labels are deduced from RemappedAfter

� S��� R�� and L�� from Remapped� Reaching and
Leaving

� U�� from EffectsAfter

Discussion

All the computations are simple standard data �ow prob�
lems� but the reaching and leaving mapping propagation�
Indeed� the impact function may create new array map�
pings to be propagated from the vertex� The worst case
complexity of the propagation and remapping graph algo�
rithm described above can be computed� Let us denote
n is the number of vertices in GC� s the maximum num�
ber of predecessors or successors of a vertex in GC � m the
number of remapping statements �including the entry and
exit points�� p the number of distributed arrays� With the
simplifying assumption that only one mapping may leave a
remapping vertex� then the maximum number of mappings
to propagate is mp� Each of these may have to be prop�
agated through at most n vertices with a smp worst case
complexity for a basic implementation of the union opera�
tions� Thus we can bound the worst case complexity of the
propagation to O�nsm�p���

C Removing useless remappings

Leaving copies that are not live appear in GR with the N
�not used� label� It means that although some remapping
on an array was required by the user� this array is not refer�
enced afterwards� Thus the copy update is not needed and
can be skipped� However� by doing so� the set of copies that
may reach latter vertices is changed� Indeed� the whole set
of reaching mappings must be recomputed� It is required
to update this set because we plan a compilation of remap�
pings� thus the compiler must know all possible source and
target mapping couples that may occur at run time� This
recomputation is a may forward standard data��ow prob�
lem�

		



Remove useless remappings

Done simply by deleting the leaving mapping of such arrays�

�v � V�GR���A � S�v�� UA�v� � N� LA�v� ��

Recompute reaching mappings

initialization� use 	�step reaching mappings

�v � V�GR�� �A � S�v��

RA �v� �
�

�
�
pt�v��pred�v�A�A�v��v��UA �v

����N

LA �v��

Reaching mappings at a vertex are initialized as the
leaving mappings of its predecessors which are actually
referenced�

propagation� optimizing function

�v � V�GR�� �A � S�v��

RA�v� � RA�v� �
�

�
� pt�v

��pred�v�A�A�v��v��UA�v
���N

RA�v
��

The function propagates reaching mappings along
paths on which the array is not referenced� computing
the transitive closure of mappings on those paths�

The iterative resolution of the optimizing function is increas�
ing and bounded� thus it converges�

Let us assume O�	� basic set element operations �put�
get and membership�� Let m be the number of vertices in
GR� p the number of distributed arrays� q the maximum
number of di�erent mappings for an array and r the maxi�
mum number of predecessors for a vertex� Then the worst
case time complexity of the optimization� for a simple iter�
ative implementation� is O�m�pqr�� Note that m� q and r
are expected to be very small�

Correctness and Optimality

This optimization is correct and the result is optimal�

Theorem � The computed remappings 	from new reach�
ing to remaining leaving
 are those and only those that are
needed 	according to the static information provided by the
data �ow graph
�

�v � V�GR�� �A � S�v�� UA�v���a � RA�v��

v� and a path from v
� to v in GR�

so that a � LA�v
�� and A is not used on the path�

Proof sketch� construction of the path by induction on the
solution of the data �ow problem� Note that the path in GR
re�ects an underlying path in the control �ow graph with
no use and no remapping of the array�

D Dynamic live copies

Keeping array copies so as to avoid remappings is a nice
but expensive optimization� because of the required memory�
Thus it would be interesting to keep only copies that may be
used latter on� In the example in Figure 	�� it is useless to
keep copies A� or A� after remapping statement � because the
array will never be remapped to one of these distribution�
Determining at each vertex the set of copies that may be
live and used latter on is a may backward standard data
�ow problem� leaving copies must be propagated backward
on paths where they are only read� Let MA�v� be the set of
copies that may be live after v�

initialization� directly useful mappings

�v � V�GR���A � S�v��MA�v� � LA�v�

propagation� optimizing function

�v � V�GR�� �A � S�v�� UA�v� � fN�Rg�

MA�v� � MA�v� �
�

�
� pt�v

�
�succ�v�A�A�v�v��

MA�v
��

Maybe useful copies are propagated backwards while
the array is not modi�ed �neither W nor D��

	�


