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Interprocedural Array Region Analyses

B�eatrice Creusillet� Fran�cois Irigoin�

Centre de Recherche en Informatique� �Ecole des mines de Paris
��� rue Saint�Honor�e� F������ FONTAINEBLEAU Cedex FRANCE

Abstract� Many program optimizations require exact knowledge of the
sets of array elements that are referenced in or that 	ow between state�
ments or procedures
 Some examples are array privatization� generation
of communications in distributed memory machines� or compile�time op�
timization of cache behavior in hierarchical memory machines


Exact array region analysis is introduced in this article
 These regions
exactly represent the e�ects of statements and procedures upon array
variables
 To represent the 	ow of these data� we also introduce two new
types of array region analyses� IN and OUT regions


The intraprocedural propagation is presented� as well as a general linear
framework for interprocedural analyses� which handles array reshapes


The intra� and inter�procedural propagation of array regions is imple�
mented in pips� the interprocedural parallelizer of fortran programs
developed at �Ecole des mines de Paris


Keywords� interprocedural analysis� array data 	ow analysis� array re�
gions� array reshaping


� Introduction

The e�cient compilation of scienti�c programs for massively parallel machines or
hierarchical memory machines requires advanced program optimizations to deal
with memory management issues� For instance� Blume and Eigenmann�	
 have
shown that array privatization could greatly enhance the amount of potential
parallelism in sequential programs� This technique basically aims at discovering
array sections that are used as temporaries in loops� and can thus be replaced
by local copies on each processor� An array section is said to be privatizable in a
loop if each read of an array element is preceded by a write in the same iteration�
and several di�erent iterations may access each privatized array element��
� �

�
Solving such problems requires a precise intra� and inter�procedural analysis of
array data �ow� that is to say how individual array element values are de�ned
and used �or �ow� during program execution�

A recent type of analysis��� �	
 has opened up wide perspectives in this
area� It provides an exact analysis of array data �ow� originally in monopro�
cedural programs with static control� This last constraint has since been par�
tially removed���� ��
� at the expense of accuracy� A partial interprocedural
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extension���
 has also been de�ned� but only in a static control framework� Fur�
thermore the complexity of the method makes it useless on large programs�

Another approach is to compute conservative summaries of the e�ects of
statements and procedure calls on sets of array elements���� �
� Their relatively
weak complexity �in practice� allows the analysis of large programs� But since
these analyses are �ow insensitive� and since they do not precisely take into
account the modi�cations of the values of integer scalar variables� they are not
accurate enough to support powerful optimizations�

In pips���
� the interprocedural parallelizer of fortran programs developed
at �Ecole des mines de Paris� we have extended Triolet�s array regions���
 �which
are array element sets described by convex polyhedra� to compute summaries
that exactly represent the e�ects of statements and procedures on sets of array
elements��
� whenever possible� whereas the regions originally de�ned by Triolet
were over�approximations of these e�ects�

The resulting exact read andwrite regions were found necessary by Coelho����
��
 to e�ciently compile hpf� However� they cannot be used to compute array
data �ow� and are thus insu�cient for optimizations such as array privatization�

We therefore introduce two new types of exact regions� for any statement
or procedure� in regions contain its imported array elements� and out regions
represent its set of live array elements�

The possible applications are numerous� in and out regions are already used
in pips to privatize array sections��
� and we intend to use them for memory allo�
cation when compiling signal processing speci�cations based on dynamic single
assignment� In massively parallel or heterogeneous systems� they can also be
used to compute the communications before and after the execution of a piece
of code� For a hierarchical memory machine� they provide the sets of array el�
ements that are used or reused� and hence could be prefetched �in regions� or
kept �out regions� in caches� the array elements that do not appear in these sets
are only temporaries� and should be handled as such� In fault�tolerant systems
where the current state is regularly saved by a software component �checkpoint�
ing ���
� in or out regions could provide the set of elements that will be used in
further computations� and thus could be used to reduce the amount of data to
be saved� Examples of other applications are software speci�cation veri�cation
or compilation of out�of�core computations���
�

To support the exactness of the analysis� an accurate interprocedural trans�
lation is needed� However� by examining the Perfect Club Benchmarks��
� we
found out that the existing methods for handling array reshapes were insu��
cient� We propose in this paper a general linear framework that handles array
reshaping in most cases� including when the arrays are not of the same type� or
belong to a COMMON which does not have the same data layout in the caller and
the callee�

This paper is organized as follows� Section � presents a motivating exam�
ple that highlights the mains di�culties of region computation� Some necessary
background is shortly reviewed in Section �� Section 
 presents array regions
and their operators� The intraprocedural propagation of read� write� in and
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out regions is detailed in Section �� The interprocedural propagation is then
separately described in Section 	� And Section � reviews the related work�

� Motivating Example

To illustrate the main features of the intraprocedural computation of read�
write� in and out regions along this article� we consider the contrived program
of Figure �� The goal is to privatize array WORK�

K � FOO��

DO I � ��N

DO J � ��N

WORK�J�K� � J � K

ENDDO

CALL INC��K�

DO J � ��N

WORK�J�K� � J	J 
 K	K

A�I� � A�I��WORK�J�K��WORK�J�K
��

ENDDO

ENDDO

SUBROUTINE INC��I�

I � I � �

END

Fig� �� Sample program


The condition is that any iteration of the I loop neither imports nor exports
any element of the array WORK� In other words� if there is a read reference to an
element of WORK� it has been previously initialized in the same iteration� and it
is not reused in the subsequent iterations �we assume that the array WORK is not
used anymore after the I loop��

There are two main di�culties in our example� First� di�erent elements of
WORK are referenced in several instructions� We shall need several operators to
manipulate the regions representing these references� and compute the solutions
to data��ow problems� e�g� union� intersection or di�erence� Second� these ref�
erences� and thus their representations� depend on the value of the variable K�
which is unknown at the entry of the I loop� and is modi�ed by the call� We
need an operator to obtain representations that depend on the same value of K�
and hence can be combined�

The next two sections present the techniques used to perform the analysis of
our example�

� Language� Transformers and Preconditions

In pips���
 the parallelization process is divided into several phases� either analy�
ses �e�g� transformers� preconditions� array regions� or program transformations
�e�g� dead code elimination� loop transformations�� Most analyses also consist of
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two types of propagation� intra� and inter �procedural propagations� This section
describes the general mechanisms involved in both types of propagation� as well
as two analyses performed in pips and whose results are used to compute array
regions�

��� Language� HCFG and call graph

Intraprocedural propagations are performed on the hierarchical control �ow graph���

�hcfg� of the routines� This graph bears some resemblance to the abstract syn�
tax tree of the program� Most nodes of the hcfg correspond to the fortran
language control structures �DO loop� IF� sequence of instructions� assignment�
call� � � � �� except for the unstructured parts of the program �when GOTOs or STOPs
are used� which are modeled by standard control �ow graphs�

An example of such a graph is provided in Figure �
 The nodes are represented
by rectangles
 The biggest node on the left is a sequence of several instructions�
represented by sub�nodes
 One of these sub�nodes is itself a DO loop node
 Its
inner node is a sequence of two instructions


DO I

ENDDO

Fig� �� Example of HCFG


In this article� we only consider assignments� DO loops with unit increments� se�
quences of instructions� and procedure calls� The other constructs� in particular
IF constructs� are not considered here� because it would not provide useful in�
sights to the reader� However� the implementation of array region computation
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in pips covers the whole fortran standard��
� with a few minor exceptions�

which can easily be avoided�
Bottom�up analyses propagate their results towards the root of the hcfg

�entry node of the procedure�� the deepest nodes are �rst analyzed� and the
results are used at the upper level to form another solution which is similarly
propagated� On the contrary� top�down analyses propagate the solutions toward
the leaves of the tree� the solution for the inner nodes are computed from the
solutions at the upper level�

Interprocedural propagations are performed on the program call graph� This
graph is assumed acyclic� according to the fortran standard��
 which prohibits
recursive function calls� Analyses can be performed bottom�up or top�down� In
the �rst case� the intraprocedural analysis of the deepest procedures is performed
�rst� the information at the root node of their hcfg is then propagated to the
various call sites by translating formal parameters into actual ones� the callers are
then intraprocedurally analyzed using the preceding interprocedural solutions�
and so on� On the contrary� in a top�down propagation� the main program is �rst
intraprocedurally analyzed starting from its entry point� the solutions at each
call site are then propagated to the callees by translating actual parameters into
formal ones� when there are several call sites for one procedure� the solutions are
gathered into a unique summary� to limit time and space complexity�

Whether the analysis is bottom�up or top�down� each node of the hcfgs
or of the call graph is traversed only once� The complexity of an analysis thus
mostly depends on the complexity of the operations performed at each node�
As will be shown later� many semantical analyses in pips �transformers� pre�
conditions and array regions� rely on convex polyhedra� Most operators have a
theoretical exponential complexity� but the practical complexity often is poly�
nomial� Furthermore the exponential speed improvement of computers renders
these analyses fast enough to perform them on real life programs�

��� Transformers and preconditions

Two auxiliary analyses are of interest in the remainder of this paper� transform�
ers and preconditions ���
�

Transformers abstract the e�ects of instructions upon the values of integer
scalar variables by giving an a�ne approximation of the relations that exist
between their values before and after the execution of a statement or procedure
call� In equations they are designated by T � whereas in programs they appear
under the form T�args� fpredg� where args is the list of modi�ed variables� and
pred gives the non trivial relations existing between the initial values �su�xed
by �init� and the new values of variables� Figure � shows the transformers of
our working example�

� ENTRY� BLOCKDATA� ASSIGN and assigned GOTO� computed GOTO� multiple RETURN� sub�
string operator ���� Hollerith character chains� statement functions� and complex
constants �which are replaced by a call to CMPLX�� COMMON declarations must also
appear after all type declarations
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C P�� fg

C T�K� fg

K � FOO��

C P�K� fg

C T�K� fK��K�init�I��g

DO I � ��N

C P�I	K� f�
�I
�Ng

DO J � ��N

C P�I	J	K� f�
�I
�N	 �
�J
�Ng

WORK�J�K� � J � K

ENDDO

C P�I	K� f�
�I
�Ng

C T�K� fK��K�init��g

CALL INC��K�

DO J � ��N

C P�I	J	K� f�
�I
�N	 �
�J
�Ng

WORK�J�K� � J	J 
 K	K

A�I� � A�I��WORK�J�K��WORK�J�K
��

ENDDO

ENDDO

Fig� �� Transformers and preconditions


Preconditions are predicates over integer scalar variables� They hold just
before the execution of the corresponding instruction� In Figure �� they appear
as P�vars� fpredg� where vars is the list of modi�ed variables since the beginning
of the current routine� because preconditions abstract the e�ects of the routine
from its entry point to the current instruction�

Transformers are propagated upward� while preconditions are propagated
downward� And if T� and P� correspond to the instruction S�� and P� to the
instruction S� immediately following S�� then P� � T��P���

� Regions� De�nitions and Operators

An array region is a set of array elements described by a convex polyhedron
containing equalities and inequalities���
� they link the region parameters �or
� variables� that represent the array dimensions� to the values of the program
integer scalar variables� Two other characteristics are also of interest�

� the type of the region� read �R� or write �W� to represent the e�ects of
statements and procedures� in and out to represent the �ow of array ele�
ments�

� the approximation of the region� EXACT when the region exactly represents
the requested set of array elements� or MAY or MUST if it is an over� or under�
approximation �MUST � EXACT � MAY�� in the rest of the paper� we only
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consider EXACT and MAY regions� in previous papers���� �

 MUST was unfor�
tunately used to mean EXACT�

For instance� the region�


A�������
W
EXACT
f����I� ������g�

where the region parameters �� and �� respectively represent the �rst and
second dimensions of A� corresponds to an assignment of the element A�I�I�


In order to summarize array accesses at each level of the hcfg �to avoid
space complexity�� and to propagate the summaries along control �ow paths�
we need several operators such as union� intersection and di�erence� and more
speci�c unary operators�

Union The union operator is used to merge two elementary regions� Since the
union of two convex polyhedra is not necessarily a convex polyhedron� the ap�
proximate operator �� we use is the convex hull� The resulting region may thus
contain array elements that do not belong to the original regions� in this case��
it is a MAY region� The third column in Table � gives the approximation of the
resulting region against the characteristics of the initial regions�

R� R� R� �� R� R� �R� R� � R�

EXACT EXACT EXACT i� � R� � R� EXACT
S

�R� � �R��� EXACT i� � R� �R�

EXACT MAY EXACT i� R� � R� MAY R�� EXACT i� R� �R� � �

MAY EXACT EXACT i� R� � R� MAY
S

�R� � �R��� MAY

MAY MAY MAY MAY R�� MAY
�all the operators and tests used in this table are implemented in pips�

Table �� Binary operators on regions

Intersection The intersection of two convex polyhedra is a convex polyhedron�
It follows that the intersection of two EXACT regions is an EXACT region� A more
complete description of this operator is given in Table �� Column 
�

Di�erence The di�erence of two convex polyhedra is not necessarily a convex
polyhedron� The chosen operator � may give an over�approximation of the
actual di�erence of the original regions� Its features are described in Table ��
Column �� For instance� when the original regions are EXACT regions� a �rst step
computes R�� �R�� the result is a list of regions��
� these regions are then merged
using

S
� an extension of �� to union of lists�

� The test R� �� R� � R� �R� is implemented in pips
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Translation from one store to another one The linear constraints de�ning
a region often involve integer scalar variables from the program �e�g� ����I��
Their values� and thus the region� are relative to the current memory store�
If we consider the statement I � I � �� the value of I is not the same in the
stores preceding and following the execution of the instruction� Thus� if the
polyhedron of a region is ����I before the execution of I � I � �� it must be
����I
� afterwards�

To apply one of the preceding operators to two regions� they must be relative
to the same store� Let T����� denote the transformation of a region relative to
the store �� into a region relative to the store ���

This transformation is described in��
� Very brie�y� it consists in adding to
the predicate of the region� the constraints of the transformer that abstracts
the e�ects of the program between the two stores� The variables of the original
store ���� are then eliminated� The only variables that remain in the result�
ing polyhedron all refer to the store ��� Thus� two transformations� T�k��k��

and T�k����k � correspond to the transformer Tk associated to statement Sk�
depending on the variables that are eliminated�

For instance� let us assume that �� is the store preceding
the statement I � I � �� �� the store following it� and
f����Ig the predicate of a region relative to ��


�� f����Ig

� I � I � �

�� f����I
�g

We �rst rename I into I�init in the predicate of the region� and add the
transformer corresponding to the statement �T�I� fI��I�init��g�
 This gives
f����I�init� I��I�init��g
 We then eliminate I�init� because it refers
to ��
 We obtain f����I
�g� which is relative to ��


The exactness of the operation depends on several factors� such as the com�
bined characteristics of the transformer and the region� and the exactness of
the variable elimination��� ��
� When the operation is not exact� it leads to an
over�approximation of the target region� which becomes a MAY region�

Merging over an iteration space The region corresponding to the body of
a loop is a function of the value i of the loop index� During the propagation of
regions� we shall need to merge regions corresponding to di�erent� but successive�
instances of the loop body� in order to get a summary over a particular iteration
subspace �

S
lb�i�ub R�i���

By de�nition of the union of sets� this is strictly equivalent to eliminating the
loop index from the region predicate� in which the description of the iteration
subspace �lb � i � ub� has been added� However� the elimination of a variable
from a region may lead to an over�approximation of the target region�

proji�R�i�lb�i�ub� �
�

lb�i�ub
R�i�

The operation is exact if the following conditions are met�

�� lb and ub are a�ne functions of the program integer scalar variables� for
instance do I � I�� I��N
��
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�� The elimination of i from R�i�lb�i�ub is exact according to the conditions of
Ancourt or Pugh��� ��
��

The �rst condition ensures that the iteration space can be exactly described by
a convex polyhedron over the program variables �here lb � i � ub���

Constraining region predicates In order to have more information on � vari�
ables� the constraints of the preconditions can be added to the predicate of the
region� This is particularly useful when merging two regions�

For instance� f�������Ig �� f�������Jg is the whole space� i
e
 an empty set
of constraints
 If the current precondition �e
g
 fI��Jg� is added to the original
regions� the resulting region is f�������I�I��Jg instead of f���g


This operation increases the accuracy of the analysis� without modifying the def�
inition of regions� Furthermore� since preconditions include some IF conditions�
regions are powerful enough to disprove some interprocedurally conditional de�
pendencies�

� Intraprocedural Analyses

This section details the intraprocedural computation of read� write� in and
out regions for some of the main structures of the fortran language� assign�
ment� sequence of complex instructions and DO loop� The interprocedural prop�
agation is described in Section 	�

��� READ and WRITE regions

Assignment The reference on the left hand side of the assignment is converted
into a write region� whereas on the right hand side� each reference is converted
into an elementary read region� These regions are exact if and only if the sub�
scripts are a�ne functions of the program variables� for instance A��	I��	J
���

When several references to a particular array appear in the right hand side�
the corresponding regions are systematically merged using �� in order to obtain
a summary�

For instance� in Example �� the elementary read regions for the instruction
A�I� � A�I��WORK�J�K��WORK�J�K
�� are�


A����
R
EXACT
f����Ig�


WORK�������
R
EXACT
f����J� ����Kg�


WORK�������
R
EXACT
f����J� ����K
�g�

By merging the two regions concerning the array WORK� we �nally obtain�


A����
R
EXACT
f����Ig�


WORK�������
R
EXACT
f����J� K
�
���
�Kg�

� The elimination of variable v between the inequalities av �A � � and �bv � B � �
�with a � N� � b � N� � A � c �

P�

i��
aivi� B � d �

P�

i��
bivi� and c� d� ai� bi � Z��

is exact if and only if aB � bA � ab� a� b � � � �

� Remember that the loop is normalized� the increment is equal to one
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Sequence of Instructions Our purpose is to compute the regions R� corre�
sponding to the sequence S�� S�

	� that is to say a summary of all the read and
write references occurring in S� and S��

R� and R�� the read and write regions of S� and S�� are supposed to be
known� R� refers to the store �� preceding the execution of S�� while R� and R�

refer to the store �� preceding S� as well as the sequence S�� S�� Thus� we must
�rst convert them into the same store ���� before merging them�

R� � R� �� T������R��

As an illustration� let us consider the body of the I loop in our example
 We
assume that we know the regions concerning the array WORK associated to the
two inner loops�

C S�
C 
WORK�������
W
EXACT
f�
���
�N� ����Kg�

DO J � ��N

���

C S�
CALL INC��K�

C S�
C 
WORK�������
W
EXACT
f�
���
�N� ����Kg�
C 
WORK�������
R
EXACT
f�
���
�N� K
�
���
�Kg�

DO J � ��N

���

We cannot simply merge the regions associated to S� and S� to obtain the
regions of the whole sequence� because the value of K is modi�ed by S�
 They
must �rst be converted into the store ��� by using T����� � the transformer that
abstracts the e�ects of the call to INC� is T�K� fK��K�init��g� its constraint
is added to the regions corresponding to S�� then the variable K� which refers to
the store immediately following S�� is eliminated� and K�init� which represents
the value of the variable K in ��� is renamed into K�


WORK�������
W
EXACT
f�
���
�N� ����K��g�


WORK�������
R
EXACT
f�
���
�N� K
���
�K��g�

These regions are relative to the store preceding S�
 We should translate them
to the store preceding S�
 However� since S� modi�es no integer scalar variable�
they are identical
 Thus� it is legal to merge them with the regions correspond�
ing to S�� to obtain the regions for the sequence S�� S�� S��


WORK�������
W
EXACT
f�
���
�N� K
���
�K��g�


WORK�������
R
EXACT
f�
���
�N� K
���
�K��g�
DO loop

C ��
DO I � lb� ub

C �i
S

ENDDO

	 S� can also be a sequence of instructions
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The purpose is to compute the regions corresponding to the loop and relative to
��� from the regions of its body S� These regions are not only functions of the
value i of the loop index� but also of the variables v modi�ed by S� Let R�i� v�
denote them�

First� we must get rid of the variables v in order to obtain regions that are
functions of the sole loop index �and of course of variables that do not vary in
the loop body�� This is achieved by using T�i��� � This operator is based on the
transformer of the loop� which gives the loop invariant when it is computable�
We must then merge the resulting regions over the iteration space�

R� �
�

lb�i�ub
T�i����R�i� v��

As an example� let us compute the read regions of the array WORK for the
loop I in Figure �
 As previously seen� the regions of the loop body are�


WORK�������
R
EXACT
f�
���
�N� K
���
�K��g�

They are functions of the variable K� which is modi�ed in the loop body by a
call to INC�
 To get rid of it� we must use the operator T�i��� � The transformer
giving the loop invariant is T�K� fK��K�init�I
�g �K�init is here the value
of K in the store preceding the loop�� its constraint is added to the region� and
K is eliminated� K�init is then renamed into K� and since all these steps are
exact operations� we have�


WORK�������
R
EXACT
f�
���
�N� K�I
�
���
�K�Ig�

To perform the union over the iteration space� the iteration space constraint
�f�
�I
�Ng� is added to the region� and then I is eliminated
 This operation is
exact because the lower and upper bounds are a�ne and the elimination of I
is exact
 We �nally obtain�


WORK�������
R
EXACT
f�
���
�N� K
���
�K�Ng�

��� IN and OUT Regions

read and write regions summarize the exact e�ects of statements and pro�
cedures upon array elements� They do not represent the �ow of array element
values� which are necessary to test the legality of many optimizations� For that
purpose� we introduce two new types of regions� in and out regions� which
take array kills���
 into account� that is to say rede�nitions of individual array
elements�

in regions contain the array elements� whose values are �EXACT region� or may
be �MAY region� imported by the current piece of code� These are the elements
that are read before being possibly rede�ned by another instruction of the same
code fragment�

In Figure �� the body of the second J loop reads the element WORK�J�K�� but
does not imports its value because it is previously de�ned in the same iteration

On the contrary� the element WORK�J�K
�� is imported from the �rst J loop
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out regions corresponding to a piece of code contain the array elements
that it de�nes� and that are �EXACT� or may be �MAY� used afterwards� in the
continuation� These are the live or exported array elements�

In the program of Figure �� the �rst J loop exports all the elements of the
array WORK it de�nes towards the second J loop� whereas the elements of WORK
de�ned in the latter are not exported towards the next iterations of the I loop


In the remainder of this section� we limit ourselves to the intraprocedural
computation of in and out regions for an assignment� a sequence of instructions�
or a loop�

����� IN Regions

Assignment The in regions of an assignment are identical to the corresponding
read regions because the values of the referenced elements cannot come from
the assignment itself� according to the fortran standard�

Sequence of instructionsWe are now interested in the region IN� corre�
sponding to the sequence of instructions S�� S�� and relative to the store ��
preceding the execution of S�� It is the set of array elements imported by S�
�IN�� but not previously written by S� �W��� merged with the set of array
elements imported by S� �IN���

IN� � IN� �� �T������IN�� � W��

As an illustration� let us consider the body of the second J loop in Figure �

The read and in regions of its instructions concerning the array WORK are�

C S�
C 
WORK�������
W
EXACT
f����J� ����Kg�

WORK�J�K� � J	J 
 K	K

C S�
C 
WORK�������
IN
EXACT
f����J� K
�
���
�Kg�

A�I� � A�I� � WORK�J�K� � WORK�J�K
��

Since no scalar variable is modi�ed in the sequence� we have �

IN� � IN� �� �IN� � W��

� � �� �IN� � W��

� 
WORK�������
IN
EXACT
f����J� ����K
�g�

Finally� IN� contains the sole element WORK�J�K
��


��



Loop We are now interested in the region IN� of a normalized DO loop� given
the write and in regions of its body� respectively W �i� v� and IN�i� v�� i is the
value of the loop index� and v represents the variables modi�ed by the loop body�
Let �� denote the store before the loop and �i the store before the iteration i�

We �rst get rid of the variables v using T�i��� � In order to simplify the next
equation� we use the following notations�

W �i� � T�i����W �i� v��

IN�i� � T�i����IN�i� v��

The in regions of a loop contain the array elements that are imported by each
iteration �IN�i�� but not from the preceding iterations �

S
��i��iW �i���� The

complete equation is then�

IN� �
�

lb�i�ub
� IN�i� �

�
lb�i��i

W �i�� �

The purpose of the following example is to compute the summary in regions
of the array WORK for the second J loop in Figure �� given the write and in

regions of its body�


WORK�������
W
EXACT
f����J� ����Kg�


WORK�������
IN
EXACT
f����J� ����K
�g�

Since no scalar variable is modi�ed by the loop body� we can avoid the use of
the operator T�i��� 
 We then compute the term

S
��J��J

W �J��
 We �rst add
the iteration subspace constraint to the region�


WORK�������
W
EXACT
f����J
�� ����K� �
�J�
�J
�g�

By eliminating the loop index J�� we obtain the set of all the array elements
written by at least one iteration preceding the iteration J�


WORK�������
W
EXACT
f�
���
�J
�� ����Kg�

These elements are then removed from the set of elements imported by the
iteration J�


WORK�������
IN
EXACT
f����J� ����K
�g�

� 
WORK�������
W
EXACT
f�
���
�J
�� ����Kg�

� 
WORK�������
IN
EXACT
f����J� ����K
�g�

This last region represents the set of elements imported by the iteration J

from the instructions preceding the loop
 These regions are then merged over
the whole iteration space �� � J � N� to obtain the set of elements imported
by at least one iteration� from the instructions preceding the loop�


WORK�������
IN
EXACT
f�
���
�N� ����K
�g�

Hence� the loop imports all the values stored in the elements of array WORK

such that ����K
�


��



����� OUT Regions

The out region of a statement is not de�ned per se� but depends on the future
of the computation� For instance� the out region of S� in program S�� S� is a
function of S�� S� as a whole� and of S�� Thus� out regions are propagated in a
top�down fashion along the call graph and hierarchical control �ow graph of the
program� Since I�O operations are part of the program� the out region of the
main program� from which the other out regions are derived� is initialized to ��

Instructions of a sequence The region OUT� corresponding to the sequence
S�� S�� and relative to the store �� preceding S�� is supposed to be known� The
regions OUT� and OUT� corresponding to S� and S� are computed from OUT��

S� exports the elements that it writes �W�� and that are exported by the
whole sequence�

OUT� �W� � T������OUT��

The elements exported by S� are those that it de�nes �W��� and that are ei�
ther exported by the whole sequence �OUT�� but not by S� �OUT��� or exported
towards S�� i�e� that are imported by S� �IN���

OUT� �W� � � � OUT� � T����� �OUT�� � �� T������IN�� 


Let us consider as an illustration the body of the second J loop� in Figure �

Its write and in regions for the array WORK are�

C S�
C 
WORK�������
W
EXACT
f����J� ����Kg�

WORK�J�K� � J	J 
 K	K

C S�
C 
WORK�������
IN
EXACT
f����J� K
�
���
�Kg�

A�I� � A�I��WORK�J�K��WORK�J�K
��

Since no integer scalar variable is modi�ed by the loop body� T����� and
T����� are identity
 Moreover� we assume that OUT� � �
 The derivation is�

OUT� �W� � OUT� � �

OUT� �W� � ��OUT� � OUT�� �� IN��

�W� � IN�

�
WORK�������
W
EXACT
f����J� ����Kg�

� 
WORK�������
IN
EXACT
f����J� K
�
���
�Kg�

�
WORK�������
W
EXACT
f����J� ����Kg�

S� exports the element it de�nes towards S�� which exports no element of
WORK


��



Loop body The goal is to compute the out regions of the loop body �OUT �i�
if i is the value of the loop index� from the regions of the whole loop �OUT���
An array element can be exported by the iteration i for two reasons�

�� Either it is written by the iteration i �W �i��� and exported towards the
continuation of the loop �i�e� it belongs to OUT��� but it must not be re�
de�ned by any subsequent iteration� in other words� it must not belong to
the set of array elements de�ned by the iterations i� such that i � i� � ub�S
i�i��ub�W �i���� thus� it belongs to the region de�ned by�

�W �i� � T����i�OUT�� � �
�

i�i��ub
�W �i���

�� Or� it is written by the iteration i �W �i��� and directly used in a subsequent
iteration i�� directly means that it must not be de�ned by an iteration i��

between i and i��

W �i� �
�

i�i��ub
� IN�i�� �

�
i�i���i�

�W �i���� 


And �nally� the complete equation is�

OUT �i� � f�W �i� � T����i�OUT�� � �
�

i�i��ub
�W �i���g

�� fW �i� �
�

i�i��ub
� IN�i�� �

�
i�i���i�

�W �i���� 
g

Let us take an example to illustrate some features of the previous equation

We consider the I loop in the program of �gure �
 The goal is to compute
the out regions concerning the array A for the loop body
 We assume that its
write and in regions are already available�


A����
W
EXACT
f����Ig�


A����
IN
EXACT
f����Ig�

and that the out regions of the whole loop �OUT�� are�


A����
OUT
EXACT
f�
���
�Ng�

T����i�OUT�� is �rst calculated� the constraints of the loop transformer�
T�K�fK��K�INIT�I
�g� are added to the polyhedron of the region� and K�INIT

is eliminated�


A����
OUT
EXACT
f�
���
�Ng�

Then� we compute W �i� � T����i�OUT���


A����
OUT
EXACT
f����I� �
���
�Ng�

and
S

i�i��ub
�W �i��� �� proji��W �i��i�i��ub���

W �i��i�i��ub �
A����
W
EXACT
f����I
�� I��
�I�
�Ng�

proji��W �i��i�i��ub� �
A����
W
EXACT
fI��
���
�Ng�

Finally� the �rst part of the equation gives the region�

��




A����
OUT
EXACT
f����I� �
���
�Ng�

For the second part of the equation� we successively have��
i�i���i�

�W �i���� �
A����
W
EXACT
fI��
���
�I
�
�g�

IN�i�� �
�

i�i���i�
�W �i���� �
A����
IN
EXACT
f����I

�g�

� 
A����
W
EXACT
fI��
���
�I
�
�g�

�
A����
IN
EXACT
f����I
�g�

and� �
i�i��n

�� � � � �
A����
IN
EXACT
fI��
���
�Ng�

W �i� �
�

i�i��n
�� � � � �
A����
W
EXACT
f����Ig�

� 
A����
IN
EXACT
fI��
���
�Ng�

��

Thus� the iteration i exports no element of A towards the subsequent iterations

And �nally� for the whole equation� and for each iteration i� the region is�


A����
OUT
EXACT
f����I� �
���
�Ng�

The complete in and out regions of our example are given in Figure 
� They
show that the body of the I loop imports and exports no element of WORK� which
can be privatized by pips after induction variable substitution �see Figure ���

	 Interprocedural Analyses

The intraprocedural computation of array regions has been described in the pre�
vious section� We now focus on the interprocedural part of array region analyses�
The �rst subsection is devoted to the propagation on the call graph� while the
second extensively describes the translation of array regions from the source
procedure name space to the target procedure name space�

��� Propagation on the call graph

The interprocedural propagation of read� write� and in regions is a backward
�or bottom�up� analysis� At each call site the summary regions of the called
subroutine are translated from the callee�s name space into the caller�s name
space� using the relations between actual and formal parameters� and between
the declarations of global variables in both routines� This is illustrated in the
leftmost picture of Figure 	�

On the contrary� the interprocedural propagation of out regions is a forward
�or top�down� analysis� The regions of all the call sites are �rst translated from
the callers� name space into the callee�s name space� and are then merged to
form a unique summary
 �see the rightmost picture in Figure 	��


 The out regions of the main routine are initialized to � �see Section �
�
��


��



K � FOO��

C 
A����
IN
MUST
f�
���
�Ng�
DO I � �� N

C loop body�

C 
A����
IN
MUST
f����I� �
���
�Ng�

C 
WORK�������
OUT
MUST
f����K� �
���
�Ng�
DO J � �� N

C 
WORK�������
OUT
MUST
f����J� ����K� �
���
�Ng�
WORK�J�K� � J�K

ENDDO

CALL INC��K�

C 
A����
IN
MUST
fI����g�
C 
WORK�������
IN
MUST
f����K
�� �
���
�Ng�

DO J � �� N

C 
WORK�������
OUT
MUST
f����J� ����Kg�
WORK�J�K� � J	J
K	K

C 
WORK�������
IN
MUST
f����J� K
�
���
�Kg�
C 
A����
IN
MUST
f����Ig�
C 
A����
OUT
MUST
f����I� �
�J
�N
�g�

A�I� � A�I��WORK�J�K��WORK�J�K
��

ENDDO

ENDDO

Fig� �� IN and OUT regions


K� � FOO��

DOALL I � �� N

PRIVATE WORK�J�K

K � K��I
�

DOALL J � �� N

WORK�J�K� � J�K

ENDDO

CALL INC��K�

DOALL J � �� N

WORK�J�K� � J	J
K	K

ENDDO

DO J � �� N

A�I� � A�I��WORK�J�K��WORK�J�K
��

ENDDO

ENDDO

Fig� �� Parallel version


��



call PROC3

PROC1 PROC2

PROC3

call PROC3

translation

a� Backward propagation� read�
write� and in regions


call PROC3

PROC1 PROC2

PROC3

call PROC3

merge

translation

b� Forward propagation� out re�
gions


Fig� 	� Interprocedural propagation of array regions


��� Array region translation

This section describes the translation part of the interprocedural propagation�
Because the source and target variables may not have the same declaration �array
reshaping�� this operation is not straightforward�

By examining the Perfect Club benchmarks��
� we found it necessary to han�
dle several non�exclusive cases�

�� Array reshaping due to di�erent dimension declarations�

�� O�sets between the �rst elements of the source and target arrays due to
parameter passing �CALL F�A���J�� for instance��

�� O�sets due to di�erent COMMON declarations in the caller and the callee �e�g�
in the program TRFD� the common TR�PRT is not similarly declared in routines
TRFPRT and TRFOUT��


� Target and source variables of di�erent types �e�g�in the program OCEAN��

The method described in this section tackles these four points� It is based on
the fact that two corresponding elements of the source and target arrays must
have the same subscript values�� up to the o�set between their �rst element�
This is described in section 	�����

However� the resulting translation system may contain non�linear terms� and
it hides the trivial relations existing between the � variables of both arrays�
Hence� we propose in section 	���� an algorithm that �rst tries to discover these
trivial relations before using the subscript values� It results in a simpli�ed trans�
lation system�

� The subscript value of an array elements is its rank in the array� array elements
being held in column order
���

��



����� Notations

In the remainder of this section� we use the following notations�

source ��� target

array A B

dimension � �

lower bounds la� � � � � � la� lb� � � � � � lb�
upper bounds ua� � � � � � ua� ub� � � � � � ub�
size of elements� sa sb

region parameters ��� � � � � �� ��� � � � � ��

The subscript values of A���� � � � � ��� and B���� � � � � ��� are thus
���

subscript value�A���� � � � � ���� �
�X
i
�

���i � lai�
Yi��

j
�
�uaj � laj � ��


subscript value�B���� � � � � ���� �

�X
i
�

���i � lbi�
Yi��

j
�
�ubj � lbj � ��


Another necessary information is the o�set of the �rst element of A from the
�rst element of B in the memory layout� This information is provided di�erently�
depending on the type of aliasing between A and B�

source

parameter
	
 target

parameter
o�set

formal 	
 actual reference at call site� B�ob� � � � � � ob� �

o�set � sb � subscript value�B�ob� � � � � � ob� ��

actual 	
 formal reference at call site� A�oa� � � � � � oa��

o�set � �sa � subscript value�A�oa� � � � � � oa���

global 	
 global numerical o�set

di�erence between the o�set of A in the declaration of the
common in the source subroutine� and the o�set of B in
the declaration of the common in the target subroutine


As an illustration� let us consider the contrived program in Figure �� which
contains all the di�culties encountered in real life programs
 The purpose is
to �nd the read and write regions of the call site� from the summary regions
of procedure BAR
 The translation coe�cients are�

R 	
 C� A � R� B � C� � � �� � � �� la� � la� � �� lb� � lb� � lb� � ��
ua� � n�� ua� � n�� ub� � n� ub� � ��� ub� � ��� sa � �� sb � ��
o�set � ��

� Unit� the size of the smallest accessible amount of memory �usually one byte�

�� With the convention that

Qk�
k�k�

� � when k� � k�


��



subroutine FOO�C�n�

complex C�n��������D

common D������

call BAR�C��n�����

end

C 
D����	����W�EXACT�f�
���
���	 �
���
�
g�

C 
D������W�EXACT�f�
���
���g�

C 
R���	����W�EXACT�f�
���
�N�	 �
���
�N�g�

subroutine BAR�R�n��n��

real R�n��n��

common D������ D�������

���

end

Fig� 
� Interprocedural translation� example


D� 	
 D� A � D�� B � D� � � �� � � �� la� � �� lb� � lb� � �� ua� � ���
ub� � �� ub� � ��� sa � �� sb � �� o�set � ��

D� 	
 D� A � D�� B � D� � � �� � � �� la� � la� � �� lb� � lb� � ��
ua� � ��� ua� � �� ub� � �� ub� � ��� sa � �� sb � �� o�set � ��


����� General translation system

With the previous notations� the region parameters of the element B���� � � � � ���
corresponding to the source element A���� � � � � ��� must verify the following
system�

� 	a� 	b


�����
����

sa � subscript value�A��� � � � � � ���� � 	a � o�set

� sb � subscript value�B���� � � � � ���� � 	b

� � 	a � sa

� � 	b � sb

�S�

	 variables are used to describe the corresponding elementary memory cells inside
two associated array elements� as shown in Figure ��

B

�b � �

A

�a � �

Fig� �� Meaning of �variables


For our example� the following systems would be built�
R 	
 C���

�
����� � �� � n���� � ��� � �a �

���	� � �� � n�	� � �� � ��n�	� � ��� � �b

� � �a � �� � � �b � �� n� � �n

��



D� 	
 D��
���� � �� � �a � ���	� � �� � ��	� � ��� � �b

� � �a � �� � � �b � �
D� 	
 D��

����� � �� � ����� � ��� � �a � �� � ���	� � �� � ��	� � ��� � �b

� � �a � �� � � �b � �

Using S as the translation system has several drawbacks�

�� in the formal � actual cases� S is generally non�linear �it is the case in our
�rst example��

�� in order to keep a convex representation� 	 variables must be eliminated� this
operation may be inexact� leading to an over�approximation�

�� even in favorable cases� the equation in system S is rather complex� and hides
the trivial relations existing between � and � variables� such as �� � ��� this
makes the subsequent analyses unnecessarily complex� and is not acceptable
in an interactive environment�

In the following section� we describe a method that alleviates these three prob�
lems�

����� Simpli	ed translation system

Elimination of unnecessary � variables

Theorem �� If sb divides sa and o�set� then S is equivalent to the following
system���

� 	�a


��������
�������

s�a � subscript value�A��� � � � � � ���� � 	�a �
o�set

sb
� subscript value�B���� � � � � ����

� � 	�a � s�a

s�a �
sa
sb

Note�

�� In the formal � actual cases� sb divides sa 	 sb divides o�set�
�� In fact� we just replace sa by

sa
sb
� sb by �� o�set by

o�set
sb

and use S without 	b�

In our working example� since sa divides sb and o�set in all three cases� the
translation systems become�

R 	
 C���
�

��� � �� � n���� � �� �

���	� � �� � n�	� � �� � ��n�	� � ��� � �b

� � �b � �� n� � �n

�� Of course� there is a similar system if sa divides sb and o�set


��



D� 	
 D��
�� � � � ���	� � �� � ��	� � ��� � �b

� � �b � �
D� 	
 D��

��� � �� � ����� � �� � �� � ���	� � �� � ��	� � ��� � �b

� � �b � �

Decreasing the degree of 
S�

De	nition �� �Similar dimensions	
A dimension d �d � min��� ��� is said to be similar for arrays A and B if

the following three conditions are met�

� Condition for the o�set�

There must be no o�set between the �rst element of B and the �rst
element of A on dimension d�

formal 	
 actual � i
� � i � d� obi � lbi
actual 	
 formal � i
� � i � d� oai � lai
global 	
 global jo�setj mod sa

Qd

i��
�uai � lai � �� � �


jo�setj mod sb
Qd

i��
�ubi � lbi � �� � �

�� Condition for the �rst dimension�
The lengths in bytes of the �rst dimensions of A and B are equal�

sa�uad � lad � �� � sb�ubd � lbd � ��

This means that the �rst dimension entirely compensates the di�er�
ence between sa and sb� This is why sa and sb are not used in the
next condition�

�� Condition for the next dimensions �� � d � min��� ��	�
Assuming that the previous dimensions are similar� the lengths of
the d�th dimensions of A and B must be equal�

uad � lad � ubd � lbd

This is not necessary if d � � � ��

This de�nition only takes into account dimensions of identical ranks� The
general case would try to discover minimal sets of globally similar dimensions�

For instance if the dimensions of A and B are A�l�m� n� and B�m� l� n�� the
global lengths of dimensions � and � are similar �dimensions � and � are
globally similar�� as a consequence� the third dimension is similar


But the complexity of the algorithm for discovering these sets would be too high
compared to the expected gain� especially in real life programs�

Notations� We now use the following notations for k 
 ����min��� ��
�

��



k subscript value�

k subscript value�A���� � � � � ���� �
�X
i
k

���i � lai�
i��Y
j
k

�uaj � laj � ��


It is the rank of the array element A���� � � � � ��� from the element
A���� � � � � �k��� lak � � � � � la��� i�e� from the �rst element of the k�th
dimension�

k o�set�
It is the o�set relative to the k�th dimension�

formal 	
 actual k subscript value�B�ob� � � � � � ob� ��

actual 	
 formal �k subscript value�A�oa� � � � � � oa���

global 	
 global

j
o�set

sa
Q

k

i��

uai�lai���

k

Theorem �� If dimensions 
 to d� � �� � d� � � min��� ��	 are similar� then
S is equivalent to�

� 	a� 	b


����������
���������

sa��� � la�� � 	a � sb��� � lb�� � 	b

� i 
 ����d� �
� �i � lai � �i � lbi

d subscript value�A��� � � � � � ���� � d o�set �

d subscript value�B���� � � � � ����
��

� � 	a � sa

� � 	b � sb

�Sd�

In our working example� the translation systems �nally become�
R 	
 C���

�
�� � � � ��	� � �� � �b

�� � � � �	� � �� � ���	� � ��

� � �b � �
Notice that the system now only contains linear equations


D� 	
 D���
�
�� � � � ��	� � �� � �b

�	� � �� � �

� � �b � �
There are now only very simple relations between � and 	 vari�
ables
 In particular� it becomes obvious that 	� � �� which was
hidden in the original system


D� 	
 D���
�
�� � � � ��	� � �� � �b

��� � �� � � � �	� � ��

� � �b � �

�� In the formal 	
 actual case� if d � min��� �� � �� this equation can be replaced by
� i � �d����� 	i � obi 


��



Notice how the o�set for the whole problem has been turned into
an o�set for the sole second dimension �the term �� in the second
equation�


And at last� the translation algorithm is the following�

Algorithm�

�� input� a region RA corresponding to the array A
�� RB � RA

�� d � number of similar dimensions�A�B� � �
�� if d � � then

�� translation system � S
	� else


� translation system � Sd
�� endif

�� add translation system to RB

�
� eliminate 	 variables

��� eliminate � variables

��� rename � variables into � variables

��� translate RB�s polyhedron into

the target routine�s name space

��� for all i 
 �����
 add lbi � �i � ubi to RB

��� output� RB

At each step� the exactness of the current operation is checked� At Step �� if
an intermediate expression used to check the similarity is not linear� the current
dimension is declared as non�similar� and the next dimensions are not considered�
At Steps � and �� if a constraint cannot be built because of a non�linear term�
it is not used �this leads to an over�approximation of the solution set�� and the
translation is declared inexact� At Steps �� and ��� the exactness of the variable
elimination is veri�ed with the usual conditions��� ��
�

Step �� is performed using the relations between formal and actual param�
eters� and between the declarations of global variables in the source and target
routines �this gives a translation context system�� The variables belonging to the
name space of the source routine are then eliminated� The exactness of this oper�
ation depends on the combined characteristics of the translation context system
and R� and the exactness of the variable elimination��� ��
�

The last step is particularly useful in case of a partial matching between A
and B� which is the case when A and B belong to a COMMON that is not similarly
declared in the source and target routine�

For the example of Figure �� the resulting regions are all exact�
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 Related Work

The previous work closest to ours are those of Triolet���
� Tang���
� Hall���
�
Li���� ��
 and Leservot���
� and the works by Burke and Cytron��
 and Maslov��	

for the interprocedural translation�

Many other less recent studies��� ��� 

 have addressed the problem of the
interprocedural propagation of array element sets� But they did not provide
su�cient symbolic analyses� and did not tackle array reshaping�

Triolet���
 Array regions were originally de�ned by Triolet as over�approxi�
mations of the e�ects of statements of procedures upon sets of array elements
�MAY read and write regions�� We have extended his work to introduce the
notion of exactness� and in and out regions to represent the �ow of array ele�
ments�

In his thesis���
� Triolet addressed the problem of interprocedural translation
in a very limited way� no array reshaping� except when due to an o�set in the
actual parameter to represent a column in a matrix for instance� and the COMMONs
in the caller and callee had to be similarly declared�

Tang���
 Tang summarizes multiple array references in the form of an integer
programming problem� It provides exact solutions� but the source language is
very restricted� and array reshaping is only handled in very simple cases �sub�
arrays� as Triolet���
��

Hall et al����
 Fiat�Suif includes an intra� and inter�procedural framework
for the analysis of array variables� Under� and over�approximations of array
elements sets are represented by lists of polyhedra� The problem of exactness is
not considered� However the list representation is more precise than ours� and
the exactness of our regions would certainly bene�t from it� but the cost� both
in memory use and computation time� would certainly be more important�

Di�erent types of regions are available in Fiat�Suif� The Read andWrite sets
are similar to our read andwrite regions� However� the ExposedRead sets con�
tain the array elements which are used in the continuation of the whole program
before being de�ned� while our in regions are restricted to the current level in
the hcfg� There are no equivalent for our out regions� which are �among other
applications� useful for the interprocedural resolution of the copy�out problem
in array privatization��

�

For the interprocedural translation� they have adopted a method basically
similar to ours� However� in Fiat�Suif� similar dimensions are taken into account
only when the system is not linear� and in this case� they do not try to build a
system similar to Sd �see Page ���� possibly missing a linear translation system�
Moreover� they do not handle global �
 global translation when the COMMON to
which the source and target arrays belong� does not have the same data layout
in the caller and callee�

��



Li et al����� ��
 In the Panorama compiler� the representation of array element
sets is a list of rsds��
 with bounds and step� guarded by predicates derived from
IF conditions� Since our regions also include some IF conditions� the advantages
of this representation over ours �except the use of lists� is unclear�

They also have di�erent types of array element sets� MOD sets are similar
to write regions� and UE sets to in regions� this is due to the fact that their
analyses rely on a hierarchical control �ow graph inspired from pips� hcfg���
�
But as in Fiat�Suif� there is no equivalent for our out regions�

The previous sets are exact sets� unless they contain an unknown component�
Our regions should be more accurate� because we can keep information about
all the � variables� even in case of a MAY region�

Leservot���
 Leservot has extended Feautrier�s array data �ow analysis��	
 to
handle static control programs with procedure calls� To preserve the a priori de�
terminism of the analysis� no partial association is allowed at procedure bound�
aries �i�e� the source and target arrays have the same type�� and only very simple
array reshapes are handled �the same cases as in���
 and���
��

For each procedure� this method computes in�going e�ects� which bear some
resemblance with in regions� and out�going e�ects� which are somewhat similar
to downward exposed writes� and are thus di�erent from out regions�

Burke and Cytron��
 They alleviate the memory disambiguation problem by
linearizing all array accesses when possible� This is equivalent to using the sys�
tem S in our method� However� we have seen that this may lead to non lin�
ear expressions� that prevent further dependence testing for instance� On the
contrary� our method avoids linearization whenever possible by detecting sim�
ilar dimensions� and partially linearizing the remaining dimensions if possible
and necessary� This approach eliminates the linearization versus subscript�by�
subscript problem as formulated by Burke and Cytron�

Maslov���
 Maslov describes a very general method for simplifying systems
containing polynomial constraints� This is the case of the general translation
system presented in Section 	�����

We think that most cases that arise in real life programs and that can be
solved using Maslov�s method can also be solved by our algorithm� thus avoiding
the cost of a more general method� for instance� the translation from A�N�M�L�

to B�N�M�L� yields the equation �� � N�� � NM�� � �� � N�� � NM�� which he
gives as an example� we solve it by simply verifying that all three dimensions
are similar�

� Conclusion

Obviously� a lot of e�orts have been spent over the last ten years to summarize
memory e�ects on array elements� Time and space complexity� accuracy and
usefulness are the usual issues� In pips� we have chosen to use convexity to
reduce space complexity� We de�ne several types of summaries�

��



read and write array regions represent the exact e�ects of statements and
procedures upon array elements whenever possible� Whereas the regions initially
de�ned by Triolet���
 are over�approximations of the e�ects of procedures� read
and write regions are used by Coelho���
 to e�ciently compile hpf�

Since read and write regions cannot be used to compute the �ow of array
elements� we have introduced two new types of exact array region� in and out

regions represent the sets of array elements that are imported or exported by
the corresponding code fragment� in regions contain the locally upward exposed
read elements� and are thus di�erent from the usual upward�exposed read refer�
ences� in and out regions are already used in pips for the privatization of array
sections��� ��
 even when there are procedure calls�

We also provide a general linear framework for the interprocedural propa�
gation of regions� regardless of their type� It handles array reshapes� even in
COMMONs that do not have the same data layout� and when arrays do not have the
same type� It is di�erent from the other approaches because it systematically
tries to discover similar dimensions� and uses linearization techniques only for
the dimensions that are not similar�

The current implementation in pips covers all the intraprocedural structures
of the fortran language� along with the interprocedural propagation� A �rst
series of experiments carried on the Perfect Club benchmarks shows the prac�
ticality of the analysis in terms of time and space� in spite of the well�known
exponential complexity of operators on polyhedra�

More experiments are needed to determine if the representation of in and out
regions in polyhedral form is precise enough in general to perform optimizations
such as array privatization� generation of communications in distributed memory
machines� or compile�time optimization of cache behavior in hierarchical memory
machines� Other representations are being considered� such as �nite unions of
polyhedra� and intersection of polyhedra and lattices�
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