Fabien Coelho
email: @cri.ensmp.fr

Compiling Dynamic Mappings with Array Copies (TR EMP CRI A 302. To a p p e a r i n P P oPP'97)

Array remappings are useful to many applications on distributed memory parallel machines. They are available in High Performance Fortran, a Fortran-based data-parallel language. This paper describes techniques to handle dynamic mappings through simple array copies: array r e m a ppings are translated into copies between statically mapped distinct versions of the array. It discusses the language restrictions required to do so. The remapping graph which captures all remapping and liveness information is presented, as well as additional data-ow optimizations that can be performed on this graph, so as to avoid useless remappings at run time. Such useless remappings appear for arrays that are not used after a remapping. Live a r r a y copies are also ke p t t o a void other ow-dependent useless remappings. Finally the code generation and runtime required by our scheme are discussed. These techniques are implemented in our prototype HPF compiler.

1 Introduction Array remappings, i.e. the ability t o c hange array m a ppings at runtime, are de nitely useful to applications and kernels such as ADI 16], linear algebra solvers 19], 2d FFT 10], signal processing 17] or tensor computations 2] for efcient execution on distributed memory parallel computers. HPF 15,12] provides explicit remappings through realign and redistribute directives and implicit ones at subroutine calls and returns for array arguments. This paper discusses compiler handling of remappings and associated data ow optimizations.

!hpf$ align with B:: A !hpf$ distribute B(block,*) ... ! A is remapped !hpf$ realign A(i,j) with B(j,i) ! A is remapped again !hpf$ redistribute B(cyclic,*) Remappings are costly at runtime because they imply communication. Moreover, even well written HPF programs may require useless remappings. In Figure 1 the change of both alignment and distribution of A requires two remappings while it could be remapped at once from (block,*) to (*,cyclic) rather than using the intermediate (*,block) mapping. In Figure 2 both C remappings are useless because the redistribution restores its initial mapping. In Figure 3 template T redistribution enforces the remapping of all ve aligned arrays, although only two of them are used afterwards. In Figure 4 the consecutive calls to subroutine foo remap the argument o n e n try in and on exit from the routine, and both back and forth remappings could be avoided between the two calls. Moreover, between calls to foo and bla, array Y is remapped from (cyclic) to (block) and then from (block) to (cyclic(2)) while a direct remapping would be possible. All these examples do not arise from badly written programs, but from a normal use of HPF features. They demonstrate the need for compile-time data ow optimizations to avoid remappings at run time.

real Y(1000) !hpf$ distribute Y(block) interface subroutine foo(X) real X(1000) !hpf$ distribute X(cyclic) end subroutine subroutine bla(X) real X(1000) !hpf$ distribute X(cyclic(2)) end subroutine end interface ... Y ... call foo(Y) call foo(Y) call bla(Y) ... Y ...] that the best approach to handle subroutine calls is that callers must comply to callee requirements. We follow this approach. In contrast to these papers we rely on standard explicit interfaces to provide the needed information about callees while enabling similar optimizations. We do not expect real applications to provide many remapping optimization opportunities at the interprocedural level. Moreover requiring mandatory interprocedural compilation is not in the spirit of the HPF speci cation. Also, the techniques presented in these papers cannot be extended directly to HPF because HPF two-level mapping makes the reaching mapping problem not as simple as the reaching de nition problem. Both the alignment and distribution problems must be solved to extract actual mappings associated to arrays in the program. The Static Distribution Assignment scheme 18] to handle dynamic array references is very similar to our approach which uses distinct copies for each a r r a y mapping. Both schemes have been developed concurrently. S u c h t e c hniques require well behaved programs: remappings should not appear anywhere in the program, to avoid references with ambiguous mappings as shown in Figure 5. We go a step further by suggesting 4] that the language should forbid such cases. This is supported by our experience with real applications that require dynamic mappings: ambiguous mappings are rather bugs to be reported.

Our approach is unique from several points. First, our optimizations are expressed on the remapping graph which captures all mapping and use information for a routine. This graph can be seen as the dual of a contracted control-ow graph as noted in 18]. The advantage is that our graph is much smaller than the usual control-ow graph. Second, read and write uses of arrays are distinguished, enabling the detection of live copies that can be reused without communication in case of a remapping. Third, our runtime can handle arrays with an ambiguous mapping, provided that it is not referenced in such a state. This requirement i s w eaker than the one for well behaved programs [START_REF] Peter | Parallel synthetic aperture radar processing on workstation networks[END_REF][START_REF] Gupta | Implementing Fast Fourier Transforms on Distributed-Memory Multiprocessors using Data Redistributions[END_REF], since it enables cases such as Figure 6.

Outline

This paper describes a practical approach to handle HPF remappings. All issues are addressed: languages restrictions (or corrections) required for this scheme to be applicable, actual management of simple references in the code, data-ow optimizations, down to the runtime system requirements. This technique is implemented in our HPF compiler 3]. First, Section 2 presents the language restrictions, the handling of subroutine calls and our general approach t o compile remappings. Second, Section 3 focuses on the denition and construction of the remapping graph which captures all necessary remapping and liveness information on a contracted control ow graph. Third, Section 4 discusses data-ow optimizations performed on this small graph. These optimizations remove all useless remappings and detect live o r m a y-be-live copies to avoid further communication. Finally, Section 5 outlines runtime requirements implied by our technique, before concluding.

2 Overview This paper focuses on compiling HPF remappings with array copies and on suggesting optimization techniques to avoid useless remappings. The idea is to translate a program with dynamic mappings into a standard HPF program with copies between di erently mapped arrays, as outlined in Figure 7: the redistribution of array A is translated int o a c o p y from A1 to A2 the array references are updated to the appropriate array v ersion.

Language restrictions

In order to do so, the compiler must know statically about mappings associated to every array references. Condition 1 is illustrated in Figure 5: Array A mapping is modi ed by the redistribute if the realign was executed before at runtime, otherwise A is aligned with template T1 and get through T2 redistribution unchanged. However there may b e a n a m biguity at a point in the program if the array is not referenced: in Figure 6 after the endif and before the nal redistribution the compiler cannot know whether Array A is distributed block or cyclic, but the mapping ambiguity is solved before any reference to A.

With these language restrictions the bene t of remappings is limited to software engineering issues since it is equivalent to a static HPF program. It may also be argued that expressiveness is lost by restricting the language. However it must be noted that: (1) software engineering is an issue that deserves consideration (2) the current status of the language de nition is to drop remappings as a whole (by m o ving them out of the core language as simple approved extensions 12]) because they are considered too di cult to handle (3) we h a ve not encountered any real application so far that would bene t from the full expressiveness of arbitrary ow-dependent remappings. Thus it makes sense to keep the simple and interesting aspects of remappings. Further powerful extensions can be delayed until applications need them and when compilation techniques are proven practical and e cient. These language restrictions are also required to compile remappings rather than to rely on generic library functions. Indeed, for compiling a remapping into a message passing SPMD code 5] both source and target mappings must be known. Then the compiler can take a d v antage of all available information to generate e cient code. The implicit philosophy is that the compiler handles most of the issues at compile time, with minimum left to run time. But the language must require the user to provide the necessary information to the compiler. If not, only runtime-oriented approaches are possible, reducing the implementor's choices, but also performances.

Subroutine arguments

Subroutine argument mappings will be handled as local remappings by the caller. This is possible if the caller knows about the mapping required by callee dummy arguments, hence the above constraint to require interfaces describing argument mappings. The intent attribute (in, out or inout) provides additionnal information about the e ects of the call onto the array. It will be used to determine live copies over call sites without interprocedural techniques.

Subroutine calls are translated as explicit remappings in the caller as suggested in Figure 8. Our scheme respects the intended semantics of HPF argument passing: the argument is the only information the callee obtains from the caller. Thus explicit remappings of arguments within the callee will only a ect copies local to the subroutine. Under more advance calling conventions, it may b e t h o u g h t o f passing live copies along the required copy, s o a s t o a void further useless remappings within the subroutine.

Discussion

The current HPF speci cation includes features (inherit directive for transcriptive mappings, possible ambiguous mappings, etc.) that make the runtime approach mandatory, at least for handling all cases. Another side-e ect of optional interfaces, transcriptive mappings and weak descriptive mappings is that the compiler must make the callee handle remappings as a default case. But the callee has both less information and optimization opportunities 11].

These features improve expressiveness, but at the price of performance. Delaying to run time the array mapping handling of references means delaying the actual address calculations and reduces compile time optimizations which are mandatory to cache-based processors. Also compiling for an unknown mapping makes many communication optimizations impractical. Expensive and more complex techniques can be used to generate good code when lacking information: partial or full cloning of subroutines to be compiled with different assumptions, that requires a full interprocedural analysis and compilation 18]. Another technique is run time partial evaluation that dynamically generates an optimized code once enough information is available 7]. However even though there are overheads and the runtime is complex.

As HPF is expected to bring high performance, transcriptive a n d a m biguous mappings seem useless. They restrict the implementor choices and possible optimizations. Moreover no real-life application we h a ve encountered so far require them to reach high performance levels.

3 Remapping graph GR This section de nes and describes the construction of the remapping graph. This graph is a subgraph of the control ow graph which captures remapping information such a s the source and target copies for each remapping of an array and how the array is used afterwards, that is a liveness information. Subsequent optimizations will be expressed on this small graph.

De nition

In the following we will distinguish the abstract array and its possible instances with an associated mapping. Arrays are denoted by capital typewriter letters as A. Mapped arrays are associated a subscript such a s A2. Di erently subscripted arrays refer to di erently mapped instances.

The remapping graph is a very small subgraph of the control ow graph. The vertices of the graph are the remapping statements whether explicit or added to model implicit remappings at call sites. There is a subroutine entry point vertex v0 and an exit point ve. An edge denotes a possible path in the control ow graph with the same array remapped at both vertices. The vertices are labeled with the remapped arrays. Each remapped array is associated one leaving copy and reaching copies at this vertex. Arrays are also associated a conservative use-information: Namely whether a given leaving copy m a y be not referenced (N), fully rede ned before any u s e (D), only read (R) o r m a ybe modi ed (W).

A f1 3g R ! 2

Figure 9: Label representation Figure 9 shows a label representation. Array A remapping links reaching copies f1 3g to the leaving mapping 2, the new copy being only read (R). The vertex is a remapping for array A. I t m a y be reached with copies A1 and A3 and must be left with copy A2. A s t h i s c o p y will only be read, the compiler and runtime can decide to keep the reaching copy values which are live. A shorthand is used in some gures when several arrays share the same reaching and leaving mappings: All concerned arrays are speci ed as a pre x, and the use information over the arrow is speci ed for each array, respectively. This provides a precise liveness information that will be used by the runtime and other optimizations to avoid remappings by detecting and keeping live copies. However it must be noted that this information is conservative, because abstracted at the high remapping graph level. The collected information can di er from the actual runtime e ects on the subroutine: an array can be quali ed as W from a point a n d not be actually modi ed. The remapping graph de nition is more formally presented in Appendix A.

Construction

The remapping graph described above holds all the remapping and liveness information. The next issue is to build this graph. The construction algorithm builds the remapping graph and updates the control graph to (1) switch array references to the appropriate copy, distributed as expressed by the program, (2) re ect implicit remappings of array arguments through explicit remappings and (3) check the conditions required for the correctness of our scheme.

Subroutine argument mappings are handled as local remappings by the caller. Implicit remappings are translated into explicit ones at call site in the caller. The actual array argument is copied if needed into a copy mapped as the corresponding dummy argument before the call, and may be copied back on return. The intent attribute (in, out or inout) provides information about the e ects of the call onto the array and will be used to determine live copies. Within the subroutine compilation, three added vertices (call vc, e ntry v0 and exit ve) model the initial and nal mappings for the dummy arguments and local variables. Dummy arguments and local arrays are associated their initial mapping on exit from vertex v0. vc and ve allow t o a t t a c h dummy arguments the use information derived from the intent attribute to model imported and exported values.

Then the construction starts by propagating the initial mapping copy of the array from the entry point of the subroutine. The GR construction algorithm pushes array v ersions along the control graph and extract a simpler graph to re ect the needed runtime copies to comply to the intended semantics of the program. This construction can be described as a set of data-ow problems detailed in Appendix B. Mappings are propagated from the entry point and updated at remapping statements. This can be decomposed into two data ow problems, one for alignments and one for distributions. However our implementation performs both propagation concurently, focussing directly on array mappings. The propagation tags array references with their associated mappings and performs some transformations to handle subroutine calls. Second, the use information is propagated backwards from references to remapping statements. Finally the contracted graph is de ned by propagating remapping statements over the control graph.

Example

Let us focus on the routine in Figure 10. It contains four remappings, thus with the added call, entry and exit vertices there are seven vertices in the corresponding remapping graph. There are three arrays, two of which are local. The sequential loop structure with two remappings is typical of ADI.

Figure 11 shows the resulting remapping graph. The liveness information is represented above the arrow. The rationale for the 1 to E and 2 to E edges is that the loop nest may h a ve no iteration at runtime, thus the remappings within the array m a y be skipped. Since all arrays are aligned together, they are all a ected by the remapping statements. Four di erent v ersions of each array m i g h t be needed with respect to the required di erent mapping. However, the liveness analysis shows that some instances are never referenced such a s B3 and C1.

Data ow optimizations

The remapping graph GR constructed above abstracts all the liveness and remapping information extracted from the control ow graph and the required dynamic mapping speci cations. Following 11] we plan to exploit as much as possible this information to remove useless remappings that can be detected at compile time, or even some that may occur under particular run time conditions. These optimizations on GR are expressed as standard data ow problems 14, 13, 1].

Removing useless remappings

Leaving copies that are not live appear in GR with the N (not used) label. It means that although some remapping on an array w as required by the user, this array is not referenced afterwards in its new mapping. Thus the copy update is not needed and can be skipped. However, by doing so, the set of copies that may r e a c h latter vertices is changed. Indeed, the whole set of reaching mappings must be recomputed. It is required to update this set because we plan a compilation of remappings, thus the compiler must know all possible source and target mapping couples that may o c c u r a t r u n time. This recomputation is a may forward standard dataow problem. It is detailed in appendix C. First useless remappings are removed (unused leaving mappings). Second reaching mappings are computed again from remaining leaving mappings. This optimization is shown correct: All remapping that are useless are removed, and all those that may be useful are kept. Thus it is optimal, provided that remappings remain in place.

Figure 12 displays the remapping graph of our example after optimization. From the graph it results that array A may be used with all possible mappings f0 1 2 3g, b u t a r r a y B is only used with f0 1g and array C with f0 3g. A r r a y C is not live but within the loop nest, thus its instantiation can be delayed, and may n e v er occur if the loop body is never executed. Array B is only used at the beginning of the program, hence all copies can be deleted before the loop. The generation of the code from this graph is detailed in Section 5.

Dynamic live copies

Through the remapping graph construction algorithm, array references in the control graph GC were updated to an array version with a statically known mapping. The remapping graph holds the information necessary to organize the copies between these versions in order to respect the intended semantics of the program. The rst idea is to allocate the leaving array v ersion when required, to perform the copy and to deallocate the reaching version afterwards.

However, some copies could be ke p t s o a s t o a void useless remappings when copying back to one of these copies if the array w as only read in between. The remapping graph holds the necessary information for such a technique. Let us consider the example in Figure 13 and its corresponding remapping graph in Figure 14. Array A is remapped di erently in the branches of the condition. It may be only modi ed in the then branch. Thus, depending on the execution path in the program, array c o p y A0 may r e a c h remapping statement 3 l i v e or not. In order to catch s u c h cases, the liveness management is delayed until run time: dead copies will be deleted (or mark as dead) at the remapping statements.

Keeping array c o p i e s s o a s t o a void remappings is a nice but expensive optimization, because of the required memory. T h us it would be interesting to keep only copies that may be used latter on. In the example above it is useless to keep copies A1 or A2 after remapping statement 3 because the array will never be remapped to one of these distribution. Determining at each v ertex the set of copies that may be live and used latter on is a may backward standard data ow problem: leaving copies must be propagated backward on paths where they are only read. This is detailed in Appendix D. Remappings can be moved around in the control ow graph, especially out of loops. From the code in Figure 15 we suggest to move the remappings as shown in Figure 16. This di ers from 11]: the initial remapping is not moved out of the loop, because if t < 1 t h i s w ould induce a useless remapping. The remapping from block to cyclic will only occur at the rst iteration of the loop. At others, the runtime will notice that the array is already mapped as required just by an inexpensive c heck of its status.

Runtime issues

The remapping graph information describing array v ersions reaching and leaving remapping vertices must be embedded into the program through actual copies in order to ful ll the requirements. Some optimizations described in the previous sections rely on the runtime to be performed. Figure 18: Mapping restored descriptor enables the handling of programs with ambiguous mappings provided that no actual reference to such a n a r r a y is performed before a remapping. In order to test whether a v ersion of a given array is live a t a p o i n t, a boolean information to be attached to each a r r a y v ersion. It will be updated at each remapping vertex, depending of the latter use of the copies from this vertex.

If interpreted strongly, Constraint 1 m a y imply that arrays as call arguments are considered as references and thus should not bare any a m biguity, s u c h as the one depicted in Figure 17. However, since an explicit remapping of the array is inserted, the ambiguity is solved before the call, hence there is no need to forbid such cases. The issue is to restore the appropriate reaching mapping on return from the call. This can be achieved by s a ving the current status of the array that reached the call as suggested in Figure 18. Variable reaching(A) holds the information. The saved status is then used to restore the initial mapping after the call.

Copy code generation

The algorithm for generating the copy update code and liveness information management from the remapping graph is outlined in Figure 19. Copy allocation and deallocation are inserted in the control ow graph to perform the required remappings, using the sets computed at the GR optimization phase.

The rst loop inserts the runtime management initialization at the entry point. All copies are denoted as not live. No copy receives an a priori instantiation. The rationale for doing so is to delay this instantiation to the actual use of the array, that may occur with a di erent mapping or never, as Array C in Figure 10. The second loop nest extracts from the remapping graph the required copy, for all vertex and all remapped arrays, if there is some leaving mapping for this array at this point. Copies that were live before but that are not live a n y more are cleaned, i.e. both freed and marked as dead. Finally a full cleaning of local arrays is inserted at the exit vertex. Figure 20 shows a generated copy c o d e f o r for A 2 S(v0) append to v0 "status(A)=?" for a 2 C(A) append to v0 "live(Aa)=false" end for end for

for v 2 V (GR) ; f vcg for A 2 S(v) if (LA(v) 6 =?) then append to v "if (status(A)6 = LA(v)) then" append to v "allocate A LA(v) if needed" append to v "if (not live(A LA(v))) then" if (UA(v) 6 = D) then for a 2 RA(v) ; f LA(v)g append to v "if (status(A)=a) A LA(v) =Aa"
end for end if append to v "live(A LA(v))=true" append to v "endif" append to v "status(A)=LA(v)" append to v "endif" end if for a 2 C(A) ; MA(v) append to v "if (live(Aa)) then" append to v " free Aa if needed" append to v " live(Aa)=false" append to v "endif" end for end for end for for all A for a 2 C(A) append to ve "if (live(Aa) and needed) free Aa" end for end for all 9 the remapping vertex in Figure 9.

if (status(A)6 =2) then allocate A2 if needed if (not live(A 2)) then if (status(A)=1) A2=A1 if (status(A)=3) A2=A3 live(A 2)=true endif status(A)=2 endif
It must be noted that dead arrays (D) do not require any actual array copy, t h us none is generated, avoiding communication at run time. Moreover, there is no initial mapping imposed from entry in the subroutine. If an array i s remapped before any use, it will be instantiated at the rst remapping statement encountered at runtime with a non empty leaving copy. Finally, c a r e m ust be taken not to free the array dummy argument copy which belongs to the caller.

Another bene t from this dynamic live mapping management is that the runtime can decide to free a live copy if not enough memory is available, and to change the corresponding liveness status. If required latter on, the copy w i l l be regenerated, i.e. both allocated and properly initialized with communication. Since the generated code does not assume that any live copy m ust reach a point in the program, but rather decided at remapping statements what can be done, the code for the communication will be available.

Conclusion

In this paper, we h a ve shown a pratical approach t o c o m p i l e HPF dynamic mappings. It consists of substituting dynamic arrays by static ones, and of inserting simple array copies between these arrays when necessary. Implicit remappings at call site are translated into explicit ones in the caller. We have discussed the language restrictions needed to apply this scheme, and argued that no high performance application should miss the restricted features. We h a ve also presented optimizations enabled by our technique, to remove useless remappings and to detect live copies that can be reused without communication. Finally runtime implications have b e e n discussed.

