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Interprocedural Array Region Analyses
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Many program optimizations require exact knowledge of the sets of array elements that are referenced in or that ow b e t ween statements or procedures. Some examples are array privatization, generation of communications in distributed memory machines, or compile-time optimization of cache behavior in hierarchical memory machines. Exact array region analysis is introduced in this article. These regions exactly represent the e ects of statements and procedures upon array variables. To represent the ow of these data, we also introduce two n e w types of array region analyses: IN and OUT regions. The intraprocedural propagation is presented, as well as a general linear framework for interprocedural analyses, which handles array reshapes. The intra-and inter-procedural propagation of array regions is implemented in pips, the interprocedural parallelizer of fortran programs developed at Ecole des mines de Paris.

Introduction

The e cient compilation of scienti c programs for massively parallel machines or hierarchical memory machines requires advanced program optimizations to deal with memory management issues. For instance, Blume and Eigenmann 6] h a ve shown that array p r i v atization could greatly enhance the amount of potential parallelism in sequential programs. This technique basically aims at discovering array sections that are used as temporaries in loops, and can thus be replaced by local copies on each processor. An array section is said to be privatizable in a loop if each read of an array element is preceded by a write in the same iteration, and several di erent iterations may a c c e s s e a c h privatized array element 24, 3 4 ]. Solving such problems requires a precise intra-and inter-procedural analysis of array data ow, that is to say h o w individual array element v alues are de ned and used (or ow) during program execution.

A recent type of analysis [START_REF] Brandes | The importance of direct dependences for automatic parallelization[END_REF][START_REF] Feautrier | Data ow analysis of array and scalar references[END_REF] has opened up wide perspectives in this area: It provides an exact analysis of array data ow, originally in monoprocedural programs with static control. This last constraint has since been partially removed [START_REF] Maslov | Lazy array data-ow analysis[END_REF][START_REF] Cois | Automatic parallelization of while-loops using speculative execution[END_REF], at the expense of accuracy. A partial interprocedural extension 23] has also been de ned, but only in a static control framework. Furthermore the complexity of the method makes it useless on large programs.

Another approach is to compute conservative summaries of the e ects of statements and procedure calls on sets of array elements [START_REF] Feautrier | Direct parallelization of call statements[END_REF][START_REF] Callahan | Analysis of interprocedural side e ects in a parallel programming environment[END_REF]. Their relatively weak complexity ( i n practice) allows the analysis of large programs. But since these analyses are ow insensitive, and since they do not precisely take into account the modi cations of the values of integer scalar variables, they are not accurate enough to support powerful optimizations.

In pips 21], the interprocedural parallelizer of fortran programs developed at Ecole des mines de Paris, we h a ve extended Triolet's array regions 33] (which are array element sets described by convex polyhedra) to compute summaries that exactly represent the e ects of statements and procedures on sets of array elements 3], whenever possible whereas the regions originally de ned by T riolet were over-approximations of these e ects.

The resulting exact read and write regions were found necessary by Coelho 10,[START_REF] Coelho | Optimal compilation of HPF remappings[END_REF] to e ciently compile hpf. H o wever, they cannot be used to compute array data ow, and are thus insu cient for optimizations such as array p r i v atization.

We therefore introduce two new types of exact regions: for any statement or procedure, in regions contain its imported array e l e m e n ts, and out regions represent its set of live array elements.

The possible applications are numerous. in and out regions are already used in pips to privatize array sections 3], and we i n tend to use them for memory allocation when compiling signal processing speci cations based on dynamic single assignment. In massively parallel or heterogeneous systems, they can also be used to compute the communications before and after the execution of a piece of code. For a hierarchical memory machine, they provide the sets of array elements that are used or reused, and hence could be prefetched (in regions) or kept (out regions) in caches the array elements that do not appear in these sets are only temporaries, and should be handled as such. In fault-tolerant systems where the current state is regularly saved by a software component ( checkpoint- ing 22]) in or out regions could provide the set of elements that will be used in further computations, and thus could be used to reduce the amount o f d a t a t o be saved. Examples of other applications are software speci cation veri cation or compilation of out-of-core computations 28].

To support the exactness of the analysis, an accurate interprocedural translation is needed. However, by examining the Perfect Club Benchmarks 5], we found out that the existing methods for handling array reshapes were insucient. We propose in this paper a general linear framework that handles array reshaping in most cases, including when the arrays are not of the same type, or belong to a COMMON which does not have the same data layout in the caller and the callee.

This paper is organized as follows. Section 2 presents a motivating example that highlights the mains di culties of region computation. Some necessary background is shortly reviewed in Section 3. Section 4 presents array regions and their operators. The intraprocedural propagation of read, write, in and out regions is detailed in Section 5. The interprocedural propagation is then separately described in Section 6. And Section 7 reviews the related work.

Motivating Example

To illustrate the main features of the intraprocedural computation of readwrite, in and out regions along this article, we consider the contrived program of Figure 1. The goal is to privatize array WORK.

K = FOO() DO I = 1,N DO J = 1,N WORK(J,K) = J + K ENDDO CALL INC1(K) DO J = 1,N WORK(J,K) = J*J -K*K A(I) = A(I)+WORK(J,K)+WORK(J,K-1) ENDDO ENDDO SUBROUTINE INC1(I) I = I + 1 END Fig. 1. Sample program.
The condition is that any iteration of the I loop neither imports nor exports any element of the array WORK. In other words, if there is a read reference to an element o f WORK, it has been previously initialized in the same iteration, and it is not reused in the subsequent iterations (we assume that the array WORK is not used anymore after the I loop).

There are two main di culties in our example. First, di erent elements of WORK are referenced in several instructions. We shall need several operators to manipulate the regions representing these references, and compute the solutions to data-ow problems, e.g. union, intersection or di erence. Second, these references, and thus their representations, depend on the value of the variable K, which is unknown at the entry of the I loop, and is modi ed by the call. We need an operator to obtain representations that depend on the same value of K, and hence can be combined.

The next two sections present the techniques used to perform the analysis of our example. two t ypes of propagation: intra-a n d inter-procedural propagations. This section describes the general mechanisms involved in both types of propagation, as well as two analyses performed in pips and whose results are used to compute array regions.

Language, HCFG and call graph

Intraprocedural propagations are performed on the hierarchical control ow graph 21] (hcfg) of the routines. This graph bears some resemblance to the abstract syntax tree of the program: Most nodes of the hcfg correspond to the fortran language control structures (DO loop, IF, sequence of instructions, assignment, call, : : : ), except for the unstructured parts of the program (when GOTOs o r STOPs are used) which are modeled by standard control ow graphs.

An example of such a graph is provided in Figure 2. The nodes are represented by rectangles. The biggest node on the left is a sequence of several instructions, represented by sub-nodes. One of these sub-nodes is itself a DO loop node. Its inner node is a sequence of two instructions.

DO I ENDDO

Fig. 2. Example of HCFG.

In this article, we only consider assignments, DO loops with unit increments, sequences of instructions, and procedure calls. The other constructs, in particular IF constructs, are not considered here, because it would not provide useful insights to the reader. However, the implementation of array region computation in pips covers the whole fortran standard 1], with a few minor exceptions2 which can easily be avoided.

Bottom-up analyses propagate their results towards the root of the hcfg (entry node of the procedure): the deepest nodes are rst analyzed, and the results are used at the upper level to form another solution which i s similarly propagated. On the contrary, t o p -d o wn analyses propagate the solutions toward the leaves of the tree: the solution for the inner nodes are computed from the solutions at the upper level.

Interprocedural propagations are performed on the program call graph. This graph is assumed acyclic, according to the fortran standard 1] w h i c h prohibits recursive function calls. Analyses can be performed bottom-up or top-down. In the rst case, the intraprocedural analysis of the deepest procedures is performed rst the information at the root node of their hcfg is then propagated to the various call sites by translating formal parameters into actual ones the callers are then intraprocedurally analyzed using the preceding interprocedural solutions, and so on. On the contrary, in a top-down propagation, the main program is rst intraprocedurally analyzed starting from its entry point the solutions at each call site are then propagated to the callees by translating actual parameters into formal ones when there are several call sites for one procedure, the solutions are gathered into a unique summary, to limit time and space complexity.

Whether the analysis is bottom-up or top-down, each node of the hcfgs or of the call graph is traversed only once. The complexity of an analysis thus mostly depends on the complexity of the operations performed at each node. As will be shown later, many semantical analyses in pips (transformers, preconditions and array regions) rely on convex polyhedra. Most operators have a theoretical exponential complexity, b u t the practical complexity often is polynomial. Furthermore the exponential speed improvement of computers renders these analyses fast enough to perform them on real life programs.

Transformers and preconditions

Two auxiliary analyses are of interest in the remainder of this paper: transformers and preconditions 20].

Transformers abstract the e ects of instructions upon the values of integer scalar variables by giving an a ne approximation of the relations that exist between their values before and after the execution of a statement or procedure call. In equations they are designated by T, whereas in programs they appear under the form T(args) fpredg, where args is the list of modi ed variables, and pred gives the non trivial relations existing between the initial values (su xed by #init) and the new values of variables. Figure 3 shows the transformers of our working example. Preconditions are predicates over integer scalar variables. They hold just before the execution of the corresponding instruction. In Figure 3, they appear as P(vars) fpredg, w h e r e vars is the list of modi ed variables since the beginning of the current routine, because preconditions abstract the e ects of the routine from its entry point to the current instruction.

C P() fg C T(K) fg K = FOO() C P(K) fg C T(K) fK==K#init+I-1g DO I = 1,N C P(I,K) f1<=I<=Ng DO J = 1,N C P(I,J,K) f1<=I<=N, 1<=J<=Ng WORK(J,K) = J + K ENDDO C P(I,K) f1<=I<=Ng C T(K) fK==K#init+1g CALL INC1(K) DO J = 1,N C P(I,J,K) f1<=I<=N, 1<=J<=Ng WORK(J,K) = J*J -K*K A(I) = A(I)+WORK(J,K)+WORK(J,K-1) ENDDO ENDDO
Transformers are propagated upward, while preconditions are propagated downward. And if T 1 and P 1 correspond to the instruction S 1 , and P 2 to the instruction S 2 immediately following S 1 , t h e n P 2 = T 1 (P 1 ).

Regions: De nitions and Operators

An array region is a set of array elements described by a convex polyhedron containing equalities and inequalities 33]: they link the region parameters (or variables) that represent t h e a r r a y dimensions, to the values of the program integer scalar variables. Two other characteristics are also of interest:

{ the type of the region: read (R) or write (W) to represent the e ects of statements and procedures in and out to represent t h e ow o f array elements { the approximation of the region: EXACT when the region exactly represents the requested set of array elements, or MAY or MUST if it is an over-or underapproximation (MUST EXACT MAY) in the rest of the paper, we only consider EXACT and MAY regions in previous papers 15, 1 4 ] MUST was unfortunately used to mean EXACT.

For instance, the region:

<A( 1, 2)-W-EXACT-f 1 ==I, 1== 2g>
where the region parameters 1 and 2 respectively represent the rst and second dimensions of A, corresponds to an assignment o f t h e e l e m e n t A(I,I).

In order to summarize array accesses at each level of the hcfg (to avoid space complexity), and to propagate the summaries along control ow paths, we need several operators such a s u n i o n , i n tersection and di erence, and more speci c unary operators.

Union The union operator is used to merge two elementary regions. Since the union of two convex polyhedra is not necessarily a convex polyhedron, the approximate operator we use is the convex hull. The resulting region may t h us contain array elements that do not belong to the original regions in this case 3 , it is a MAY region. The third column in Table 1 gives the approximation of the resulting region against the characteristics of the initial regions. 

Di erence

The di erence of two c o n vex polyhedra is not necessarily a convex polyhedron. The chosen operator may give an over-approximation of the actual di erence of the original regions. Its features are described in Table 1, Column 5. For instance, when the original regions are EXACT regions, a rst step computes R 1 \ R 2 the result is a list of regions 3] these regions are then merged using S , an extension of to union of lists.

Translation from one store to another one The linear constraints de ning a region often involve integer scalar variables from the program (e.g. 1==I). Their values, and thus the region, are relative to the current memory store. If we consider the statement I = I + 1, the value of I is not the same in the stores preceding and following the execution of the instruction. Thus, if the polyhedron of a region is 1==I before the execution of I = I + 1, it must be 1==I-1 afterwards.

To apply one of the preceding operators to two regions, they must be relative to the same store. Let T 1! 2 denote the transformation of a region relative t o the store 1 into a region relative to the store 2 . This transformation is described in 3]. Very brie y, it consists in adding to the predicate of the region, the constraints of the transformer that abstracts the e ects of the program between the two stores. The variables of the original store ( 1) are then eliminated. The only variables that remain in the resulting polyhedron all refer to the store 2 . Thus, two transformations, T k ! k+1 and T k+1 ! k , correspond to the transformer T k associated to statement S k , depending on the variables that are eliminated.

For instance, let us assume that 1 is the store preceding the statement I = I + 1, 2 the store following it, and f 1==Ig the predicate of a region relative t o 1.

1 f 1==Ig # I = I + 1 2 f 1==I-1g
We rst rename I into I#init in the predicate of the region, and add the transformer corresponding to the statement ( T(I) fI==I#init+1g). This gives f 1==I#init, I==I#init+1g. We then eliminate I#init, because it refers to 1. W e obtain f 1==I-1g, which is relative t o 2.

The exactness of the operation depends on several factors, such as the combined characteristics of the transformer and the region, and the exactness of the variable elimination 2, 29]. When the operation is not exact, it leads to an over-approximation of the target region, which becomes a MAY region.

Merging over an iteration space The region corresponding to the body of a loop is a function of the value i of the loop index. During the propagation of regions, we shall need to merge regions corresponding to di erent, but successive, instances of the loop body, in order to get a summary over a particular iteration subspace ( S lb i ub R(i)).

By de nition of the union of sets, this is strictly equivalent to eliminating the loop index from the region predicate, in which the description of the iteration subspace (lb i ub) has been added. However, the elimination of a variable from a region may l e a d t o a n o ver-approximation of the target region:

proj i (R(i) lb i ub ) = lb i ub R(i)
The operation is exact if the following conditions are met:

1. lb and ub are a ne functions of the program integer scalar variables, for instance do I = I1, I1+N-1 2. The elimination of i from R(i) lb i ub is exact according to the conditions of Ancourt or Pugh 2, 2 9 ] 4 . The rst condition ensures that the iteration space can be exactly described by a convex polyhedron over the program variables (here lb i ub) 5 .

Constraining region predicates

In order to have more information on variables, the constraints of the preconditions can be added to the predicate of the region. This is particularly useful when merging two regions.

For instance, f 1| 1==Ig f 1| 1==Jg is the whole space, i.e. an empty s e t of constraints. If the current precondition (e.g. fI==Jg) is added to the original regions, the resulting region is f 1| 1==I,I==Jg instead of f 1|g.

This operation increases the accuracy of the analysis, without modifying the definition of regions. Furthermore, since preconditions include some IF conditions, regions are powerful enough to disprove s o m e i n terprocedurally conditional dependencies.

Intraprocedural Analyses

This section details the intraprocedural computation of read, write, in and out regions for some of the main structures of the fortran language: assignment, sequence of complex instructions and DO loop. The interprocedural propagation is described in Section 6.

READ and WRITE regions

Assignment The reference on the left hand side of the assignment is converted into a write region, whereas on the right hand side, each reference is converted into an elementary read region. These regions are exact if and only if the subscripts are a ne functions of the program variables, for instance A(2*I+3*J-1).

When several references to a particular array appear in the right hand side, the corresponding regions are systematically merged using in order to obtain a summary.

For instance, in Example 1, the elementary read regions for the instruction A(I) = A(I)+WORK(J,K)+WORK(J,K-1) are:

<A( 1)-R-EXACT-f 1 ==Ig> <WORK( 1 , 2)-R-EXACT-f 1 ==J, 2==Kg> <WORK( 1 , 2)-R-EXACT-f 1 ==J, 2==K-1g>
By merging the two regions concerning the array WORK, w e nally obtain: 4 The elimination of variable v between the inequalities av + A 0 a n d ;bv + B 0 (with a 2 N + , b 2 N + , A = c + P i=1 aivi, B = d + P i=1 bivi, and c d ai b i 2 Z), is exact if and only if aB + bA + ab ; a ; b + 1 0. 5 Remember that the loop is normalized: the increment is equal to one.

<A( 1)-R-EXACT-f 1 ==Ig> <WORK( 1, 2)-R-EXACT-f 1 ==J, K-1<= 2<=Kg>
Sequence of Instructions Our purpose is to compute the regions R 0 corresponding to the sequence S 1 S 2 6 , t h a t i s t o s a y a summary of all the read and write references occurring in S 1 and S 2 .

R 1 and R 2 , t h e read and write regions of S 1 and S 2 , are supposed to be known. R 2 refers to the store 2 preceding the execution of S 2 , while R 1 and R 0 refer to the store 1 preceding S 1 as well as the sequence S 1 S 2 . T h us, we m ust rst convert them into the same store ( 1 ) before merging them:

R 0 = R 1 T 2! 1 (R 2 )
As an illustration, let us consider the body of the I loop in our example. We assume that we know the regions concerning the array WORK associated to the two inner loops:

C S1 C <WORK( 1, 2)-W-EXACT-f1<= 1 <=N, 2==Kg> DO J = 1,N ... C S2 CALL INC1(K) C S3 C <WORK( 1, 2)-W-EXACT-f1<= 1 <=N, 2==Kg> C <WORK( 1, 2)-R-EXACT-f1<= 1 <=N, K-1<= 2<=Kg> DO J = 1,N ...
We cannot simply merge the regions associated to S1 and S3 to obtain the regions of the whole sequence, because the value of K is modi ed by S2. They must rst be converted into the store 2, b y using T 3 ! 2 : the transformer that abstracts the e ects of the call to INC1 is T(K) fK==K#init+1g its constraint is added to the regions corresponding to S3 then the variable K, which r e f e r s t o the store immediately following S2, is eliminated and K#init, which represents the value of the variable K in 2, is renamed into K:

<WORK( 1, 2)-W-EXACT-f1<= 1 <=N, 2==K+1g> <WORK( 1, 2)-R-EXACT-f1<= 1 <=N, K<= 2<=K+1g>
These regions are relative to the store preceding S2. W e should translate them to the store preceding S1. H o wever, since S1 modi es no integer scalar variable, they are identical. Thus, it is legal to merge them with the regions corresponding to S1, to obtain the regions for the sequence S1 S 2 S 3:

<WORK( 1, 2)-W-EXACT-f1<= 1 <=N, K<= 2<=K+1g> <WORK( 1, 2)-R-EXACT-f1<= 1 <=N, K<= 2<=K+1g> DO loop C 0 DO I = lb, ub C i S ENDDO 6 S2
can also be a sequence of instructions.
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The purpose is to compute the regions corresponding to the loop and relative t o 0 , from the regions of its body S. These regions are not only functions of the value i of the loop index, but also of the variables v modi ed by S. Let R(i v) denote them.

First, we m ust get rid of the variables v in order to obtain regions that are functions of the sole loop index (and of course of variables that do not vary in the loop body). This is achieved by using T i! 0 . This operator is based on the transformer of the loop, which g i v es the loop invariant when it is computable. We m ust then merge the resulting regions over the iteration space: R 0 = lb i ub T i! 0 (R(i v))

As an example, let us compute the read regions of the array WORK for the loop I in Figure 1. As previously seen, the regions of the loop body are:

<WORK( 1 , 2)-R-EXACT-f1<= 1 <=N, K<= 2<=K+1g>
They are functions of the variable K, which is modi ed in the loop body by a call to INC1. T o get rid of it, we m ust use the operator T i ! 0 : The transformer giving the loop invariant i s T(K) fK==K#init+I-1g (K#init is here the value of K in the store preceding the loop) its constraint is added to the region, and K is eliminated K#init is then renamed into K and since all these steps are exact operations, we h a ve:

<WORK( 1, 2)-R-EXACT-f1<= 1 <=N, K+I-1<= 2<=K+Ig>
To perform the union over the iteration space, the iteration space constraint (f1<=I<=Ng) is added to the region, and then I is eliminated. This operation is exact because the lower and upper bounds are a ne and the elimination of I is exact. We nally obtain: <WORK( 1 , 2)-R-EXACT-f1<= 1 <=N, K<= 2<=K+Ng>

IN and OUT Regions

read and write regions summarize the exact e ects of statements and procedures upon array elements. They do not represent the ow o f array e l e m e n t values, which are necessary to test the legality o f m a n y optimizations. For that purpose, we introduce two new types of regions: in and out regions, which take array kills 30] i n to account, that is to say rede nitions of individual array elements.

in regions contain the array elements, whose values are (EXACT region) or may be (MAY region) imported by the current piece of code. These are the elements that are read before being possibly rede ned by another instruction of the same code fragment.

In Figure 1, the body of the second J loop reads the element WORK(J,K), b u t does not imports its value because it is previously de ned in the same iteration. On the contrary, the element WORK(J,K-1) is imported from the rst J loop.

out regions corresponding to a piece of code contain the array elements that it de nes, and that are (EXACT) o r may be (MAY) used afterwards, in the continuation. These are the live or exported array elements.

In the program of Figure 1, the rst J loop exports all the elements of the array WORK it de nes towards the second J loop, whereas the elements of WORK de ned in the latter are not exported towards the next iterations of the I loop.

In the remainder of this section, we limit ourselves to the intraprocedural computation of in and out regions for an assignment, a sequence of instructions, or a loop.

IN Regions

Assignment The in regions of an assignment are identical to the corresponding read regions because the values of the referenced elements cannot come from the assignment itself, according to the fortran standard.

Sequence of instructions

We are now interested in the region I N 0 corresponding to the sequence of instructions S 1 S 2 , and relative to the store 1 preceding the execution of S 1 . It is the set of array elements imported by S 2 (I N 2 ) but not previously written by S 1 (W 1 ), merged with the set of array elements imported by S 1 (I N 1 ):

I N 0 = I N 1 (T 2 ! 1 (I N 2 ) W 1 )
As an illustration, let us consider the body of the second J loop in Figure 1. The read and in regions of its instructions concerning the array WORK are:

C S1 C <WORK( 1, 2)-W-EXACT-f 1 ==J, 2==Kg> WORK(J,K) = J*J -K*K C S2 C <WORK( 1, 2)-IN-EXACT-f 1 ==J, K-1<= 2<=Kg> A(I) = A(I) + WORK(J,K) + WORK(J,K-1)
Since no scalar variable is modi ed in the sequence, we h a ve :

I N 0 = I N 1 (I N 2 W1) = ? (I N 2 W1) = <WORK( 1, 2)-IN-EXACT-f 1 ==J, 2==K-1g>
Finally, I N 0 contains the sole element WORK(J,K-1).

Loop We are now i n terested in the region I N 0 of a normalized DO loop, given the write and in regions of its body, respectively W(i v) and I N (i v) i is the value of the loop index, and v represents the variables modi ed by the loop body. Let 0 denote the store before the loop and i the store before the iteration i.

We rst get rid of the variables v using T i! 0 . In order to simplify the next equation, we u s e t h e f o l l o wing notations:

W(i) = T i! 0 (W (i v)) I N (i) = T i! 0 (I N (i v))
The in regions of a loop contain the array elements that are imported by e a c h iteration (I N (i)) but not from the preceding iterations ( S 0 i 0 <i W(i 0 )). The complete equation is then:

I N 0 = lb i ub ( I N (i) lb i 0 <i W(i 0 ) )
The purpose of the following example is to compute the summary in regions of the array WORK for the second J loop in Figure 1, given the write and in regions of its body:

<WORK( 1, 2)-W-EXACT-f 1 ==J, 2==Kg> <WORK( 1, 2)-IN-EXACT-f 1 ==J, 2==K-1g>
Since no scalar variable is modi ed by the loop body, w e can avoid the use of the operator T i ! 0 . W e then compute the term S 1 J 0 <J W(J 0 ). We rst add the iteration subspace constraint to the region:

<WORK( 1, 2)-W-EXACT-f 1 ==J 0 , 2==K, 1<=J 0 <=J-1g> By eliminating the loop index J 0 , w e obtain the set of all the array elements written by at least one iteration preceding the iteration J:

<WORK( 1, 2)-W-EXACT-f1<= 1 <=J-1, 2==Kg>
These elements are then removed from the set of elements imported by the iteration J:

<WORK( 1 , 2)-IN-EXACT-f 1 ==J, 2==K-1g> <WORK( 1 , 2)-W-EXACT-f1<= 1 <=J-1, 2==Kg> = <WORK( 1 , 2)-IN-EXACT-f 1 ==J, 2==K-1g>
This last region represents the set of elements imported by the iteration J from the instructions preceding the loop. These regions are then merged over the whole iteration space (1 J N) to obtain the set of elements imported by at least one iteration, from the instructions preceding the loop:

<WORK( 1, 2)-IN-EXACT-f1<= 1 <=N, 2==K-1g>
Hence, the loop imports all the values stored in the elements of array WORK such t h a t 2==K-1.

OUT Regions

The out region of a statement is not de ned per se, but depends on the future of the computation. For instance, the out region of S 1 in program S 1 S 2 is a function of S 1 S 2 as a whole, and of S 2 . T h us, out regions are propagated in a top-down fashion along the call graph and hierarchical control ow graph of the program. Since I/O operations are part of the program, the out region of the main program, from which the other out regions are derived, is initialized to ?.

Instructions of a sequence The region OUT 0 corresponding to the sequence S 1 S 2 , and relative to the store 1 preceding S 1 , i s s u p p o s e d t o b e k n o wn. The regions OUT 1 and OUT 2 corresponding to S 1 and S 2 are computed from OUT 0 .

S 2 exports the elements that it writes (W 2 ) and that are exported by the whole sequence:

OUT 2 = W 2 \ T 1! 2 (OUT 0 )
The elements exported by S 1 are those that it de nes (W 1 ), and that are either exported by the whole sequence (OUT 0 ) but not by S 2 (OUT 2 ), or exported towards S 2 , i.e. that are imported by S 2 (I N 2 ):

OUT 1 = W 1 \ ( OUT 0 T 2! 1 (OUT 2 ) ) T 2! 1 (I N 2 ) ]
Let us consider as an illustration the body of the second J loop, in Figure 1. Its write and in regions for the array WORK are:

C S1 C <WORK( 1, 2)-W-EXACT-f 1 ==J, 2==Kg> WORK(J,K) = J*J -K*K C S2 C <WORK( 1, 2)-IN-EXACT-f 1 ==J, K-1<= 2<=Kg> A(I) = A(I)+WORK(J,K)+WORK(J,K-1)
Since no integer scalar variable is modi ed by the loop body, T 1 ! 2 and T 2 ! 1 are identity. Moreover, we assume that OUT0 = ?. The derivation is:

OUT2 =W2 \ OUT0 = ? OUT1 =W1 \ (OUT0 OUT2) I N 2] =W1 \ I N 2 =<WORK( 1, 2)-W-EXACT-f 1 ==J, 2==Kg> \ <WORK( 1 , 2)-IN-EXACT-f 1 ==J, K-1<= 2<=Kg> =<WORK( 1, 2)-W-EXACT-f 1 ==J, 2==Kg>
S1 exports the element it de nes towards S2, which exports no element of WORK.

Loop body The goal is to compute the out regions of the loop body (OUT(i) if i is the value of the loop index) from the regions of the whole loop (OUT 0 ). An array element can be exported by the iteration i for two reasons: 1. Either it is written by the iteration i (W (i)), and exported towards the continuation of the loop (i.e. it belongs to OUT 0 ) but it must not be rede ned by a n y subsequent iteration in other words, it must not belong to the set of array elements de ned by the iterations i 0 such that i < i 0 ub: S i<i 0 ub (W (i 0 )) thus, it belongs to the region de ned by: ( W(i) \ T 0! i (OUT 0 ) ) i<i 0 ub (W (i 0 ))

2. Or, it is written by the iteration i (W (i)), and directly used in a subsequent iteration i 0 directly means that it must not be de ned by an iteration i 00 between i and i 0 : W(i) \ i<i 0 ub I N (i 0 ) i<i 00 <i 0 (W (i 00 )) ]

And nally, the complete equation is:

OUT(i) = f( W(i) \ T 0! i (OUT 0 ) ) i<i 0 ub (W (i 0 ))g f W(i) \ i<i 0 ub I N (i 0 )
i<i 00 <i 0 (W (i 00 )) ]g Let us take an example to illustrate some features of the previous equation. We consider the I loop in the program of gure 1. The goal is to compute the out regions concerning the array A for the loop body. W e assume that its write and in regions are already available:

<A( 1)-W-EXACT-f 1 ==Ig> <A( 1)-IN-EXACT-f 1 ==Ig>
and that the out regions of the whole loop (OUT0) are:

<A( 1)-OUT-EXACT-f1<= 1 <=Ng> T 0 ! i (OUT0) is rst calculated: the constraints of the loop transformer, T(K)fK==K#INIT+I-1g, are added to the polyhedron of the region, and K#INIT is eliminated:

<A( 1)-OUT-EXACT-f1<= 1 <=Ng>
Then, we compute W(i) \ T 0 ! i (OUT0):

<A( 1)-OUT-EXACT-f 1 ==I, 1<= 1<=Ng>
and S i<i 0 ub (W (i 0 )) (= proj i 0 (W (i 0 ) i<i 0 ub )):

W(i 0 ) i<i 0 ub =<A( 1)-W-EXACT-f 1 ==I 0 , I+1<=I 0 <=Ng> proj i 0 (W (i 0 ) i<i 0 ub ) = <A( 1)-W-EXACT-fI+1<= 1 <=Ng>
Finally, the rst part of the equation gives the region:

<A( 1)-OUT-EXACT-f 1 ==I, 1<= 1<=Ng>
For the second part of the equation, we successively have: i<i 00 <i 0 (W (i 00 )) =<A( 1)-W-EXACT-fI+1<= 1 <=I 0 -1g> I N (i 0 ) i<i 00 <i 0 (W (i 00 )) =<A( 1 =? Thus, the iteration i exports no element o f A towards the subsequent iterations. And nally, for the whole equation, and for each iteration i, the region is:

<A( 1)-OUT-EXACT-f 1 ==I, 1<= 1<=Ng>
The complete in and out regions of our example are given in Figure 4. They show that the body of the I loop imports and exports no element o f WORK, w h i c h can be privatized by pips after induction variable substitution (see Figure 5).

Interprocedural Analyses

The intraprocedural computation of array regions has been described in the previous section. We n o w focus on the interprocedural part of array region analyses. The rst subsection is devoted to the propagation on the call graph, while the second extensively describes the translation of array regions from the source procedure name space to the target procedure name space.

Propagation on the call graph

The interprocedural propagation of read, write, and in regions is a backward (or bottom-up) analysis. At each call site the summary regions of the called subroutine are translated from the callee's name space into the caller's name space, using the relations between actual and formal parameters, and between the declarations of global variables in both routines. This is illustrated in the leftmost picture of Figure 6.

On the contrary, the interprocedural propagation of out regions is a forward (or top-down) analysis. The regions of all the call sites are rst translated from the callers' name space into the callee's name space, and are then merged to form a unique summary 7 (see the rightmost picture in Figure 6). 7 The out regions of the main routine are initialized to ? (see Section 5.2.2). Fig. 6. Interprocedural propagation of array regions.

K = FOO() C <A( 1)-IN-MUST-f1<= 1 <=Ng> DO I = 1, N C loop body: C <A( 1)-IN-MUST-f 1 ==I, 1<= 1<=Ng> C <WORK( 1, 2)-OUT-MUST-f 2 ==K, 1<= 1<=Ng> DO J = 1, N C <WORK( 1, 2)-OUT-MUST-f 1 ==J, 2==K, 1<= 1<=Ng> WORK(J,K) = J+K ENDDO CALL INC1(K) C <A( 1)-IN-MUST-fI== 1 g> C <WORK( 1, 2)-IN-MUST-f 2 ==K-1, 1<= 1<=Ng> DO J = 1, N C <WORK( 1, 2)-OUT-MUST-f 1 ==J, 2==Kg> WORK(J,K) = J*J-K*K C <WORK( 1, 2)-IN-MUST-f 1 ==J, K-1<= 2<=Kg> C <A( 1)-IN-MUST-f 1 ==Ig> C <A( 1)-OUT-MUST-f 1 ==I, 1<=J<=N-1g> A(I) = A(I)+WORK(J,K)+WORK(J,K-1) ENDDO ENDDO

Array region translation

This section describes the translation part of the interprocedural propagation.

Because the source and target variables may n o t h a ve the same declaration (array reshaping), this operation is not straightforward. By examining the Perfect Club benchmarks 5], we found it necessary to handle several non-exclusive cases:

1. Array reshaping due to di erent dimension declarations. 2. O sets between the rst elements of the source and target arrays due to parameter passing (CALL F(A(1,J)) for instance) 3. O sets due to di erent COMMON declarations in the caller and the callee (e.g. in the program TRFD, the common TR2PRT is not similarly declared in routines TRFPRT and TRFOUT). 4. Target and source variables of di erent t ypes (e.g.in the program OCEAN).

The method described in this section tackles these four points. It is based on the fact that two corresponding elements of the source and target arrays must have the same subscript values 8 , up to the o set between their rst element. This is described in section 6.2.2.

However, the resulting translation system may contain non-linear terms, and it hides the trivial relations existing between the variables of both arrays. Hence, we propose in section 6.2.3 an algorithm that rst tries to discover these trivial relations before using the subscript values. It results in a simpli ed t r anslation system.

Notations

In the remainder of this section, we use the following notations: As an illustration, let us consider the contrived program in Figure 7, which contains all the di culties encountered in real life programs. The purpose is to nd the read and write regions of the call site, from the summary regions of procedure BAR. The translation coe cients are: R 7 !

C: A = R, B = C = 2 , = 3 la 1 = la 2 = 1 , l b 1 = l b 2 = lb3 = 1 ua 1 = n1, ua 2 = n2 u b 1 = n, u b 2 = 1 0 , u b 3 = 2 0 sa = 4 , s b = 8 o set = 0
9 Unit: the size of the smallest accessible amount of memory (usually one byte). 10 With the convention that Q k 2 k=k 1 = 1 when k2 < k 1.

subroutine FOO(C,n) complex C(n,10,20),D common D(5,10) call BAR(C,2n,100) end 

C <D2( 1 , 2 )-W-EXACT-f1<= 1 <=10, 1<= 2 <=9g> C <D1( 1 )-W-EXACT-f1<= 1 <=10g> C <R( 1 , 2 )-W-EXACT-f1<= 1 <=N1, 1<= 2 <=N2g> subroutine BAR(R,n1,n2) real R(n1,

General translation system

With the previous notations, the region parameters of the element B( 1 : : : ) corresponding to the source element A( 1 : : : ) must verify the following system: For our example, the following systems would be built: R 7 ! C: 8 < :

9 a b = 8 > > > < > > > :
4 ( 1 ; 1) + n1( 2 ; 1)] + a = 8 ( 1 ; 1) + n( 2 ; 1) + 10n( 3 ; 1)] + b 0 a < 4 0 b < 8 n1 = 2 n 20 D1 7 ! D: 4( 1 ; 1) + a = 8 ( 1 ; 1) + 5( 2 ; 1)] + b 0 a < 4 0 b < 8 D2 7 ! D: 4 ( 1 ; 1) + 10( 2 ; 1)] + a + 40 = 8 ( 1 ; 1) + 5( 2 ; 1)] + b 0 a < 4 0 b < 8 Using S as the translation system has several drawbacks: 1. in the formal $ actual cases, S is generally non-linear (it is the case in our rst example) 2. in order to keep a convex representation, variables must be eliminated this operation may be inexact, leading to an over-approximation 3. even in favorable cases, the equation in system S is rather complex, and hides the trivial relations existing between and variables, such a s 1 = 1 this makes the subsequent analyses unnecessarily complex, and is not acceptable in an interactive e n vironment. In the following section, we describe a method that alleviates these three problems. In our working example, since sa divides s b and o set in all three cases, the translation systems become: R 7 ! C: 8 < :

Simpli ed translation system Elimination of unnecessary variables

( 1 ; 1) + n1( 2 ; 1) = 2 ( 1 ; 1) + n( 2 ; 1) + 10n( 3 ; 1)] + b 0 b < 2 n1 = 2 n 11 Of course, there is a similar system if sa divides s b and o set. This de nition only takes into account dimensions of identical ranks. The general case would try to discover minimal sets of globally similar dimensions.

For instance if the dimensions of A and B are A(l m n) a n d B(m l n), the global lengths of dimensions 1 and 2 are similar (dimensions 1 and 2 are globally similar) as a consequence, the third dimension is similar.

But the complexity of the algorithm for discovering these sets would be too high compared to the expected gain, especially in real life programs.

Notations. We n o w use the following notations for k 2 

)) 12 0 a < s a 0 b < s b (S d )
In our working example, the translation systems nally become: R 7 ! C: 8 < :

1 ; 1 = 2 ( 1 ; 1) + b 2 ; 1 = ( 2 ; 1) + 10( 3 ; 1) 0 b < 2 Notice that the system now only contains linear equations. D1 7 ! D:

< :

1 ; 1 = 2 ( 1 ; 1) + b ( 2 ; 1 ) = 0 0 b < 2 There are now only very simple relations between and variables. In particular, it becomes obvious that 2 = 1, which w as hidden in the original system. D2 7 ! D:

< :

1 ; 1 = 2 ( 1 ; 1) + b ( 2 ; 1) + 1 = ( 2 ; 1) 0 b < 2 Notice how the o set for the whole problem has been turned into an o set for the sole second dimension (the term +1 in the second equation).

And at last, the translation algorithm is the following: Algorithm. At each step, the exactness of the current operation is checked. At Step 3, if an intermediate expression used to check the similarity is not linear, the current dimension is declared as non-similar, and the next dimensions are not considered. At Steps 5 and 7, if a constraint cannot be built because of a non-linear term, it is not used (this leads to an over-approximation of the solution set), and the translation is declared inexact. At Steps 10 and 11, the exactness of the variable elimination is veri ed with the usual conditions 2, 2 9 ].

Step 13 is performed using the relations between formal and actual parameters, and between the declarations of global variables in the source and target routines (this gives a translation context system). The variables belonging to the name space of the source routine are then eliminated. The exactness of this operation depends on the combined characteristics of the translation context system and R, and the exactness of the variable elimination 2, 2 9 ].

The last step is particularly useful in case of a partial matching between A and B, which is the case when A and B belong to a COMMON that is not similarly declared in the source and target routine.

For the example of Figure 7, the resulting regions are all exact:

<C( 1, 2, 3)-W-EXACT-f1<= 1 <=N,1<= 2<=10,1<= 3 <=20, 2+10 3<=110g> <D( 1, 2)-W-EXACT-f1<= 1 <=5, 2<= 2<=10g> <D( 1, 2)-W-EXACT-f1<= 1 <=5, 2==1g>
7 Related Work

The previous work closest to ours are those of Triolet 33], Tang 31], Hall 18], Li 27, 1 7 ] and Leservot 23], and the works by B u r k e and Cytron 8] and Maslov 26] for the interprocedural translation.

Many other less recent studies 9, 19, 4] have addressed the problem of the interprocedural propagation of array element sets. But they did not provide su cient s y m bolic analyses, and did not tackle array reshaping.

Triolet 33] Array regions were originally de ned by Triolet as over-approximations of the e ects of statements of procedures upon sets of array elements (MAY read and write regions). We have extended his work to introduce the notion of exactness, and in and out regions to represent the ow o f a r r a y elements.

In his thesis 32], Triolet addressed the problem of interprocedural translation in a very limited way: no array reshaping, except when due to an o set in the actual parameter to represent a column in a matrix for instance and the COMMONs in the caller and callee had to be similarly declared. Tang 31] Tang summarizes multiple array references in the form of an integer programming problem. It provides exact solutions, but the source language is very restricted, and array reshaping is only handled in very simple cases (subarrays, as Triolet 32]).

Hall et al. 18]

Fiat/Suif includes an intra-and inter-procedural framework for the analysis of array variables. Under-and over-approximations of array elements sets are represented by lists of polyhedra. The problem of exactness is not considered. However the list representation is more precise than ours, and the exactness of our regions would certainly bene t from it but the cost, both in memory use and computation time, would certainly be more important.

Di erent t ypes of regions are available in Fiat/Suif. The Readand W r i t e sets are similar to our read and write regions. However, the ExposedRead sets contain the array elements which are used in the continuation of the whole program before being de ned, while our in regions are restricted to the current level in the hcfg. There are no equivalent for our out regions, which are (among other applications) useful for the interprocedural resolution of the copy-out problem in array p r i v atization 24].

For the interprocedural translation, they have adopted a method basically similar to ours. However, in Fiat/Suif, similar dimensions are taken into account only when the system is not linear and in this case, they do not try to build a system similar to S d (see Page 23), possibly missing a linear translation system. Moreover, they do not handle global 7 ! global translation when the COMMON to which the source and target arrays belong, does not have the same data layout in the caller and callee.

Li et al. 27, 1 7 ] In the Panorama compiler, the representation of array element sets is a list of rsds 9] with bounds and step, guarded by predicates derived from IF conditions. Since our regions also include some IF conditions, the advantages of this representation over ours (except the use of lists) is unclear.

They also have di erent t ypes of array element sets. M O D sets are similar to write regions, and U E sets to in regions this is due to the fact that their analyses rely on a hierarchical control ow graph inspired from pips' hcfg 27]. But as in Fiat/Suif, there is no equivalent for our out regions.

The previous sets are exact sets, unless they contain an unknown component. Our regions should be more accurate, because we c a n keep information about all the variables, even in case of a MAY region. Leservot 23] Leservot has extended Feautrier's array d a t a o w analysis 16] t o handle static control programs with procedure calls. To preserve t h e a priori determinism of the analysis, no partial association is allowed at procedure boundaries (i.e. the source and target arrays have the same type), and only very simple array reshapes are handled (the same cases as in 32] and 31]).

For each procedure, this method computes in-going e ects, which bear some resemblance with in regions, and out-going e ects, which are somewhat similar to downward exposed writes, and are thus di erent from out regions.

Burke and Cytron 8] They alleviate the memory disambiguation problem by linearizing all array accesses when possible. This is equivalent to using the system S in our method. However, we have seen that this may lead to non linear expressions, that prevent further dependence testing for instance. On the contrary, our method avoids linearization whenever possible by detecting similar dimensions, and partially linearizing the remaining dimensions if possible and necessary. This approach eliminates the linearization versus subscript-bysubscript problem as formulated by B u r k e and Cytron. Maslov 26] Maslov describes a very general method for simplifying systems containing polynomial constraints. This is the case of the general translation system presented in Section 6.2.3.

We think that most cases that arise in real life programs and that can be solved using Maslov's method can also be solved by our algorithm, thus avoiding the cost of a more general method for instance, the translation from A(N,M,L) to B(N,M,L) yields the equation 1 + N 2 + NM 3 = 1 + N 2 + NM 3 which he gives as an example we solve it by simply verifying that all three dimensions are similar.

Conclusion

Obviously, a lot of e orts have been spent o ver the last ten years to summarize memory e ects on array elements. Time and space complexity, accuracy and usefulness are the usual issues. In pips, we have chosen to use convexity to reduce space complexity. W e de ne several types of summaries.

read and write array regions represent the exact e ects of statements and procedures upon array elements whenever possible. Whereas the regions initially de ned by T riolet 33] are over-approximations of the e ects of procedures. read and write regions are used by C o e l h o 1 0 ] to e ciently compile hpf.

Since read and write regions cannot be used to compute the ow o f a r r a y elements, we h a ve i n troduced two new types of exact array r e g i o n . in and out regions represent the sets of array elements that are imported or exported by the corresponding code fragment. in regions contain the locally upward exposed read elements, and are thus di erent from the usual upward-exposed read references. in and out regions are already used in pips for the privatization of array sections 3, 1 3 ] e v en when there are procedure calls.

We also provide a general linear framework for the interprocedural propagation of regions, regardless of their type. It handles array reshapes, even in COMMONs that do not have the same data layout, and when arrays do not have t h e same type. It is di erent from the other approaches because it systematically tries to discover similar dimensions, and uses linearization techniques only for the dimensions that are not similar.

The current implementation in pips covers all the intraprocedural structures of the fortran language, along with the interprocedural propagation. A rst series of experiments carried on the Perfect Club benchmarks shows the practicality of the analysis in terms of time and space, in spite of the well-known exponential complexity of operators on polyhedra.

More experiments are needed to determine if the representation of in and out regions in polyhedral form is precise enough in general to perform optimizations such as array p r i v atization, generation of communications in distributed memory machines, or compile-time optimization of cache behavior in hierarchical memory machines. Other representations are being considered, such as nite unions of polyhedra, and intersection of polyhedra and lattices.
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 3 Fig. 3. Transformers and preconditions.

  )-IN-EXACT-f 1 ==I 0 g> <A( 1)-W-EXACT-fI+1<= 1 <=I 0 -1g> =<A( 1)-IN-EXACT-f 1 ==I 0 g> and, i<i 0 n : : : ] = <A( 1)-IN-EXACT-fI+1<= 1 <=Ng> W(i) \ i<i 0 n : : : ] = <A( 1)-W-EXACT-f 1 ==Ig> \ <A( 1)-IN-EXACT-fI+1<= 1 <=Ng>
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 4 Fig. 4. IN and OUT regions.

  propagation: out regions.

  The subscript values of A( 1 : : : ) a n d B( 1 : : : ) are thus 10 : subscript value(A( 1 : : : )) = X i=1 ( i ; l ai ) Y i;1 j=1 (u aj ; l aj + 1)] subscript value(B( 1 : : : )) = X i=1 ( i ; l bi ) Y i;1 j=1 (u bj ; l bj + 1 ) ] Another necessary information is the o set of the rst element of A from the rst element o f B in the memory layout. This information is provided di erently, depending on the type of aliasing between A and B: site: B(o b 1 : : : o b ) o set = s b subscript value(B(o b 1 : : : o b )) actual 7 ! formal reference at call site: A(oa 1 : : : o a ) o set = ;sa subscript value(A(oa 1 : : : o a )) global 7 ! global numerical o set di erence between the o set of A in the declaration of the common in the source subroutine, and the o set of B in the declaration of the common in the target subroutine.

Fig. 7 .

 7 Fig. 7. Interprocedural translation: example.

8 Fig. 8 .

 88 Fig. 8. Meaning of variables.

Theorem 1 . 1 .

 11 If s b divides s a and o set, then S is equivalent to the following In the formal $ actual cases, s b divides s a ) s b divides o set. 2. In fact, we just replace s a by sa s b , s b by 1 , o set by o set s b and use S without b .

21 D1

 21 of (S) De nition 2. (Similar dimensions) A dimension d (d min( )) is said to be similar for arrays A and B if the following three conditions are met: 1. Condition for the o set: There must be no o set between the rst element o f B and the rst element o f A on dimension d: formal 7 ! actual 8 i=1 i d o b i = l b i actual 7 ! formal 8 i=1 i d oa i = la i global 7 ! global jo setj mod sa Q d i=1 (ua i ; la i + 1 ) = 0 ^jo setj mod s b Q d i=1 (u b i ; l b i + 1 ) = 0 2. Condition for the rst dimension: The lengths in bytes of the rst dimensions of A and B are equal: s a (u a d ; l a d + 1 ) = s b (u b d ; l b d + 1 ) This means that the rst dimension entirely compensates the di erence between s a and s b . T h i s i s w h y s a and s b are not used in the next condition. 3. Condition for the next dimensions (2 d min( )): Assuming that the previous dimensions are similar, the lengths of the d-th dimensions of A and B must be equal: u a d ; l a d = u b d ; l b d This is not necessary if d = = .

  It is the rank of the array element A( 1 : : : ) from the element A( 1 : : : k;1 l a k : : : l a ), i.e. from the rst element of the k-th

	k subscript value:			
	k subscript value(A( 1 : : : )) = X i=k	( i ; l ai )	i;1 Y j=k	(u aj ; l aj + 1 ) ]
	dimension. k o set: It is the o set relative t o t h e k-th dimension: formal 7 ! actual k subscript value(B(o b 1 : : : o b )) actual 7 ! formal ;k subscript value(A(oa 1 : : : o a )) global 7 ! global j o set i=1 (ua i ;la i +1) sa Q k k
	Theorem 3. If dimensions 1 to d ; 1 (1 d ; 1 min( )) a r e similar, then S is equivalent to: 9 a b = 8 > > > > > > > > < > > > > > > > > : s a ( 1 ; l a1 ) + a = s b ( 1 ; l b1 ) + b 8 i 2 2::d ; 1] i ; l ai = i ; l bi d subscript value(A( 1 : : : )) + d o set = d subscript value(B( 1 : : :
				2::min( )]:
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Language, Transformers and PreconditionsIn pips 21] the parallelization process is divided into several phases, either analyses (e.g. transformers, preconditions, array regions) or program transformations (e.g. dead code elimination, loop transformations). Most analyses also consist of

ENTRY, BLOCKDATA, ASSIGN and assigned GOTO, computed GOTO, m ultiple RETURN, substring operator (:), Hollerith character chains, statement functions, and complex constants (which are replaced by a call to CMPLX) COMMON declarations must also appear after all type declarations.

The test R1 R2 R1 R2 is implemented in pips.

The subscript value of an array elements is its rank in the array, array elements being held in column order. 1] 

In the formal 7 ! actual case, if d = min( ) = , this equation can be replaced by 8 i 2 d:: ] i = o b i .

This article was processed using the L a T E X macro package with LLNCS style
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