
HAL Id: hal-00752611
https://minesparis-psl.hal.science/hal-00752611

Submitted on 16 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interprocedural Array Region Analyses
Béatrice Creusillet, François Irigoin

To cite this version:
Béatrice Creusillet, François Irigoin. Interprocedural Array Region Analyses. International Journal
of Parallel Programming, 1996, Vol. 24 (No. 6), pp. 513-546. �hal-00752611�

https://minesparis-psl.hal.science/hal-00752611
https://hal.archives-ouvertes.fr


Interprocedural Array Region Analyses

B�eatrice Creusillet� Fran�cois Irigoin�

Centre de Recherche en Informatique� �Ecole des mines de Paris
��� rue Saint�Honor�e� F������ FONTAINEBLEAU Cedex FRANCE

Abstract� Many program optimizations require exact knowledge of the
sets of array elements that are referenced in or that 	ow between state�
ments or procedures
 Some examples are array privatization� generation
of communications in distributed memory machines� or compile�time op�
timization of cache behavior in hierarchical memory machines


Exact array region analysis is introduced in this article
 These regions
exactly represent the e�ects of statements and procedures upon array
variables
 To represent the 	ow of these data� we also introduce two new
types of array region analyses� IN and OUT regions


The intraprocedural propagation is presented� as well as a general linear
framework for interprocedural analyses� which handles array reshapes


The intra� and inter�procedural propagation of array regions is imple�
mented in pips� the interprocedural parallelizer of fortran programs
developed at �Ecole des mines de Paris


Keywords� interprocedural analysis� array data 	ow analysis� array re�
gions� array reshaping


� Introduction

The e�cient compilation of scienti�c programs for massively parallel machines or
hierarchical memory machines requires advanced program optimizations to deal
with memory management issues� For instance� Blume and Eigenmann�	
 have
shown that array privatization could greatly enhance the amount of potential
parallelism in sequential programs� This technique basically aims at discovering
array sections that are used as temporaries in loops� and can thus be replaced
by local copies on each processor� An array section is said to be privatizable in a
loop if each read of an array element is preceded by a write in the same iteration�
and several di�erent iterations may access each privatized array element��
� �

�
Solving such problems requires a precise intra� and inter�procedural analysis of
array data �ow� that is to say how individual array element values are de�ned
and used �or �ow� during program execution�

A recent type of analysis��� �	
 has opened up wide perspectives in this
area� It provides an exact analysis of array data �ow� originally in monopro�
cedural programs with static control� This last constraint has since been par�
tially removed���� ��
� at the expense of accuracy� A partial interprocedural

� E�mail� fcreusillet�irigoing
cri�ensmp�fr



extension���
 has also been de�ned� but only in a static control framework� Fur�
thermore the complexity of the method makes it useless on large programs�

Another approach is to compute conservative summaries of the e�ects of
statements and procedure calls on sets of array elements���� �
� Their relatively
weak complexity �in practice� allows the analysis of large programs� But since
these analyses are �ow insensitive� and since they do not precisely take into
account the modi�cations of the values of integer scalar variables� they are not
accurate enough to support powerful optimizations�

In pips���
� the interprocedural parallelizer of fortran programs developed
at �Ecole des mines de Paris� we have extended Triolet�s array regions���
 �which
are array element sets described by convex polyhedra� to compute summaries
that exactly represent the e�ects of statements and procedures on sets of array
elements��
� whenever possible� whereas the regions originally de�ned by Triolet
were over�approximations of these e�ects�

The resulting exact read andwrite regions were found necessary by Coelho����
��
 to e�ciently compile hpf� However� they cannot be used to compute array
data �ow� and are thus insu�cient for optimizations such as array privatization�

We therefore introduce two new types of exact regions� for any statement
or procedure� in regions contain its imported array elements� and out regions
represent its set of live array elements�

The possible applications are numerous� in and out regions are already used
in pips to privatize array sections��
� and we intend to use them for memory allo�
cation when compiling signal processing speci�cations based on dynamic single
assignment� In massively parallel or heterogeneous systems� they can also be
used to compute the communications before and after the execution of a piece
of code� For a hierarchical memory machine� they provide the sets of array el�
ements that are used or reused� and hence could be prefetched �in regions� or
kept �out regions� in caches� the array elements that do not appear in these sets
are only temporaries� and should be handled as such� In fault�tolerant systems
where the current state is regularly saved by a software component �checkpoint�
ing ���
� in or out regions could provide the set of elements that will be used in
further computations� and thus could be used to reduce the amount of data to
be saved� Examples of other applications are software speci�cation veri�cation
or compilation of out�of�core computations���
�

To support the exactness of the analysis� an accurate interprocedural trans�
lation is needed� However� by examining the Perfect Club Benchmarks��
� we
found out that the existing methods for handling array reshapes were insu��
cient� We propose in this paper a general linear framework that handles array
reshaping in most cases� including when the arrays are not of the same type� or
belong to a COMMON which does not have the same data layout in the caller and
the callee�

This paper is organized as follows� Section � presents a motivating exam�
ple that highlights the mains di�culties of region computation� Some necessary
background is shortly reviewed in Section �� Section 
 presents array regions
and their operators� The intraprocedural propagation of read� write� in and

�



out regions is detailed in Section �� The interprocedural propagation is then
separately described in Section 	� And Section � reviews the related work�

� Motivating Example

To illustrate the main features of the intraprocedural computation of read�
write� in and out regions along this article� we consider the contrived program
of Figure �� The goal is to privatize array WORK�

K � FOO��

DO I � ��N

DO J � ��N

WORK�J�K� � J � K

ENDDO

CALL INC��K�

DO J � ��N

WORK�J�K� � J	J 
 K	K

A�I� � A�I��WORK�J�K��WORK�J�K
��

ENDDO

ENDDO

SUBROUTINE INC��I�

I � I � �

END

Fig� �� Sample program


The condition is that any iteration of the I loop neither imports nor exports
any element of the array WORK� In other words� if there is a read reference to an
element of WORK� it has been previously initialized in the same iteration� and it
is not reused in the subsequent iterations �we assume that the array WORK is not
used anymore after the I loop��

There are two main di�culties in our example� First� di�erent elements of
WORK are referenced in several instructions� We shall need several operators to
manipulate the regions representing these references� and compute the solutions
to data��ow problems� e�g� union� intersection or di�erence� Second� these ref�
erences� and thus their representations� depend on the value of the variable K�
which is unknown at the entry of the I loop� and is modi�ed by the call� We
need an operator to obtain representations that depend on the same value of K�
and hence can be combined�

The next two sections present the techniques used to perform the analysis of
our example�

� Language� Transformers and Preconditions

In pips���
 the parallelization process is divided into several phases� either analy�
ses �e�g� transformers� preconditions� array regions� or program transformations
�e�g� dead code elimination� loop transformations�� Most analyses also consist of

�



two types of propagation� intra� and inter �procedural propagations� This section
describes the general mechanisms involved in both types of propagation� as well
as two analyses performed in pips and whose results are used to compute array
regions�

��� Language� HCFG and call graph

Intraprocedural propagations are performed on the hierarchical control �ow graph���

�hcfg� of the routines� This graph bears some resemblance to the abstract syn�
tax tree of the program� Most nodes of the hcfg correspond to the fortran
language control structures �DO loop� IF� sequence of instructions� assignment�
call� � � � �� except for the unstructured parts of the program �when GOTOs or STOPs
are used� which are modeled by standard control �ow graphs�

An example of such a graph is provided in Figure �
 The nodes are represented
by rectangles
 The biggest node on the left is a sequence of several instructions�
represented by sub�nodes
 One of these sub�nodes is itself a DO loop node
 Its
inner node is a sequence of two instructions


DO I

ENDDO

Fig� �� Example of HCFG


In this article� we only consider assignments� DO loops with unit increments� se�
quences of instructions� and procedure calls� The other constructs� in particular
IF constructs� are not considered here� because it would not provide useful in�
sights to the reader� However� the implementation of array region computation

�



in pips covers the whole fortran standard��
� with a few minor exceptions�

which can easily be avoided�
Bottom�up analyses propagate their results towards the root of the hcfg

�entry node of the procedure�� the deepest nodes are �rst analyzed� and the
results are used at the upper level to form another solution which is similarly
propagated� On the contrary� top�down analyses propagate the solutions toward
the leaves of the tree� the solution for the inner nodes are computed from the
solutions at the upper level�

Interprocedural propagations are performed on the program call graph� This
graph is assumed acyclic� according to the fortran standard��
 which prohibits
recursive function calls� Analyses can be performed bottom�up or top�down� In
the �rst case� the intraprocedural analysis of the deepest procedures is performed
�rst� the information at the root node of their hcfg is then propagated to the
various call sites by translating formal parameters into actual ones� the callers are
then intraprocedurally analyzed using the preceding interprocedural solutions�
and so on� On the contrary� in a top�down propagation� the main program is �rst
intraprocedurally analyzed starting from its entry point� the solutions at each
call site are then propagated to the callees by translating actual parameters into
formal ones� when there are several call sites for one procedure� the solutions are
gathered into a unique summary� to limit time and space complexity�

Whether the analysis is bottom�up or top�down� each node of the hcfgs
or of the call graph is traversed only once� The complexity of an analysis thus
mostly depends on the complexity of the operations performed at each node�
As will be shown later� many semantical analyses in pips �transformers� pre�
conditions and array regions� rely on convex polyhedra� Most operators have a
theoretical exponential complexity� but the practical complexity often is poly�
nomial� Furthermore the exponential speed improvement of computers renders
these analyses fast enough to perform them on real life programs�

��� Transformers and preconditions

Two auxiliary analyses are of interest in the remainder of this paper� transform�
ers and preconditions ���
�

Transformers abstract the e�ects of instructions upon the values of integer
scalar variables by giving an a�ne approximation of the relations that exist
between their values before and after the execution of a statement or procedure
call� In equations they are designated by T � whereas in programs they appear
under the form T�args� fpredg� where args is the list of modi�ed variables� and
pred gives the non trivial relations existing between the initial values �su�xed
by �init� and the new values of variables� Figure � shows the transformers of
our working example�

� ENTRY� BLOCKDATA� ASSIGN and assigned GOTO� computed GOTO� multiple RETURN� sub�
string operator ���� Hollerith character chains� statement functions� and complex
constants �which are replaced by a call to CMPLX�� COMMON declarations must also
appear after all type declarations


�



C P�� fg

C T�K� fg

K � FOO��

C P�K� fg

C T�K� fK��K�init�I��g

DO I � ��N

C P�I	K� f�
�I
�Ng

DO J � ��N

C P�I	J	K� f�
�I
�N	 �
�J
�Ng

WORK�J�K� � J � K

ENDDO

C P�I	K� f�
�I
�Ng

C T�K� fK��K�init��g

CALL INC��K�

DO J � ��N

C P�I	J	K� f�
�I
�N	 �
�J
�Ng

WORK�J�K� � J	J 
 K	K

A�I� � A�I��WORK�J�K��WORK�J�K
��

ENDDO

ENDDO

Fig� �� Transformers and preconditions


Preconditions are predicates over integer scalar variables� They hold just
before the execution of the corresponding instruction� In Figure �� they appear
as P�vars� fpredg� where vars is the list of modi�ed variables since the beginning
of the current routine� because preconditions abstract the e�ects of the routine
from its entry point to the current instruction�

Transformers are propagated upward� while preconditions are propagated
downward� And if T� and P� correspond to the instruction S�� and P� to the
instruction S� immediately following S�� then P� � T��P���

� Regions� De�nitions and Operators

An array region is a set of array elements described by a convex polyhedron
containing equalities and inequalities���
� they link the region parameters �or
� variables� that represent the array dimensions� to the values of the program
integer scalar variables� Two other characteristics are also of interest�

� the type of the region� read �R� or write �W� to represent the e�ects of
statements and procedures� in and out to represent the �ow of array ele�
ments�

� the approximation of the region� EXACT when the region exactly represents
the requested set of array elements� or MAY or MUST if it is an over� or under�
approximation �MUST � EXACT � MAY�� in the rest of the paper� we only

�



consider EXACT and MAY regions� in previous papers���� �

 MUST was unfor�
tunately used to mean EXACT�

For instance� the region�


A�������
W
EXACT
f����I� ������g�

where the region parameters �� and �� respectively represent the �rst and
second dimensions of A� corresponds to an assignment of the element A�I�I�


In order to summarize array accesses at each level of the hcfg �to avoid
space complexity�� and to propagate the summaries along control �ow paths�
we need several operators such as union� intersection and di�erence� and more
speci�c unary operators�

Union The union operator is used to merge two elementary regions� Since the
union of two convex polyhedra is not necessarily a convex polyhedron� the ap�
proximate operator �� we use is the convex hull� The resulting region may thus
contain array elements that do not belong to the original regions� in this case��
it is a MAY region� The third column in Table � gives the approximation of the
resulting region against the characteristics of the initial regions�

R� R� R� �� R� R� �R� R� � R�

EXACT EXACT EXACT i� � R� � R� EXACT
S

�R� � �R��� EXACT i� � R� �R�

EXACT MAY EXACT i� R� � R� MAY R�� EXACT i� R� �R� � �

MAY EXACT EXACT i� R� � R� MAY
S

�R� � �R��� MAY

MAY MAY MAY MAY R�� MAY
�all the operators and tests used in this table are implemented in pips�

Table �� Binary operators on regions

Intersection The intersection of two convex polyhedra is a convex polyhedron�
It follows that the intersection of two EXACT regions is an EXACT region� A more
complete description of this operator is given in Table �� Column 
�

Di�erence The di�erence of two convex polyhedra is not necessarily a convex
polyhedron� The chosen operator � may give an over�approximation of the
actual di�erence of the original regions� Its features are described in Table ��
Column �� For instance� when the original regions are EXACT regions� a �rst step
computes R�� �R�� the result is a list of regions��
� these regions are then merged
using

S
� an extension of �� to union of lists�

� The test R� �� R� � R� �R� is implemented in pips


�



Translation from one store to another one The linear constraints de�ning
a region often involve integer scalar variables from the program �e�g� ����I��
Their values� and thus the region� are relative to the current memory store�
If we consider the statement I � I � �� the value of I is not the same in the
stores preceding and following the execution of the instruction� Thus� if the
polyhedron of a region is ����I before the execution of I � I � �� it must be
����I
� afterwards�

To apply one of the preceding operators to two regions� they must be relative
to the same store� Let T����� denote the transformation of a region relative to
the store �� into a region relative to the store ���

This transformation is described in��
� Very brie�y� it consists in adding to
the predicate of the region� the constraints of the transformer that abstracts
the e�ects of the program between the two stores� The variables of the original
store ���� are then eliminated� The only variables that remain in the result�
ing polyhedron all refer to the store ��� Thus� two transformations� T�k��k��

and T�k����k � correspond to the transformer Tk associated to statement Sk�
depending on the variables that are eliminated�

For instance� let us assume that �� is the store preceding
the statement I � I � �� �� the store following it� and
f����Ig the predicate of a region relative to ��


�� f����Ig

� I � I � �

�� f����I
�g

We �rst rename I into I�init in the predicate of the region� and add the
transformer corresponding to the statement �T�I� fI��I�init��g�
 This gives
f����I�init� I��I�init��g
 We then eliminate I�init� because it refers
to ��
 We obtain f����I
�g� which is relative to ��


The exactness of the operation depends on several factors� such as the com�
bined characteristics of the transformer and the region� and the exactness of
the variable elimination��� ��
� When the operation is not exact� it leads to an
over�approximation of the target region� which becomes a MAY region�

Merging over an iteration space The region corresponding to the body of
a loop is a function of the value i of the loop index� During the propagation of
regions� we shall need to merge regions corresponding to di�erent� but successive�
instances of the loop body� in order to get a summary over a particular iteration
subspace �

S
lb�i�ub R�i���

By de�nition of the union of sets� this is strictly equivalent to eliminating the
loop index from the region predicate� in which the description of the iteration
subspace �lb � i � ub� has been added� However� the elimination of a variable
from a region may lead to an over�approximation of the target region�

proji�R�i�lb�i�ub� �
�

lb�i�ub
R�i�

The operation is exact if the following conditions are met�

�� lb and ub are a�ne functions of the program integer scalar variables� for
instance do I � I�� I��N
��

�



�� The elimination of i from R�i�lb�i�ub is exact according to the conditions of
Ancourt or Pugh��� ��
��

The �rst condition ensures that the iteration space can be exactly described by
a convex polyhedron over the program variables �here lb � i � ub���

Constraining region predicates In order to have more information on � vari�
ables� the constraints of the preconditions can be added to the predicate of the
region� This is particularly useful when merging two regions�

For instance� f�������Ig �� f�������Jg is the whole space� i
e
 an empty set
of constraints
 If the current precondition �e
g
 fI��Jg� is added to the original
regions� the resulting region is f�������I�I��Jg instead of f���g


This operation increases the accuracy of the analysis� without modifying the def�
inition of regions� Furthermore� since preconditions include some IF conditions�
regions are powerful enough to disprove some interprocedurally conditional de�
pendencies�

� Intraprocedural Analyses

This section details the intraprocedural computation of read� write� in and
out regions for some of the main structures of the fortran language� assign�
ment� sequence of complex instructions and DO loop� The interprocedural prop�
agation is described in Section 	�

��� READ and WRITE regions

Assignment The reference on the left hand side of the assignment is converted
into a write region� whereas on the right hand side� each reference is converted
into an elementary read region� These regions are exact if and only if the sub�
scripts are a�ne functions of the program variables� for instance A��	I��	J
���

When several references to a particular array appear in the right hand side�
the corresponding regions are systematically merged using �� in order to obtain
a summary�

For instance� in Example �� the elementary read regions for the instruction
A�I� � A�I��WORK�J�K��WORK�J�K
�� are�


A����
R
EXACT
f����Ig�


WORK�������
R
EXACT
f����J� ����Kg�


WORK�������
R
EXACT
f����J� ����K
�g�

By merging the two regions concerning the array WORK� we �nally obtain�


A����
R
EXACT
f����Ig�


WORK�������
R
EXACT
f����J� K
�
���
�Kg�

� The elimination of variable v between the inequalities av �A � � and �bv � B � �
�with a � N� � b � N� � A � c �

P�

i��
aivi� B � d �

P�

i��
bivi� and c� d� ai� bi � Z��

is exact if and only if aB � bA � ab� a� b � � � �

� Remember that the loop is normalized� the increment is equal to one


�



Sequence of Instructions Our purpose is to compute the regions R� corre�
sponding to the sequence S�� S�

	� that is to say a summary of all the read and
write references occurring in S� and S��

R� and R�� the read and write regions of S� and S�� are supposed to be
known� R� refers to the store �� preceding the execution of S�� while R� and R�

refer to the store �� preceding S� as well as the sequence S�� S�� Thus� we must
�rst convert them into the same store ���� before merging them�

R� � R� �� T������R��

As an illustration� let us consider the body of the I loop in our example
 We
assume that we know the regions concerning the array WORK associated to the
two inner loops�

C S�
C 
WORK�������
W
EXACT
f�
���
�N� ����Kg�

DO J � ��N

���

C S�
CALL INC��K�

C S�
C 
WORK�������
W
EXACT
f�
���
�N� ����Kg�
C 
WORK�������
R
EXACT
f�
���
�N� K
�
���
�Kg�

DO J � ��N

���

We cannot simply merge the regions associated to S� and S� to obtain the
regions of the whole sequence� because the value of K is modi�ed by S�
 They
must �rst be converted into the store ��� by using T����� � the transformer that
abstracts the e�ects of the call to INC� is T�K� fK��K�init��g� its constraint
is added to the regions corresponding to S�� then the variable K� which refers to
the store immediately following S�� is eliminated� and K�init� which represents
the value of the variable K in ��� is renamed into K�


WORK�������
W
EXACT
f�
���
�N� ����K��g�


WORK�������
R
EXACT
f�
���
�N� K
���
�K��g�

These regions are relative to the store preceding S�
 We should translate them
to the store preceding S�
 However� since S� modi�es no integer scalar variable�
they are identical
 Thus� it is legal to merge them with the regions correspond�
ing to S�� to obtain the regions for the sequence S�� S�� S��


WORK�������
W
EXACT
f�
���
�N� K
���
�K��g�


WORK�������
R
EXACT
f�
���
�N� K
���
�K��g�
DO loop

C ��
DO I � lb� ub

C �i
S

ENDDO

	 S� can also be a sequence of instructions


��



The purpose is to compute the regions corresponding to the loop and relative to
��� from the regions of its body S� These regions are not only functions of the
value i of the loop index� but also of the variables v modi�ed by S� Let R�i� v�
denote them�

First� we must get rid of the variables v in order to obtain regions that are
functions of the sole loop index �and of course of variables that do not vary in
the loop body�� This is achieved by using T�i��� � This operator is based on the
transformer of the loop� which gives the loop invariant when it is computable�
We must then merge the resulting regions over the iteration space�

R� �
�

lb�i�ub
T�i����R�i� v��

As an example� let us compute the read regions of the array WORK for the
loop I in Figure �
 As previously seen� the regions of the loop body are�


WORK�������
R
EXACT
f�
���
�N� K
���
�K��g�

They are functions of the variable K� which is modi�ed in the loop body by a
call to INC�
 To get rid of it� we must use the operator T�i��� � The transformer
giving the loop invariant is T�K� fK��K�init�I
�g �K�init is here the value
of K in the store preceding the loop�� its constraint is added to the region� and
K is eliminated� K�init is then renamed into K� and since all these steps are
exact operations� we have�


WORK�������
R
EXACT
f�
���
�N� K�I
�
���
�K�Ig�

To perform the union over the iteration space� the iteration space constraint
�f�
�I
�Ng� is added to the region� and then I is eliminated
 This operation is
exact because the lower and upper bounds are a�ne and the elimination of I
is exact
 We �nally obtain�


WORK�������
R
EXACT
f�
���
�N� K
���
�K�Ng�

��� IN and OUT Regions

read and write regions summarize the exact e�ects of statements and pro�
cedures upon array elements� They do not represent the �ow of array element
values� which are necessary to test the legality of many optimizations� For that
purpose� we introduce two new types of regions� in and out regions� which
take array kills���
 into account� that is to say rede�nitions of individual array
elements�

in regions contain the array elements� whose values are �EXACT region� or may
be �MAY region� imported by the current piece of code� These are the elements
that are read before being possibly rede�ned by another instruction of the same
code fragment�

In Figure �� the body of the second J loop reads the element WORK�J�K�� but
does not imports its value because it is previously de�ned in the same iteration

On the contrary� the element WORK�J�K
�� is imported from the �rst J loop


��



out regions corresponding to a piece of code contain the array elements
that it de�nes� and that are �EXACT� or may be �MAY� used afterwards� in the
continuation� These are the live or exported array elements�

In the program of Figure �� the �rst J loop exports all the elements of the
array WORK it de�nes towards the second J loop� whereas the elements of WORK
de�ned in the latter are not exported towards the next iterations of the I loop


In the remainder of this section� we limit ourselves to the intraprocedural
computation of in and out regions for an assignment� a sequence of instructions�
or a loop�

����� IN Regions

Assignment The in regions of an assignment are identical to the corresponding
read regions because the values of the referenced elements cannot come from
the assignment itself� according to the fortran standard�

Sequence of instructionsWe are now interested in the region IN� corre�
sponding to the sequence of instructions S�� S�� and relative to the store ��
preceding the execution of S�� It is the set of array elements imported by S�
�IN�� but not previously written by S� �W��� merged with the set of array
elements imported by S� �IN���

IN� � IN� �� �T������IN�� � W��

As an illustration� let us consider the body of the second J loop in Figure �

The read and in regions of its instructions concerning the array WORK are�

C S�
C 
WORK�������
W
EXACT
f����J� ����Kg�

WORK�J�K� � J	J 
 K	K

C S�
C 
WORK�������
IN
EXACT
f����J� K
�
���
�Kg�

A�I� � A�I� � WORK�J�K� � WORK�J�K
��

Since no scalar variable is modi�ed in the sequence� we have �

IN� � IN� �� �IN� � W��

� � �� �IN� � W��

� 
WORK�������
IN
EXACT
f����J� ����K
�g�

Finally� IN� contains the sole element WORK�J�K
��


��



Loop We are now interested in the region IN� of a normalized DO loop� given
the write and in regions of its body� respectively W �i� v� and IN�i� v�� i is the
value of the loop index� and v represents the variables modi�ed by the loop body�
Let �� denote the store before the loop and �i the store before the iteration i�

We �rst get rid of the variables v using T�i��� � In order to simplify the next
equation� we use the following notations�

W �i� � T�i����W �i� v��

IN�i� � T�i����IN�i� v��

The in regions of a loop contain the array elements that are imported by each
iteration �IN�i�� but not from the preceding iterations �

S
��i��iW �i���� The

complete equation is then�

IN� �
�

lb�i�ub
� IN�i� �

�
lb�i��i

W �i�� �

The purpose of the following example is to compute the summary in regions
of the array WORK for the second J loop in Figure �� given the write and in

regions of its body�


WORK�������
W
EXACT
f����J� ����Kg�


WORK�������
IN
EXACT
f����J� ����K
�g�

Since no scalar variable is modi�ed by the loop body� we can avoid the use of
the operator T�i��� 
 We then compute the term

S
��J��J

W �J��
 We �rst add
the iteration subspace constraint to the region�


WORK�������
W
EXACT
f����J
�� ����K� �
�J�
�J
�g�

By eliminating the loop index J�� we obtain the set of all the array elements
written by at least one iteration preceding the iteration J�


WORK�������
W
EXACT
f�
���
�J
�� ����Kg�

These elements are then removed from the set of elements imported by the
iteration J�


WORK�������
IN
EXACT
f����J� ����K
�g�

� 
WORK�������
W
EXACT
f�
���
�J
�� ����Kg�

� 
WORK�������
IN
EXACT
f����J� ����K
�g�

This last region represents the set of elements imported by the iteration J

from the instructions preceding the loop
 These regions are then merged over
the whole iteration space �� � J � N� to obtain the set of elements imported
by at least one iteration� from the instructions preceding the loop�


WORK�������
IN
EXACT
f�
���
�N� ����K
�g�

Hence� the loop imports all the values stored in the elements of array WORK

such that ����K
�


��



����� OUT Regions

The out region of a statement is not de�ned per se� but depends on the future
of the computation� For instance� the out region of S� in program S�� S� is a
function of S�� S� as a whole� and of S�� Thus� out regions are propagated in a
top�down fashion along the call graph and hierarchical control �ow graph of the
program� Since I�O operations are part of the program� the out region of the
main program� from which the other out regions are derived� is initialized to ��

Instructions of a sequence The region OUT� corresponding to the sequence
S�� S�� and relative to the store �� preceding S�� is supposed to be known� The
regions OUT� and OUT� corresponding to S� and S� are computed from OUT��

S� exports the elements that it writes �W�� and that are exported by the
whole sequence�

OUT� �W� � T������OUT��

The elements exported by S� are those that it de�nes �W��� and that are ei�
ther exported by the whole sequence �OUT�� but not by S� �OUT��� or exported
towards S�� i�e� that are imported by S� �IN���

OUT� �W� � � � OUT� � T����� �OUT�� � �� T������IN�� 


Let us consider as an illustration the body of the second J loop� in Figure �

Its write and in regions for the array WORK are�

C S�
C 
WORK�������
W
EXACT
f����J� ����Kg�

WORK�J�K� � J	J 
 K	K

C S�
C 
WORK�������
IN
EXACT
f����J� K
�
���
�Kg�

A�I� � A�I��WORK�J�K��WORK�J�K
��

Since no integer scalar variable is modi�ed by the loop body� T����� and
T����� are identity
 Moreover� we assume that OUT� � �
 The derivation is�

OUT� �W� � OUT� � �

OUT� �W� � ��OUT� � OUT�� �� IN��

�W� � IN�

�
WORK�������
W
EXACT
f����J� ����Kg�

� 
WORK�������
IN
EXACT
f����J� K
�
���
�Kg�

�
WORK�������
W
EXACT
f����J� ����Kg�

S� exports the element it de�nes towards S�� which exports no element of
WORK


��



Loop body The goal is to compute the out regions of the loop body �OUT �i�
if i is the value of the loop index� from the regions of the whole loop �OUT���
An array element can be exported by the iteration i for two reasons�

�� Either it is written by the iteration i �W �i��� and exported towards the
continuation of the loop �i�e� it belongs to OUT��� but it must not be re�
de�ned by any subsequent iteration� in other words� it must not belong to
the set of array elements de�ned by the iterations i� such that i � i� � ub�S
i�i��ub�W �i���� thus� it belongs to the region de�ned by�

�W �i� � T����i�OUT�� � �
�

i�i��ub
�W �i���

�� Or� it is written by the iteration i �W �i��� and directly used in a subsequent
iteration i�� directly means that it must not be de�ned by an iteration i��

between i and i��

W �i� �
�

i�i��ub
� IN�i�� �

�
i�i���i�

�W �i���� 


And �nally� the complete equation is�

OUT �i� � f�W �i� � T����i�OUT�� � �
�

i�i��ub
�W �i���g

�� fW �i� �
�

i�i��ub
� IN�i�� �

�
i�i���i�

�W �i���� 
g

Let us take an example to illustrate some features of the previous equation

We consider the I loop in the program of �gure �
 The goal is to compute
the out regions concerning the array A for the loop body
 We assume that its
write and in regions are already available�


A����
W
EXACT
f����Ig�


A����
IN
EXACT
f����Ig�

and that the out regions of the whole loop �OUT�� are�


A����
OUT
EXACT
f�
���
�Ng�

T����i�OUT�� is �rst calculated� the constraints of the loop transformer�
T�K�fK��K�INIT�I
�g� are added to the polyhedron of the region� and K�INIT

is eliminated�


A����
OUT
EXACT
f�
���
�Ng�

Then� we compute W �i� � T����i�OUT���


A����
OUT
EXACT
f����I� �
���
�Ng�

and
S

i�i��ub
�W �i��� �� proji��W �i��i�i��ub���

W �i��i�i��ub �
A����
W
EXACT
f����I
�� I��
�I�
�Ng�

proji��W �i��i�i��ub� �
A����
W
EXACT
fI��
���
�Ng�

Finally� the �rst part of the equation gives the region�

��




A����
OUT
EXACT
f����I� �
���
�Ng�

For the second part of the equation� we successively have��
i�i���i�

�W �i���� �
A����
W
EXACT
fI��
���
�I
�
�g�

IN�i�� �
�

i�i���i�
�W �i���� �
A����
IN
EXACT
f����I

�g�

� 
A����
W
EXACT
fI��
���
�I
�
�g�

�
A����
IN
EXACT
f����I
�g�

and� �
i�i��n

�� � � � �
A����
IN
EXACT
fI��
���
�Ng�

W �i� �
�

i�i��n
�� � � � �
A����
W
EXACT
f����Ig�

� 
A����
IN
EXACT
fI��
���
�Ng�

��

Thus� the iteration i exports no element of A towards the subsequent iterations

And �nally� for the whole equation� and for each iteration i� the region is�


A����
OUT
EXACT
f����I� �
���
�Ng�

The complete in and out regions of our example are given in Figure 
� They
show that the body of the I loop imports and exports no element of WORK� which
can be privatized by pips after induction variable substitution �see Figure ���

	 Interprocedural Analyses

The intraprocedural computation of array regions has been described in the pre�
vious section� We now focus on the interprocedural part of array region analyses�
The �rst subsection is devoted to the propagation on the call graph� while the
second extensively describes the translation of array regions from the source
procedure name space to the target procedure name space�

��� Propagation on the call graph

The interprocedural propagation of read� write� and in regions is a backward
�or bottom�up� analysis� At each call site the summary regions of the called
subroutine are translated from the callee�s name space into the caller�s name
space� using the relations between actual and formal parameters� and between
the declarations of global variables in both routines� This is illustrated in the
leftmost picture of Figure 	�

On the contrary� the interprocedural propagation of out regions is a forward
�or top�down� analysis� The regions of all the call sites are �rst translated from
the callers� name space into the callee�s name space� and are then merged to
form a unique summary
 �see the rightmost picture in Figure 	��


 The out regions of the main routine are initialized to � �see Section �
�
��


��



K � FOO��

C 
A����
IN
MUST
f�
���
�Ng�
DO I � �� N

C loop body�

C 
A����
IN
MUST
f����I� �
���
�Ng�

C 
WORK�������
OUT
MUST
f����K� �
���
�Ng�
DO J � �� N

C 
WORK�������
OUT
MUST
f����J� ����K� �
���
�Ng�
WORK�J�K� � J�K

ENDDO

CALL INC��K�

C 
A����
IN
MUST
fI����g�
C 
WORK�������
IN
MUST
f����K
�� �
���
�Ng�

DO J � �� N

C 
WORK�������
OUT
MUST
f����J� ����Kg�
WORK�J�K� � J	J
K	K

C 
WORK�������
IN
MUST
f����J� K
�
���
�Kg�
C 
A����
IN
MUST
f����Ig�
C 
A����
OUT
MUST
f����I� �
�J
�N
�g�

A�I� � A�I��WORK�J�K��WORK�J�K
��

ENDDO

ENDDO

Fig� �� IN and OUT regions


K� � FOO��

DOALL I � �� N

PRIVATE WORK�J�K

K � K��I
�

DOALL J � �� N

WORK�J�K� � J�K

ENDDO

CALL INC��K�

DOALL J � �� N

WORK�J�K� � J	J
K	K

ENDDO

DO J � �� N

A�I� � A�I��WORK�J�K��WORK�J�K
��

ENDDO

ENDDO

Fig� �� Parallel version


��



call PROC3

PROC1 PROC2

PROC3

call PROC3

translation

a� Backward propagation� read�
write� and in regions


call PROC3

PROC1 PROC2

PROC3

call PROC3

merge

translation

b� Forward propagation� out re�
gions


Fig� 	� Interprocedural propagation of array regions


��� Array region translation

This section describes the translation part of the interprocedural propagation�
Because the source and target variables may not have the same declaration �array
reshaping�� this operation is not straightforward�

By examining the Perfect Club benchmarks��
� we found it necessary to han�
dle several non�exclusive cases�

�� Array reshaping due to di�erent dimension declarations�

�� O�sets between the �rst elements of the source and target arrays due to
parameter passing �CALL F�A���J�� for instance��

�� O�sets due to di�erent COMMON declarations in the caller and the callee �e�g�
in the program TRFD� the common TR�PRT is not similarly declared in routines
TRFPRT and TRFOUT��


� Target and source variables of di�erent types �e�g�in the program OCEAN��

The method described in this section tackles these four points� It is based on
the fact that two corresponding elements of the source and target arrays must
have the same subscript values�� up to the o�set between their �rst element�
This is described in section 	�����

However� the resulting translation system may contain non�linear terms� and
it hides the trivial relations existing between the � variables of both arrays�
Hence� we propose in section 	���� an algorithm that �rst tries to discover these
trivial relations before using the subscript values� It results in a simpli�ed trans�
lation system�

� The subscript value of an array elements is its rank in the array� array elements
being held in column order
���

��



����� Notations

In the remainder of this section� we use the following notations�

source ��� target

array A B

dimension � �

lower bounds la� � � � � � la� lb� � � � � � lb�
upper bounds ua� � � � � � ua� ub� � � � � � ub�
size of elements� sa sb

region parameters ��� � � � � �� ��� � � � � ��

The subscript values of A���� � � � � ��� and B���� � � � � ��� are thus
���

subscript value�A���� � � � � ���� �
�X
i
�

���i � lai�
Yi��

j
�
�uaj � laj � ��


subscript value�B���� � � � � ���� �

�X
i
�

���i � lbi�
Yi��

j
�
�ubj � lbj � ��


Another necessary information is the o�set of the �rst element of A from the
�rst element of B in the memory layout� This information is provided di�erently�
depending on the type of aliasing between A and B�

source

parameter
	
 target

parameter
o�set

formal 	
 actual reference at call site� B�ob� � � � � � ob� �

o�set � sb � subscript value�B�ob� � � � � � ob� ��

actual 	
 formal reference at call site� A�oa� � � � � � oa��

o�set � �sa � subscript value�A�oa� � � � � � oa���

global 	
 global numerical o�set

di�erence between the o�set of A in the declaration of the
common in the source subroutine� and the o�set of B in
the declaration of the common in the target subroutine