Most of the techniques described in this paper are implemented in our prototype HPF compiler 3]. It is available from http://www.cri.ensmp.fr/pips/hpfc.html. The standard statically mapped HPF code generated is then compiled, with a special code generation phase for handling remapping communication due to the explicit array copies.

!hpf$ distribute T(*,block) !hpf$ align A(i,j) with T(i,j) if (...) then !hpf$ realign A(i,j) with T(j,i) endif !hpf$ redistribute T(block,*) vertices V(GR): the vertices are the remapping statements.

They can be explicit (realign, redistribute) o r added in place of implicit remappings at call sites.

There is a subroutine entry point v ertex v0 and an exit point ve.

edges E(GR): each edge denotes a possible path in the control ow graph with the same array remapped at both vertices and not remapped in between. labels: in the remapping graph, each v ertex v is associated S(v), the set of remapped arrays.

For each array A 2 S(v) w e h a ve some associated infor- mation (depicted in Figure 9): LA(v): The (or none, noted ?) leaving array copy, i.e. the copy w h i c h m ust be referenced after the remapping note that HPF allows several leaving mappings as depicted in Figure 21: array A is remapped at the redistribute to (block,*) or (*,block) depending on the execution of the realign. We assume that no such cases occur to simplify this presentation.

RA(v): the set of reaching copies for the Array A at Vertex v.

In the general case with several leaving copies, distinct reaching copy s e t s m ust be associated to each possible leaving copy.

UA(v): describes how the leaving copy might be used afterwards. It may b e n e v er referenced (N), fully rede ned before any use (D), only read (R) or modi ed (W). The use information quali ers supersede one another in the given order, i.e. once a quali er is assigned it can only be updated to a stronger quali er. The default value is N. This provides a precise live information that will be used by the runtime and other optimizations to avoid remappings by detecting and keeping live copies. However it must be noted that this information is conservative, because abstracted at the high remapping graph level. The collected information can di er from the actual runtime e ects on the subroutine: an array c a n b e quali ed as W from a point and not be actually modied.

Each edge is labelled with the arrays that are remapped from at the sink vertex when coming from the source vertex:

A(v v 0). Note that A 2 A(v v 0)) A 2 S(v) a n d A 2 S(v 0) B Remapping Graph Construction
Here is a data ow formulation of the construction algorithm. First, let us de ne the sets that will be computed by the data ow algorithms in order to build GR: Reaching(v): the set of arrays and associated mappings reaching vertex v these arrays may be remapped at the vertex or left unchanged, thus going through the vertex. Leaving(v): the set of arrays and associated mappings leaving vertex v o n e l e a ving mapping per array is assumed for simplifying the presentation. Remapped(v): the set of arrays actually remapped at vertex v. (note that if several leaving array mappings are allowed, this information is associated to array and mapping couples instead of just considering arrays). EffectsOf(v): the proper e ect on distributed variables of vertex v, i.e. these variables and whether they are never referenced, fully rede ned, partially de ned or used. This basic information is assumed to be available. EffectsAfter(v): the distributed variables and associated e ects that may b e e n c o u n tered after v and before any remapping of these variables. EffectsFrom(v): just the same, but including also the effects of v.

RemappedAfter(v): the distributed variables and associated remapping vertices that may be encountered directly (without intermediate remapping) after v. RemappedFrom(v): just the same, but including also v.

The following function computes the leaving mapping f r o m a r e a c hing mapping at a given vertex: Aj = impact(Ai v): the resulting mapping of A after v when reached by Ai. F or all but remapping vertices Ai = Aj, i.e. the mapping is not changed. Realignments of A or redistributions of the template Ai is aligned with may give a new mapping. The impact of a call is null. array(Ai)=A: the function returns the array from one of its copies.

operator ;: means but those concerning, that is the operator is not necessarily used with sets of the same type. Now, here is the construction algorithm expressed as a set of data ow equations. the proper e ects of vertices on distributed variables EffectsOf(v) (the default for VR is no e ects).

for any remapped array a t a v ertex, there is only one possible leaving mapping. This assumption simpli es the presentation, but could be removed by associating remapped information to array mappings instead of the array.

Updating GC (arguments) rst let us update GC to model the desired mapping of arguments.

Add call vertex vc and an edge from vc to v0 in GC.

Reaching and Leaving mappings They are computed starting from the entry point i n t h e program. Propagated mappings are modi ed by remapping statements as modeled by the impact function, leading to new array v ersions to be propagated along GC. ? ? y va (Afkg ! i)

Figure 24: Call with a prescriptive inout-intended argument add all local distributed variables and their associated initial mapping to Leaving(v0). Figure 23 shows the initial remapping graph with an inout intended array argument A and a local array L.

propagation:

the array mappings reaching a vertex are those leaving its predecessors.

Reaching(v) = v 0 2pred(v)
Leaving(v 0) the array mappings leaving a vertex are updated with the statement impact on the array mappings reaching this vertex.

Leaving(v) = Leaving(v) a2Reaching(v) impact(a v)
Updating references For all vertices v 2 V (GC) ; VR so that EffectsOf(v) o n is not N: if jfm 2 Leaving(v) array(m) = Agj > 1 then issues an error, because there is more than one mapping for a g i v en array else substitute the references with the corresponding array c o p y. note that there may be none if some piece of code is dead. This phase is based on proper e ects that are directly extracted from the source code for direct references, or through intent declarations in subroutine explicit interfaces. Depending on the intent attribute associated to a subroutine argument the corresponding e ect is described in Figure 25. the e ects leaving a vertex are those from its successors.

Remapped arrays

EffectsAfter(v) = v 0 2succ(v) EffectsFrom(v 0)
the e ects from a vertex are those leaving the vertex and proper to the vertex, but remapped arrays.

EffectsFrom(v) = (EffectsAfter(v) EffectsOf(v))

; Remapped(v) Computing GR edges As we expect few remappings to appear within a typical subroutine, we designed the remapping graph over the control graph with direct edges that will be used to propagate remapping information and optimizations quickly. T h i s phase propagates for once remapping statements (array and vertex couples) so that each remapping statement will know its possible successors for a given array. This is a may b a c kwards data ow problem.

initialization:

RemappedAfter = initial mapping vertex couples are de ned for remapping statement v ertices and arrays remapped at this very vertex.

RemappedFrom(v) = a2Remapped(v) f(a v)g
propagation:

the remapping statements after a vertex are those from its successors.

RemappedAfter(v) = v 0 2succ(v) RemappedFrom(v 0)
the remapping statements from a vertex are updated with those after the vertex, but those actually remapped at the vertex.

RemappedFrom(v) = RemappedFrom(v) (RemappedAfter(v) ; Remapped(v)) Generating GR
From these sets we can derive the remapping graph:

VR are GR vertices edges and labels are deduced from RemappedAfter S(), R() and L() from Remapped, Reaching and Leaving U() from EffectsAfter Discussion All the computations are simple standard data ow problems, but the reaching and leaving mapping propagation. Indeed, the impact function may create new array mappings to be propagated from the vertex. The worst case complexity of the propagation and remapping graph algorithm described above can be computed. Let us denote n is the number of vertices in GC, s the maximum number of predecessors or successors of a vertex in GC, m the number of remapping statements (including the entry and exit points), p the number of distributed arrays. With the simplifying assumption that only one mapping may l e a ve a remapping vertex, then the maximum number of mappings to propagate is mp. Each of these may h a ve to be propagated through at most n vertices with a smp worst case complexity for a basic implementation of the union operations. Thus we can bound the worst case complexity o f t h e propagation to O(nsm 2 p 2).

C Removing useless remappings

Leaving copies that are not live appear in GR with the N (not used) label. It means that although some remapping on an array w as required by the user, this array i s n o t r e f e renced afterwards. Thus the copy update is not needed and can be skipped. However, by doing so, the set of copies that may reach l a t t e r v ertices is changed. Indeed, the whole set of reaching mappings must be recomputed. It is required to update this set because we plan a compilation of remappings, thus the compiler must know all possible source and target mapping couples that may occur at run time. This recomputation is a may forward standard data-ow problem.

Remove useless remappings Done simply by deleting the leaving mapping of such a r r a ys. 8v 2 V (GR) 8A 2 S(v) U A (v) = N) LA(v) = ?

Recompute reaching mappings initialization: use 1-step reaching mappings 8v 2 V (GR) 8A 2 S(v) RA(v) = 0 pt]v 0 2pred(v)A 2A(v 0 v) UA (v 0)6 =N LA(v 0) Reaching mappings at a vertex are initialized as the leaving mappings of its predecessors which are actually referenced.

propagation: optimizing function 8v 2 V (GR) 8A 2 S(v) RA(v) = RA(v) 0 pt]v 0 2pred(v)A 2A(v 0 v) UA(v 0)=N RA(v 0)

The function propagates reaching mappings along paths on which the array is not referenced, computing the transitive closure of mappings on those paths. The iterative resolution of the optimizing function is increasing and bounded, thus it converges.

Let us assume O(1) basic set element operations (put, get and membership). Let m be the number of vertices in GR, p the number of distributed arrays, q the maximum number of di erent mappings for an array and r the maximum number of predecessors for a vertex. Then the worst case time complexity of the optimization, for a simple iterative implementation, is O(m 2 pqr). Note that m, q and r are expected to be very small.

Correctness and Optimality

This optimization is correct and the result is optimal:

Theorem 1 The computed r emappings (from new reaching to remaining leaving) are those and only those that are needed (according to the static information provided b y t h e data ow graph): 8v 2 V (GR) 8A 2 S(v) U A (v) 8a 2 RA(v) 9v 0 a n d a p ath from v 0 to v in GR so that a 2 LA(v 0) and A is not used o n t h e p ath: Proof sketch: construction of the path by induction on the solution of the data ow problem. Note that the path in GR re ects an underlying path in the control ow graph with no use and no remapping of the array. D Dynamic live copies Keeping array c o p i e s s o a s t o a void remappings is a nice but expensive optimization, because of the required memory. Thus it would be interesting to keep only copies that may b e used latter on. In the example in Figure 13, it is useless to keep copies A1 or A2 after remapping statement 3 because the array will never be remapped to one of these distribution. Determining at each v ertex the set of copies that may b e live and used latter on is a may backward standard data ow problem: leaving copies must be propagated backward on paths where they are only read. Let MA(v) be the set of copies that may b e l i v e after v. initialization: directly useful mappings 8v 2 V (GR) 8A 2 S(v) M A (v) = LA(v) propagation: optimizing function 8v 2 V (GR) 8A 2 S(v) U A(v) 2 f N Rg MA(v) = MA(v) 0 pt]v 0 2succ(v)A 2A(v v 0) MA(v 0) Maybe useful copies are propagated backwards while the array is not modi ed (neither W nor D).

Figure 1 :

 1 Figure 1: Possible direct A remapping

Figure 3 :

 3 Figure 3: Aligned array remappings

Figure 4 :

 4 Figure 4: Useless argument remappings !hpf$ template T1,T2 !hpf$ align with T1 :: A ... A ... if (...) then !hpf$ realign with T2 :: A . . . A . . . endif !hpf$ redistribute T2 ... A ...

Figure 5 :

 5 Figure 5: Ambiguity of remappings

Figure 6 :

 6 Figure 6: Other ambiguity of remappings

Figure 8 :

 8 Figure 8: Translation of a subroutine call

Figure 12 :

 12 Figure 12: Example after optimization

Figure 13 :

 13 Figure 13: Flow dependent l i v e copy

Figure 19 :

 19 Figure 19: Copy code generation algorithm

Figure 20 :

 20 Figure 20: Code for Figure 9

Figure 21 :

 21 Figure 21: Several leaving mappings

Figure 22 :

 22 Figure 22: Array argument use

 They are directly extracted from Reaching they are those transformed by impact.Remapped(v) = 0 pt]m2Reaching(v)m6 =impact(m v) array(m)Updating GC (calls) calls with distributed arguments are managed as shown in Figure24:pred(vb) = pred(v) succ(vb) = fvg pred(va) = fvg succ(va) = succ(v) pred(v) = fvbg succ(v) = fvag Remapped(vb) = fAg VR is updated accordingly: VR = VR f vb v agSummarizing e ectsThis phase summarizes the use information after remapping statements, and up to any other remapping statement. Hence it captures what may be done with the considered array copy.

Figure 25 :

 25 Figure 25: Intent e e c t

Acknowledgment

I am thankful to Corinne Ancourt, B eatrice Creusillet, Fran cois Irigoin, Pierre Jouvelot and to the anonymous referees for their helpful comments and suggestions.