As an illustration� let us consider the contrived program in Figure �� which
contains all the di�culties encountered in real life programs
 The purpose is
to �nd the read and write regions of the call site� from the summary regions
of procedure BAR
 The translation coe�cients are�

R 	
 C� A � R� B � C� � � �� � � �� la� � la� � �� lb� � lb� � lb� � ��
ua� � n�� ua� � n�� ub� � n� ub� � ��� ub� � ��� sa � �� sb � ��
o�set � ��

� Unit� the size of the smallest accessible amount of memory �usually one byte�

�� With the convention that

Qk�
k�k�

� � when k� � k�


��



subroutine FOO�C�n�

complex C�n��������D

common D������

call BAR�C��n�����

end

C 
D����	����W�EXACT�f�
���
���	 �
���
�
g�

C 
D������W�EXACT�f�
���
���g�

C 
R���	����W�EXACT�f�
���
�N�	 �
���
�N�g�

subroutine BAR�R�n��n��

real R�n��n��

common D������ D�������

���

end

Fig� 
� Interprocedural translation� example


D� 	
 D� A � D�� B � D� � � �� � � �� la� � �� lb� � lb� � �� ua� � ���
ub� � �� ub� � ��� sa � �� sb � �� o�set � ��

D� 	
 D� A � D�� B � D� � � �� � � �� la� � la� � �� lb� � lb� � ��
ua� � ��� ua� � �� ub� � �� ub� � ��� sa � �� sb � �� o�set � ��


����� General translation system

With the previous notations� the region parameters of the element B���� � � � � ���
corresponding to the source element A���� � � � � ��� must verify the following
system�

� 	a� 	b


�����
����

sa � subscript value�A��� � � � � � ���� � 	a � o�set

� sb � subscript value�B���� � � � � ���� � 	b

� � 	a � sa

� � 	b � sb

�S�

	 variables are used to describe the corresponding elementary memory cells inside
two associated array elements� as shown in Figure ��

B

�b � �

A

�a � �

Fig� �� Meaning of �variables


For our example� the following systems would be built�
R 	
 C���

�
����� � �� � n���� � ��� � �a �

���	� � �� � n�	� � �� � ��n�	� � ��� � �b

� � �a � �� � � �b � �� n� � �n

��



D� 	
 D��
���� � �� � �a � ���	� � �� � ��	� � ��� � �b

� � �a � �� � � �b � �
D� 	
 D��

����� � �� � ����� � ��� � �a � �� � ���	� � �� � ��	� � ��� � �b

� � �a � �� � � �b � �

Using S as the translation system has several drawbacks�

�� in the formal � actual cases� S is generally non�linear �it is the case in our
�rst example��

�� in order to keep a convex representation� 	 variables must be eliminated� this
operation may be inexact� leading to an over�approximation�

�� even in favorable cases� the equation in system S is rather complex� and hides
the trivial relations existing between � and � variables� such as �� � ��� this
makes the subsequent analyses unnecessarily complex� and is not acceptable
in an interactive environment�

In the following section� we describe a method that alleviates these three prob�
lems�

����� Simpli	ed translation system

Elimination of unnecessary � variables

Theorem �� If sb divides sa and o�set� then S is equivalent to the following
system���

� 	�a


��������
�������

s�a � subscript value�A��� � � � � � ���� � 	�a �
o�set

sb
� subscript value�B���� � � � � ����

� � 	�a � s�a

s�a �
sa
sb

Note�

�� In the formal � actual cases� sb divides sa 	 sb divides o�set�
�� In fact� we just replace sa by

sa
sb
� sb by �� o�set by

o�set
sb

and use S without 	b�

In our working example� since sa divides sb and o�set in all three cases� the
translation systems become�

R 	
 C���
�

��� � �� � n���� � �� �

���	� � �� � n�	� � �� � ��n�	� � ��� � �b

� � �b � �� n� � �n

�� Of course� there is a similar system if sa divides sb and o�set


��



D� 	
 D��
�� � � � ���	� � �� � ��	� � ��� � �b

� � �b � �
D� 	
 D��

��� � �� � ����� � �� � �� � ���	� � �� � ��	� � ��� � �b

� � �b � �

Decreasing the degree of 
S�

De	nition �� �Similar dimensions	
A dimension d �d � min��� ��� is said to be similar for arrays A and B if

the following three conditions are met�

� Condition for the o�set�

There must be no o�set between the �rst element of B and the �rst
element of A on dimension d�

formal 	
 actual � i
� � i � d� obi � lbi
actual 	
 formal � i
� � i � d� oai � lai
global 	
 global jo�setj mod sa

Qd

i��
�uai � lai � �� � �


jo�setj mod sb
Qd

i��
�ubi � lbi � �� � �

�� Condition for the �rst dimension�
The lengths in bytes of the �rst dimensions of A and B are equal�

sa�uad � lad � �� � sb�ubd � lbd � ��

This means that the �rst dimension entirely compensates the di�er�
ence between sa and sb� This is why sa and sb are not used in the
next condition�

�� Condition for the next dimensions �� � d � min��� ��	�
Assuming that the previous dimensions are similar� the lengths of
the d�th dimensions of A and B must be equal�

uad � lad � ubd � lbd

This is not necessary if d � � � ��

This de�nition only takes into account dimensions of identical ranks� The
general case would try to discover minimal sets of globally similar dimensions�

For instance if the dimensions of A and B are A�l�m� n� and B�m� l� n�� the
global lengths of dimensions � and � are similar �dimensions � and � are
globally similar�� as a consequence� the third dimension is similar


But the complexity of the algorithm for discovering these sets would be too high
compared to the expected gain� especially in real life programs�

Notations� We now use the following notations for k 
 ����min��� ��
�

��



k subscript value�

k subscript value�A���� � � � � ���� �
�X
i
k

���i � lai�
i��Y
j
k

�uaj � laj � ��


It is the rank of the array element A���� � � � � ��� from the element
A���� � � � � �k��� lak � � � � � la��� i�e� from the �rst element of the k�th
dimension�

k o�set�
It is the o�set relative to the k�th dimension�

formal 	
 actual k subscript value�B�ob� � � � � � ob� ��

actual 	
 formal �k subscript value�A�oa� � � � � � oa���

global 	
 global

j
o�set

sa
Q

k

i��

uai�lai���

k

Theorem �� If dimensions 
 to d� � �� � d� � � min��� ��	 are similar� then
S is equivalent to�

� 	a� 	b


����������
���������

sa��� � la�� � 	a � sb��� � lb�� � 	b

� i 
 ����d� �
� �i � lai � �i � lbi

d subscript value�A��� � � � � � ���� � d o�set �

d subscript value�B���� � � � � ����
��

� � 	a � sa

� � 	b � sb

�Sd�

In our working example� the translation systems �nally become�
R 	
 C���

�
�� � � � ��	� � �� � �b

�� � � � �	� � �� � ���	� � ��

� � �b � �
Notice that the system now only contains linear equations


D� 	
 D���
�
�� � � � ��	� � �� � �b

�	� � �� � �

� � �b � �
There are now only very simple relations between � and 	 vari�
ables
 In particular� it becomes obvious that 	� � �� which was
hidden in the original system


D� 	
 D���
�
�� � � � ��	� � �� � �b

��� � �� � � � �	� � ��

� � �b � �

�� In the formal 	
 actual case� if d � min��� �� � �� this equation can be replaced by
� i � �d����� 	i � obi 


��



Notice how the o�set for the whole problem has been turned into
an o�set for the sole second dimension �the term �� in the second
equation�


And at last� the translation algorithm is the following�

Algorithm�

�� input� a region RA corresponding to the array A
�� RB � RA

�� d � number of similar dimensions�A�B� � �
�� if d � � then

�� translation system � S
	� else


� translation system � Sd
�� endif

�� add translation system to RB

�
� eliminate 	 variables

��� eliminate � variables

��� rename � variables into � variables

��� translate RB�s polyhedron into

the target routine�s name space

��� for all i 
 �����
 add lbi � �i � ubi to RB

��� output� RB

At each step� the exactness of the current operation is checked� At Step �� if
an intermediate expression used to check the similarity is not linear� the current
dimension is declared as non�similar� and the next dimensions are not considered�
At Steps � and �� if a constraint cannot be built because of a non�linear term�
it is not used �this leads to an over�approximation of the solution set�� and the
translation is declared inexact� At Steps �� and ��� the exactness of the variable
elimination is veri�ed with the usual conditions��� ��
�

Step �� is performed using the relations between formal and actual param�
eters� and between the declarations of global variables in the source and target
routines �this gives a translation context system�� The variables belonging to the
name space of the source routine are then eliminated� The exactness of this oper�
ation depends on the combined characteristics of the translation context system
and R� and the exactness of the variable elimination��� ��
�

The last step is particularly useful in case of a partial matching between A
and B� which is the case when A and B belong to a COMMON that is not similarly
declared in the source and target routine�

For the example of Figure �� the resulting regions are all exact�


C����������
W
EXACT
f�
���
�N��
���
�����
���
�����������
����g�


D�������
W
EXACT
f�
���
��� �
���
���g�


D�������
W
EXACT
f�
���
��� �����g�

��




 Related Work

The previous work closest to ours are those of Triolet���
� Tang���
� Hall���
�
Li���� ��
 and Leservot���
� and the works by Burke and Cytron��
 and Maslov��	

for the interprocedural translation�

Many other less recent studies��� ��� 

 have addressed the problem of the
interprocedural propagation of array element sets� But they did not provide
su�cient symbolic analyses� and did not tackle array reshaping�

Triolet���
 Array regions were originally de�ned by Triolet as over�approxi�
mations of the e�ects of statements of procedures upon sets of array elements
�MAY read and write regions�� We have extended his work to introduce the
notion of exactness� and in and out regions to represent the �ow of array ele�
ments�

In his thesis���
� Triolet addressed the problem of interprocedural translation
in a very limited way� no array reshaping� except when due to an o�set in the
actual parameter to represent a column in a matrix for instance� and the COMMONs
in the caller and callee had to be similarly declared�

Tang���
 Tang summarizes multiple array references in the form of an integer
programming problem� It provides exact solutions� but the source language is
very restricted� and array reshaping is only handled in very simple cases �sub�
arrays� as Triolet���
��

Hall et al����
 Fiat�Suif includes an intra� and inter�procedural framework
for the analysis of array variables� Under� and over�approximations of array
elements sets are represented by lists of polyhedra� The problem of exactness is
not considered� However the list representation is more precise than ours� and
the exactness of our regions would certainly bene�t from it� but the cost� both
in memory use and computation time� would certainly be more important�

Di�erent types of regions are available in Fiat�Suif� The Read andWrite sets
are similar to our read andwrite regions� However� the ExposedRead sets con�
tain the array elements which are used in the continuation of the whole program
before being de�ned� while our in regions are restricted to the current level in
the hcfg� There are no equivalent for our out regions� which are �among other
applications� useful for the interprocedural resolution of the copy�out problem
in array privatization��

�

For the interprocedural translation� they have adopted a method basically
similar to ours� However� in Fiat�Suif� similar dimensions are taken into account
only when the system is not linear� and in this case� they do not try to build a
system similar to Sd �see Page ���� possibly missing a linear translation system�
Moreover� they do not handle global �
 global translation when the COMMON to
which the source and target arrays belong� does not have the same data layout
in the caller and callee�

��



Li et al����� ��
 In the Panorama compiler� the representation of array element
sets is a list of rsds��
 with bounds and step� guarded by predicates derived from
IF conditions� Since our regions also include some IF conditions� the advantages
of this representation over ours �except the use of lists� is unclear�

They also have di�erent types of array element sets� MOD sets are similar
to write regions� and UE sets to in regions� this is due to the fact that their
analyses rely on a hierarchical control �ow graph inspired from pips� hcfg���
�
But as in Fiat�Suif� there is no equivalent for our out regions�

The previous sets are exact sets� unless they contain an unknown component�
Our regions should be more accurate� because we can keep information about
all the � variables� even in case of a MAY region�

Leservot���
 Leservot has extended Feautrier�s array data �ow analysis��	
 to
handle static control programs with procedure calls� To preserve the a priori de�
terminism of the analysis� no partial association is allowed at procedure bound�
aries �i�e� the source and target arrays have the same type�� and only very simple
array reshapes are handled �the same cases as in���
 and���
��

For each procedure� this method computes in�going e�ects� which bear some
resemblance with in regions� and out�going e�ects� which are somewhat similar
to downward exposed writes� and are thus di�erent from out regions�

Burke and Cytron��
 They alleviate the memory disambiguation problem by
linearizing all array accesses when possible� This is equivalent to using the sys�
tem S in our method� However� we have seen that this may lead to non lin�
ear expressions� that prevent further dependence testing for instance� On the
contrary� our method avoids linearization whenever possible by detecting sim�
ilar dimensions� and partially linearizing the remaining dimensions if possible
and necessary� This approach eliminates the linearization versus subscript�by�
subscript problem as formulated by Burke and Cytron�

Maslov���
 Maslov describes a very general method for simplifying systems
containing polynomial constraints� This is the case of the general translation
system presented in Section 	�����

We think that most cases that arise in real life programs and that can be
solved using Maslov�s method can also be solved by our algorithm� thus avoiding
the cost of a more general method� for instance� the translation from A�N�M�L�

to B�N�M�L� yields the equation �� � N�� � NM�� � �� � N�� � NM�� which he
gives as an example� we solve it by simply verifying that all three dimensions
are similar�

� Conclusion

Obviously� a lot of e�orts have been spent over the last ten years to summarize
memory e�ects on array elements� Time and space complexity� accuracy and
usefulness are the usual issues� In pips� we have chosen to use convexity to
reduce space complexity� We de�ne several types of summaries�

��



read and write array regions represent the exact e�ects of statements and
procedures upon array elements whenever possible� Whereas the regions initially
de�ned by Triolet���
 are over�approximations of the e�ects of procedures� read
and write regions are used by Coelho���
 to e�ciently compile hpf�

Since read and write regions cannot be used to compute the �ow of array
elements� we have introduced two new types of exact array region� in and out

regions represent the sets of array elements that are imported or exported by
the corresponding code fragment� in regions contain the locally upward exposed
read elements� and are thus di�erent from the usual upward�exposed read refer�
ences� in and out regions are already used in pips for the privatization of array
sections��� ��
 even when there are procedure calls�

We also provide a general linear framework for the interprocedural propa�
gation of regions� regardless of their type� It handles array reshapes� even in
COMMONs that do not have the same data layout� and when arrays do not have the
same type� It is di�erent from the other approaches because it systematically
tries to discover similar dimensions� and uses linearization techniques only for
the dimensions that are not similar�

The current implementation in pips covers all the intraprocedural structures
of the fortran language� along with the interprocedural propagation� A �rst
series of experiments carried on the Perfect Club benchmarks shows the prac�
ticality of the analysis in terms of time and space� in spite of the well�known
exponential complexity of operators on polyhedra�

More experiments are needed to determine if the representation of in and out
regions in polyhedral form is precise enough in general to perform optimizations
such as array privatization� generation of communications in distributed memory
machines� or compile�time optimization of cache behavior in hierarchical memory
machines� Other representations are being considered� such as �nite unions of
polyhedra� and intersection of polyhedra and lattices�

Acknowledgments

We are very thankful to Corinne Ancourt� Fabien Coelho� Pierre Jouvelot and
William Pugh for their careful reading of previous versions and helpful com�
ments� We also wish to give special thanks to the referees for the improvements
they suggested�

References

�
 American National Standard Institute
 Programming Language FORTRAN� ANSI

X����	�
�� ISO 	����	��
� ����

�
 Corinne Ancourt and Fran�cois Irigoin
 Scanning polyhedra with DO loops
 In

Symposium on Principles and Practice of Parallel Programming� pages ������ April
����


�
 B�eatrice Apvrille�Creusillet
 R�egions exactes et privatisation de tableaux �Exact
array region analyses and array privatization�
 Master s thesis� Universit�e Paris VI�
France� September ����
 Available via http���www�cri�ensmp�fr��creusil


��



�
 V
 Balasundaram and K
 Kennedy
 A technique for summarizing data access and
its use in parallelism enhancing transformations
 In International Conference on

Programming Language Design and Implementation� pages ������ June ����


�
 M
 Berry� D
 Chen� P
 Koss� D
 Kuck� V
 Lo� Y
 Pang� R
 Rolo�� A
 Sameh�
E
 Clementi� S
 Chin� D
 Schneider� G
 Fox� P
 Messina� D
 Walker� C
 Hsiung�
J
 Schwarzmeier� K
 Lue� S
 Orzag� F
 Seidl� O
 Johnson� G
 Swanson� R
 Goodrum�
and J
 Martin
 The PERFECT Club benchmarks � E�ective performance evalua�
tion of supercomputers
 Technical Report CSRD����� CSRD� University of Illinois�
May ����


�
 W
 Blume and R
 Eigenmann
 Performance analysis of parallelizing compilers on
the Perfect Benchmarks programs
 IEEE Transactions on Parallel and Distributed

Systems� ������������� November ����


�
 Thomas Brandes
 The importance of direct dependences for automatic paralleliza�
tion
 In International Conference on Supercomputing� pages �������� July ����


�
 Michael Burke and Ron Cytron
 Interprocedural dependence analysis and paral�
lelization
 ACM SIGPLAN Notices� �������������� July ����


�
 D
 Callahan and K
 Kennedy
 Analysis of interprocedural side e�ects in a parallel
programming environment
 Journal of Parallel and Distributed Computing� ������
���� ����


��
 Fabien Coelho
 Compilation of I!O communications for HPF
 In Frontiers����
pages �������� February ����
 Available via http���www�cri�ensmp�fr��coelho


��
 Fabien Coelho and Corinne Ancourt
 Optimal compilation of HPF remappings

Technical Report A�����CRI� CRI� �Ecole des Mines de Paris� October ����
 To
appear in JPDC in ����


��
 Jean�Fran�cois Collard
 Automatic parallelization of while�loops using speculative
execution
 International Journal of Parallel Programming� �������������� ����


��
 B�eatrice Creusillet
 Array regions for interprocedural parallelization and array
privatization
 Report A����� CRI� �Ecole des Mines de Paris� November ����

Available at http���www�cri�ensmp�fr��creusil


��
 B�eatrice Creusillet
 IN and OUT array region analyses
 In Fifth International

Workshop on Compilers for Parallel Computers� pages �������� June ����


��
 B�eatrice Creusillet and Fran�cois Irigoin
 Interprocedural array regions analyses

In Languages and Compilers for Parallel Computing� Lecture Notes in Computer
Science� pages �����
 Springer�Verlag� August ����


��
 Paul Feautrier
 Data	ow analysis of array and scalar references
 International

Journal of Parallel Programming� ������������ September ����


��
 Jungie Gu� Zhiyuan Li� and Gyungho Lee
 Symbolic array data	ow analysis for
array privatization and program parallelization
 In Supercomputing� December
����


��
 Mary Hall� Brian Murphy� Saman Amarasinghe� Shih�Wei Liao� and Monica Lam

Interprocedural analysis for parallelization
 In Languages and Compilers for Paral�

lel Computing� Lecture Notes in Computer Science� pages �����
 Springer�Verlag�
August ����


��
 Paul Havlak and Ken Kennedy
 An implementation of interprocedural bounded
regular section analysis
 IEEE Transactions on Parallel and Distributed Systems�
������������� July ����


��
 Fran�cois Irigoin
 Interprocedural analyses for programming environments
 In
Workshop on Environments and Tools for Parallel Scienti�c Computing� pages
�������� September ����


��



��
 Fran�cois Irigoin� Pierre Jouvelot� and R�emi Triolet
 Semantical interprocedural
parallelization� An overview of the PIPS project
 In International Conference on

Supercomputing� pages �������� June ����

��
 Chung�Chi Jim Li� Elliot M
 Stewart� and W
 Kent Fuchs
 Compiler�assisted full

checkpointing
 Software � Practice and Experience� ��������������� October ����

��
 Arnauld Leservot
 Analyses interproc�edurales du �ot des donn�ees
 PhD thesis�

Universit�e Paris VI� March ����

��
 Zhiyuan Li
 Array privatization for parallel execution of loops
 In International

Conference on Supercomputing� pages �������� July ����

��
 Vadim Maslov
 Lazy array data�	ow analysis
 In Symposium on Principles of

Programming Languages� pages �������� January ����

��
 Vadim Maslov and William Pugh
 Simplifying polynomial constraints over inte�

gers to make dependence analysis more precise
 Technical Report CS�TR�����
��
University of Maryland� College Park� February ����


��
 Trung Nguyen� Jungie Gu� and Zhiyuan Li
 An interprocedural parallelizing com�
piler and its support for memory hierarchy research
 In Languages and Compil�

ers for Parallel Computing� Lecture Notes in Computer Science� pages ������

Springer�Verlag� August ����


��
 Michael Paleczny� Ken Kennedy� and Charles Koelbel
 Compiler support for out�
of�core arrays on parallel machines
 In Frontiers���� pages �������� February ����


��
 William Pugh
 A practical algorithm for exact array dependence analysis
 Com�

munications of the ACM� �������������� August ����

��
 William Pugh and David Wonnacott
 Eliminating false data dependences using

the Omega test
 In International Conference on Programming Language Design

and Implementation� pages �������� June ����

��
 Peiyi Tang
 Exact side e�ects for interprocedural dependence analysis
 In Inter�

national Conference on Supercomputing� pages �������� July ����

��
 R�emi Triolet
 Contribution �a la parall�elisation automatique de programmes Fortran

comportant des appels de proc�edures
 PhD thesis� Paris VI University� ����

��
 R�emi Triolet� Paul Feautrier� and Fran�cois Irigoin
 Direct parallelization of call

statements
 In ACM SIGPLAN Symposium on Compiler Construction� pages ����
���� ����


��
 Peng Tu and David Padua
 Automatic array privatization
 In Languages and

Compilers for Parallel Computing� August ����


This article was processed using the LaTEX macro package with LLNCS style

��


