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Optimal Compilation of HPF Remappings(Extended Abstract)Fabien CoelhoCorinne Ancourt �Centre de Recherche en Informatique, �Ecole des mines de Paris,35, rue Saint-Honor�e, 77305 Fontainebleau Cedex, France.Phone: +33 1 64 69 47 08. Fax: + 33 1 64 69 47 09.URL: http://www.cri.ensmp.fr/pipsOctober 23, 1995AbstractApplications with varying array access patterns require to dynamically change arraymappings on distributed-memory parallel machines. Hpf (High Performance Fortran)provides such remappings, on data that can be replicated, explicitly through the realignand redistribute directives and implicitly at procedure calls and returns. However suchfeatures are left out of the hpf subset or of the currently discussed hpf kernel for e�ciencyreasons. This paper presents a new compilation technique to handle hpf remappings formessage-passing parallel architectures. The �rst phase is global and removes all uselessremappings that appear naturally in procedures. The code generated by the second phasetakes advantage of replications to shorten the remapping time. It is proved optimal: Aminimal number of messages, containing only the required data, is sent over the network.The technique is fully implemented in hpfc, our prototype hpf compiler. Experimentswere performed on a Dec Alpha farm.Keywords:Hpf compilation, array remappings, redistributions, distributed-memory mimd architecture,message-passing, pvm, static load-balancing, linear algebra, polyhedrons, constraint-based codegeneration.
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Optimal Compilation of Hpf Remappings 3IntroductionMany applications, such as ADI (Alternating Direction Integration) and FFT [18] (Fast FourierTransform), require di�erent array mappings at di�erent computation phases for e�cient exe-cution on distributed-memory parallel machines (e.g. Cray t3d, Ibm sp2, Dec Alpha farm).Data replication, sometimes partial, is used to share data between processors. Data remappingand replication often need to be combined: A parallel matrix multiplication accesses a wholerow and column of data to compute each single target element, hence the need to remap datawith some replication for parallel execution. Moreover, automatic data layout tools [24, 7] sug-gest data remappings between computation phases. Thus handling data remappings e�cientlyis an important issue for high performance computing.Hpf (High Performance Fortran [14, 27], a Fortran 90-based data-parallel language) targetsdistributed-memory parallel architectures. Standard directives are provided to specify arraymappings that may involve some replication. These mappings are changed dynamically, explic-itly with executable directives (realign, redistribute) and implicitly at procedure calls andreturns for prescriptive argument mappings. These useful features are perceived as di�cult tocompile e�ciently and thus are left out of the hpf subset or of the currently discussed hpfkernel [15]. If not supported, or even not well supported, applications requiring them will notbe ported to hpf: : :The key issues to be addressed are the reduction of the runtime overheadsinduced by remappings, and the management of the rich variety of hpf mappings.Related workAny technique that handles all hpf array assignments can be used to compile remappings:the induced communications are those of an array assignment A=B, where B is mapped as thesource and A as the target. Such techniques are based on �nite state machines [6, 20, 25],closed forms [17, 31, 19], diophantine equations [28, 5, 36] or polyhedra [1, 3, 34, 32]. Howevernone of these techniques considers load-balancing and broadcasts. Also issues such as handlingdi�erent processor sets, multidimensional distributions, communication generation and localaddresses: : : are not all clearly and e�ciently managed in these papers, therefore dedicatedoptimized techniques are needed.In [33], support by runtime library is suggested for simple cases involving neither shapechanging1, nor alignment or replication. Multidimensional remappings are decomposed into1-d remappings, hence resulting in several remappings at runtime. Ad hoc descriptors calledpitfalls are devised in [30], but alignment, replication and shape changing are not consideredeither. A polyhedron-based approach is outlined in [35], for realignments with a �xed generalcyclic distribution onto a 1-d processor array. The alignments, unlike hpf, involve arbitrarya�ne functions.ContributionsRemapping overheads are attacked at di�erent levels by the compilation technique implementedin hpfc, our prototype hpf compiler. At a global level, all useless remappings are removed.This optimization is presented in the �rst part of the paper. Such remappings arise naturallyin programs.The second part of paper focuses on the remapping code generation problem for message-passing parallel architectures with non-blocking sends and blocking receives. The problemis �tted into a single powerful linear framework, which integrates all issues. Arbitrary remap-pings, involving partial replication, alignment strides, general cyclic distributions and di�erentlyshaped processor grids are handled. The spmd generated code is based on the enumeration ofpolyhedron solutions that abstracts the required communications. Load balancing and broad-casts are also considered. Correctness and optimality results are discussed. The techniqueis fully implemented in hpfc [8, 9, 10], a prototype hpf compiler developed within the pips1The distributed dimensions are the same for both source and target mappings.



4 Coelho and Ancourtproject [22]. Experiments on a Dec Alpha farm are also presented. To our knowledge, thistechnique is the �rst to integrate all hpf mapping issues in a single framework, to address loadbalancing and possible broadcasts in the generated code and to present optimality results.Section 1 presents the remapping graph construction from the control ow graph and a globaloptimization on this graph to remove statically all useless remappings. Section 2 introduces anexample and notations for the code generation. The remapping problem formalization into apolyhedron is described and illustrated in Section 3: The hpf constraints are presented, thenoptimizations taking into account (1) particular distribution of data onto the processors such asreplication and (2) e�cient communication capabilities of distributed memory machines suchas broadcast, are added to the compilation scheme. The SPMD code generation is presented inSection 4 and optimality properties are discussed in Section 5. Finally, Section 6 presents andanalyzes experimental results.1 Remapping GraphUseless remappings may appear naturally in hpf programs. First, the change of both alignmentand distribution of an array requires a realign and a redistribute, hence resulting in tworemappings if no special care is taken. Second, the redistribution of a template2 induces theremapping of all aligned arrays, even if they are not all referenced afterwards. Third, at aninterprocedural level, two consecutive subroutine calls may require the same remapping for agiven array, resulting in a useless remapping on return from the �rst subroutine and on entryin the second. If two di�erent mappings are required, it may also be interesting to remap datadirectly rather than using the intermediate original mapping. Such examples do not arise frombadly written programs, but from a normal use of hpf features. They demonstrate the needfor compile time optimizations to avoid useless costly remappings at runtime.SUBROUTINE remaps(A)! distribute A... => A mapping: 0local arrays B, C! template T, align B, C with T, distribute T... => B and C mappings: 0use Cuse B1 redistribute T => B and C mappings: 1DO ...2 remap A... => A mapping 1use A3 remap A... => A mapping 2use AENDDOuse BEND Figure 1: Simple ADI-like structured exampleLet us consider example remaps in Figure 1. The loop nest involving two remappings istypical of ADI computations. Template T is redistributed at 1, inducing B and C remappings,but C is not referenced afterwards. Moreover argument A is never referenced with its initialmapping.In this section, the remapping graph, its construction from the control ow graph and itsoptimizations are presented. This approach deals with descriptive and prescriptive mappings,i.e. when the compiler is aware of data distributions.2Even when no templates are used [37] array redistributions generate the problem



Optimal Compilation of Hpf Remappings 51.1 De�nition and constructionLet us introduce the remapping graph GR. This graph is a (usually much smaller) subgraphof the control ow graph. The vertices of the graph are the (re)mapping statements, i.e.(re)aligns and (re)distributes. An edge denotes a possible path in the control ow graphwhere a same array is remapped at both vertices. Two vertices are added at entry in and on exitfrom the subroutine. Mappings are designed by a number for each array. The same mappingnumber is used for identical mappings of an array. To each vertex v in GR are associated:� the set of remapped arrays S(v)� for all remapped arrays A in this set:{ one leaving mapping3 for the statement: LA(v){ the set of mappings for A that may reach v: RA(v){ whether it may be referenced after the remapping: UsedA(v)
A
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{1,3}

B
1

{2}Figure 2: A simple vertexThis information is depicted in Figure 2. To the vertex is associated the remapped arrays A andB, with the leaving mapping as a subscript (0 for A, 1 for B) and the set of reaching mappingsas a superscript (f1; 3g for A, f2g for B). Referenced arrays are underlined (here only B). Thecompiler must generate remapping codes for each pair (reaching to leaving mappings).Let us describe how GR is built from the program control ow graph. First, the entry andexit vertices are created. The distributed subroutine local variables are attached to the entry,with their initial mapping as a leaving mapping. The subroutine distributed formal parametersare attached to both entry and exit vertices. The leaving mapping for those variables on entryis the initial mapping. The reaching (resp. leaving) mapping for the entry (resp. exit) is ana priori unknown X mapping. If the directives are descriptive, the reaching mapping on entryof the subroutine is the initial mapping (X=0). On exit, distributed formal parameters aretagged as used: without further interprocedural information, the compiler assumes that the�nal remapping is needed. Figure 3 shows the initial graph for remaps.
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A
XFigure 3: GR for remaps at construction startThe next phase of the GR construction is the propagation of the initial mappings from thesubroutine entry, till remappings are encountered. This must be done for each couple (v; A) ofvertex and arrays remapped at this vertex. First, initialize the set of couples to be propagatedwith the entry vertex associated to the distributed arrays. Then for each such couple (v; A),3several may occur, this assumption just simpli�es the presentation



6 Coelho and Ancourtpropagate in the control graph from the corresponding vertex till meeting remapping statementsfor that array mapping. Tag the array remapping as used if a reference is encountered whilepropagating. Let w be one of the encountered remapping statements. Add a correspondingw vertex in GR if necessary. Add A to S(w) and compute LA(w) if necessary, and (w; A) is anew couple to be explored later on. Add LA(v) to RA(w). The resulting remapping graph forremaps is shown in Figure 4.
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3Figure 4: Initial GR for remapsIf n is the number of vertices in the control graph, s the maximum number of successors ofa vertex, m the number of remapping statements and p the number of distributed arrays, thenthe worst case complexity of the outlined construction algorithm is O(nsmp), if all arrays areremapped at each remapping statements and the propagations in the control graph get throughall vertices.1.2 OptimizationIn GR, arrays that are remapped after a remapping without having been referenced are taggedas not used for this remapping. In such cases, at least two remappings will be performed atruntime without referencing the array in between, as array A in Figure 4 after the entry vertex.Such useless remappings must be removed. However the successive remapping statements mustbe aware that they were not performed and that they may have to deal with other reachingmappings. Indeed, the whole set of reaching mappings must be recomputed. Some are nolonger of use and others must be added. This optimization is performed as follow:� First, remove all useless remappings4, simply by deleting the leaving mapping for thosevertices and arrays. 8v; 8A 2 S(v); not UsedA(v)) LA(v) = ;� Second, recompute the mappings that may reach each vertex. This is a forward may dataow problem [26, 23] on GR:4As a convention in the interpretation of the remapping graph, remappings at vertex v for array A 2 S(v)will not be generated if LA(v) = ;.



Optimal Compilation of Hpf Remappings 7{ initialization: Used 1-step reaching mappings8v; 8A 2 S(v);RA(v) = [w2pred(v)A2S(w); UsedA(w)LA(w){ optimizing function: propagation8v; 8A 2 S(v);RA(v) = RA(v) [ [w2pred(v)A2S(w); not UsedA(w)RA(w)The iterative resolution of the optimizing function is increasing and bounded, thus itconverges. The resulting graph for remaps is shown in Figure 5.
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{X,2}Figure 5: Optimized GR for remapsLet us assume a O(1) set's element put, get and in-test implementation. Let m be thenumber of vertices in GR, p the number of distributed arrays, q the maximum number ofdi�erent mappings for an array and r the maximumnumber of predecessors for a vertex. Thenthe worst case time complexity of the optimization, for a simple iterative implementation, isO(m2pqr).This optimization is correct and the result is optimal:Theorem 1 The computed remappings (from new reaching to remaining leaving) are those andonly those that are needed (according to the static information provided by the data ow graph):8v; 8A 2 S(v) ^UsedA(v); 8a 2 RA(v);9w and a path from w to v in GR, so that a 2 LA(w) and A is not used on the path:Proof: construction of the path by induction on the solution of the data ow problem. Notethat the path in GR reects an underlying path in the control ow graph with no use and noremapping of the array.1.3 Discussion� If subroutine local arrays are not used from the entry point in their initial mapping, thecompiler may delay the allocation till a used mapping is needed, or chose another initialmapping among directly useful ones.



8 Coelho and Ancourt� Remappings involving unknown X mappings should be propagated to call sites in orderto be instantiated.� The set of needed remappings after this optimization may have been reduced or extended.What is minimized is the number of remappings performed at run-time, not those thatmust be addressed at compile time. Our compiler keeps a database of generated remap-ping codes in order not to generate some code twice.� The remapping graph was presented at an intraprocedural level. It is natural to extendit to the interprocedural level, for instance by providing a summary of the entry andexit remappings to be used at the call sites foroptimizations. Remappings of argumentsshould be decided and performed at call site.� GR for remaps includes an edge from the entry to the exit vertex, because the DO loopmay be empty and thus array A may reach the exit vertex without remapping. If thecompiler can determine that the loop body is always executed, the skipping edge can beremoved from the control graph, thus improving remapping graph GR quality.� In order to simplify the presentation, it was assumed that only one mapping for anarray could leave a remapping statement. This is not necessarily the case in hpf. Thusseveral leaving mappings may be associated to a vertex and array, and for each of thesemappings a set of reaching mappings. Care must also be taken in the building phase.Use-information must be attached to the leaving mappings.� The runtime needs to keep track of the mapping status of each array to chose the rightremapping routine when needed.� Some additional bene�ts may be obtained by moving remapping in the control ow graph,in order to perform a remapping only when the array is to be actually referenced in itsnew shape.2 Example and notationsLet us consider the example in Figure 6. This example is deliberately contrived, and designedto show all the capabilities of our algorithm. Real application remappings should not presentall these di�culties at once, but they should frequently include some of them. Vector A isremapped from a block distribution onto 3-d processor grid Ps to a general cyclic distributiononto 2-d processor grid Pt through template T redistribution. Both source and target mappingsinvolve partial replication. The corresponding data layouts are depicted in Figure 7. The colorsdenote the data to processor a�ectation. The initial mapping is a block distribution of A ontothe second dimension of Ps. Each column of (dark and light) processors in Ps owns a full copyof A. Thus A is replicated 4 times. The target mapping is a cyclic(2) distribution onto Pt�rst dimension. Each line owns a full copy of A and A is replicated twice.Let us describe how the spmd generated code handles the remapping communications. Thearrows in Figure 7 denote the source to target processor assignment. On the target side, eachcolumn of processors waits for exactly the same data, hence the opportunity to broadcast thesame messages to these pairs. On the source side, each column can provide any needed data,since it owns a full copy of A. The di�erent columns can deal with di�erent target processors,thus balancing the load of generating and sending the messages. For the running example, 5di�erent target processor sets are waiting for data that can be addressed by 4 source processorgroups. The source to target processor assignment statically cyclically balances the targetsamong the possible senders.Linear algebra provides a powerful framework to characterize array element sets, representhpf directives, generate e�cient code, de�ne and introduce optimizations and make possible



Optimal Compilation of Hpf Remappings 9parameter (n=20)array A(1:n)chpf$ template T(1:n,1:n,1:n)chpf$ dynamic A, Tchpf$ align A(i) with T(*,i,*)cc Sourcecchpf$ processors Ps(1:2,1:2,1:2)chpf$ distribute T(block,block,block) onto Pscc Targetcchpf$ processors Pt(1:5,1:2)...cc Array A remapping: Ps(*,block,*) -> Pt(cyclic(2),*)cchpf$ redistribute T(*,cyclic(2),block) onto Pt... Figure 6: Running example for code generation
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on Pt(1:5,1:2)Figure 7: Array A remapping



10 Coelho and Ancourtcorrectness proof of the compilation scheme. Our compilation scheme uses polyhedra to repre-sent the hpf data remapping problem. Notations are shown in Tables 1, 2 and 3. Greek lettersdenote individual or set of integer variables; calligraphic letters systems of linear equalities andinequalities on a set of variables. Such constraints implicitly de�ne a polyhedron on the vari-ables, i.e. the set of integer vectors that are solutions to the system. Di�erent operations canbe performed on systems of constraints such as projecting variables, or enumerating solutionsfor some variables, the others being considered as parameters: : :Variables Comments� array dimensions� local array dimensions� template dimensions processor dimensions� block o�sets (for distributions) cycle numbers (for distributions)p all processor variables (p =  [  0)� cycle load-balancing variablee other variables D set of distributed dimensions R set of replicated dimensionsjxj cardinal (or extent) operatorxi ith dimension of xx0 corresponding target mapping variablesx[0] shorthand for x and x0Table 1: VariablesPolyhedrons ConstraintsD declarationsH hpf-relatedL local declarationsB load-balancingR remappingE elementsP processorsTable 2: Polyhedrons3 Linear formalizationDeclarations, hpf directives and local address translations are embedded into linear constraints,as suggested in [3, 10]. This gives a linear description of the data distribution and of thecommunication problem, i.e. the enumeration of the elements to be sent and received. Thissection presents the derivation of a system of linear constraints that exactly describes the arrayelements to be communicated, with their associated source and target processors, allowing codegeneration.



Optimal Compilation of Hpf Remappings 11Notation MeaningX (V ) linear system on variables VXjV system after projection of V variablesZ 2 X [W ] X solution enumeration parametrized by WX3 = X1 [ X2 union of systems(i.e. intersection of polyhedrons: : : )X3 = X1 �X2 disjoined union(i.e. union on disjoined set of variables)Table 3: Polyhedron operators3.1 HPF modelizationFigure 8 shows the declaration constraints for the objects involved in the source and targetmappings of the running example. Lower and upper bounds are de�ned for each dimensionof arrays, templates and processor grids. Figure 9 shows the constraints derived from hpfdirectives. The sets of distributed and replicated dimensions are also shown. The alignment isquite simple here, but a�ne expressions are needed for general alignments (for instance alignA(i,*) with T(*,3*i-2) would lead to �2 = 3�1 � 2). The template distributions requireadditional variables, for modeling blocks and cycles: � is the o�set within a block;  is the cyclenumber, i.e. the number of wraps around the processors for cyclic distributions. General cyclicdistributions need both variables. Distributions on replicated dimensions are useless, thus arenot included. This linear modelization is extensivelly described in [3]. Figure 10 presents thelocal declarations and global to local address translations generated by hpfc, expressed throughlinear constraints. Thus they are directly included in our compilation scheme. However suchan integration is not required: providing global to local address translation functions would besu�cient, although more expensive at run time.A(�1) 1 � �1 � 20source template T(�1,�2,�3) 1 � �1 � 20; 1 � �2 � 20; 1 � �3 � 20source processors Ps( 1, 2, 3) 1 �  1 � 2; 1 �  2 � 2; 1 �  3 � 2target template T(�01,�02,�03) 1 � �01 � 20; 1 � �02 � 20; 1 � �03 � 20target processors Pt( 01, 02) 1 �  01 � 5; 1 �  02 � 2Figure 8: declaration constraints D(�; �[0];  [0])align A(i) with T(*,i,*) �2 = �1idem for target mapping �02 = �1distribution of A onto Ps thru T �2 = 10 2 + �2 � 9; 0 � �2 < 10distribution of A onto Pt thru T �02 = 1001 + 2 01 + �01 � 1; 0 � �01 < 2 D = f 2g  R = f 1;  3g 0D = f 01g  0R = f 02gFigure 9: hpf-related constraints H(�; �[0];  [0]; [0]; �[0]) and dimension sets



12 Coelho and Ancourtlocal source array As(�1) �1 = �2 + 1; 1 � �1 � 10local target array At(�01) �01 = 201 + �01 + 1; 1 � �01 � 4; 01 � 0Figure 10: local declaration constraints L(�[0]; �[0]; [0]; �)Let us now gather all these constraints in the remapping system (De�nition 1). They de�ne apolyhedron on �, �,  , �: : : and corresponding primed variables5. Solutions to this polyhedronlink the array elements � and their mapping on the source  and target  0 processors. Rsatis�es some properties because of the hpf mapping semantics.De�nition 1 (Remapping System R)R(p; e) = R( [0]; �; �[0]; : : :) = D(: : :) [H(: : :) [ L(: : :)with p =  [  0 the source and target processor variables, e = � [ : : : the other variables.Proposition 1 (Replication Independence) Processor variables on replicated dimensionsare disjoined from others in R with p = pR [ pD:R(p; e) = RjpR(pD ; e)�D(pR) = RjpR (pD; e)� D( R) �D( 0R)Proof: pR variables appear neither in H nor in L, and are disjoined in D. D(x) is simply thecartesian declaration constraints on x variables. �Proposition 2 (Disjoined Distribution) Array elements appear once in RjpR :8� 2 D(�); 9!(e; pD) with e = � [ : : : j(e; pD) 2 RjpR(pD; e)i.e. apart from replicated dimensions, only one processor owns a data on the source and targetprocessor grids, thus constraining the possible communications.Proof: Hpf mapping semantics. �3.2 Broadcasts and load balanceA spmd code must be generated from such a polyhedron linking the array elements to theircorresponding source and target processors. However, in the general case, because of datareplication, R is not constrained enough for attributing one source to a target processor fora given needed array element. Indeed, RjpR assigns exactly one source to a target as shownin Proposition 2, but pR variables are still free (Proposition 1). The underconstrained systemallows choices to be made in the code generation. On the target side, replication provides anopportunity for broadcasts. On the source side, it allows to balance the load of generating andsending the messages.BroadcastsIn the target processor grid, di�erent processors on the replicated dimensions own the samedata set. Thus they must somehow receive the same data. Let us decide that the very samemessages will be broadcasted to replicated target processors from the source processors. Fromthe communication point of view, replicated target processors are seen as one abstract processorto be sent a message. On the polyhedron point of view,  0R dimensions are collapsed for message5Some variables, as �, are of no interest for the code generation and can be exactly eliminated, reducing thesize of the system without loss of generality nor precision.



Optimal Compilation of Hpf Remappings 13generation. The free choice on  0R variables is removed, since the decision implies that the sourceprocessor choice is independent of these variables!For the running example,  0R = f 02g and D( 02) = f1 �  02 � 2g, thus messages arebroadcasted on Pt's second dimension as shown in Figure 7.Load balancingNow one sender among the possible ones ( R) must be chosen, as suggested in Figure 7.This choice must be independent of the replicated target processors, because of the broadcastdecision. Moreover, in order to minimize the number of messages by sending elements inbatches, it should not depend on the array element to be communicated. Thus the only possibleaction is to link the abstract target processors  0D to  R. These processors wait for disjoined datasets (Proposition 2) that can be provided by any source replicated processors (Proposition 1).To assign  0D to  R in a balanced way, the basic idea is to attribute cyclically distributedtarget to replicated source processor dimensions. This cyclic distribution must involve proces-sors seen as vectors on both side. In order to obtain this view of  0D and  R, a linearization isrequired to associate a single identi�er to a set of indices.The rationale for the linearization is to get rid of the dimension structuration in order tobalance the cyclic distribution from all available source replicated processors onto all targetdistributed processors. Source processors that own the same elements are attributed a uniqueidenti�er through lin( R), as well as target processors requiring di�erent elements throughlin( 0D).De�nition 2 (Linearization) Let V be a set of bounded variables. The linearization functionlin is de�ned recursively as: lin(;) = 0 and lin(V ) = jvj � lin (V � fvg) + v �min(v).Cardinal operator jj is extended to linearized sets with jlin(;)j = 1 and jlin(V )j = Qv2V jvj.The following constraint expresses the cyclic distribution of distributed target to replicatedsource processor dimensions. It introduces a new cycle number variable �.De�nition 3 (Load Balance B)B( R;  0D; �) = flin( 0D) = jlin( R)j � � + lin( R)gFor the running example, linearization of  R = f 1;  3g where 1 �  1 � 2; 1 �  3 � 2 leadsto lin( R) = 2 3 +  1 � 3,  0D = f 01g with 1 �  01 � 5 leads to lin( 0D) =  01 � 1 thus Bis  01 � 1 = 4� + 2 3 +  1 � 3. The resulting assignment is shown in Table 4 and Figure 7.Because there are 5 targets and 4 available sources, the distribution cycles around the sources,and the �rst source processor set gets 2 targets.Target Source Cycle 01 lin( 0D)  1  3 lin( R) �1 0 1 1 0 02 1 2 1 1 03 2 1 2 2 04 3 2 2 3 05 4 1 1 0 1Table 4: B target to source assignment for the running exampleProposition 3 (Target A�ection) Target processors are a�ected to one source processoramong the replicated ones through B:8 0D; 9! R ^ 9!�j( R;  0D; �) 2 BProof: The linearization is dense. �



14 Coelho and Ancourt4 SPMD code generationLet us now introduce the �nal polyhedron which integrates these choices and is used for thecode generation:De�nition 4 (Elements E) With p =  [  0 =  D [  R [  0D [  0R:E(p; e; �) = R(p; e) [ B( R;  0D; �)Polyhedron E is constrained enough so that there is only one possible sender (Proposition 5)for a given piece of data to be sent to all target processors requiring it. Thus a precise com-munication code can be generated: If (�;  ;  0) is a solution to E , then  must send � to  0.Indeed, this polyhedron has the following properties:Proposition 4 (Orthogonality of  0R in E)E(p; e; �) = Ej 0R(pD ;  R; e; �)� D( 0R)Proof: De�nition 4 and Proposition 1. �Proposition 5 (One Sender) For a required data on a target processor, there is only onesender de�ned in E , which is independent of the replicated target ( 0R):8( 0D ; �) 2 R(p; e); 9! j( ;  0D; �) 2 EProof: Propositions 2, 3 and 4. �Proposition 6 (Aggregation) If a target processor requires two di�erent pieces of data thatcan be sent by the same processor, then there is only one such processor:8 0; 8�i; 8�jj(9 D; ( 0;  D; �i) 2 E ^ ( 0;  D; �j) 2 E)) (9! j( 0;  ; �i) 2 E ^ ( 0;  ; �j) 2 E)Proof: Propositions 2 and 3:  =  D [  R, and  R choice in B is independent of �. �If all processors must enumerate all the integer solutions to polyhedron E , this is equivalentto the runtime resolution technique and is very ine�cient. Moreover, it would be interesting topack at once the data to be sent between two processors, in order to have only one bu�er formessage aggregation. Therefore some manipulations are needed to generate e�cient code.Firstly, replicated dimensions of target processors ( 0R) are extracted from E as allowed byProposition 4. This information is only required for broadcasting the message to the targetprocessors. Ej 0R stores the remaining information.Secondly, in order to �rst enumerate the couples of processors that must communicate,and then to generate the associated message, a superset of these communicating processors isderived:De�nition 5 (Processors P) P( D;  R;  0D; �) = Ej 0R;eThis projection may not be exact6. P represents processors that may have to communicate:empty messages may be generated for processor couples in P. To avoid sending and receivingthese emptymessages, while preserving the balance of messages, the following runtime techniqueis used: (1) in the send part, messages empty after packing are not sent; (2) in the receive part,messages are lazily received when some data must be unpacked. The technique is shown inFigure 11.6A projection may be exact or approximate [2, 29], that is the integer solution to the projection may alwaysreects, or not, an integer solution to the original polyhedron.



Optimal Compilation of Hpf Remappings 15{ remapping of array A from processors Ps to processors Pt{ local declarations: As on source and At on targetif (I am in Ps) then { send part = my id in Psif ( 2 Pj 0;�( )) then { I may have to send somethingfor (�;  0D) 2 Pj 0R [ ] { enumerate target processorsif ( 0R 6= ; or pid( ) 6= pid( 0D)) then { some distributed targetsempty = truefor e 2 Ej 0R [ ;  0D; �] { enumerate elements to sendpack As(local source address(e)) in bu�erempty = false { now the bu�er is not emptyendforif (not empty) then broadcast bu�er to  0D �D( 0R) except myselfendifendforendifendifif (I am in Pt) then { receive or copy partAllocate At 0 = my id in Ptif ( 0D 2 Pj 0R; ;�( 0D)) then { I may have to receive somethingfor ( ; �) 2 Pj 0R [ 0D] { enumerate source processorsif (pid( ) 6= pid( 0)) then { non local, lazy reception and unpacking�rst = truefor e 2 Ej 0R [ ;  0D; �] { enumerate elements to receiveif (�rst) then receive bu�er from  , �rst = falseunpack At(local target address(e)) from bu�erendforelse { copy local datafor e 2 Ej 0R [ ;  0D; �]At(local target address(e)) = As(local source address(e))endforendifendforendifendifif (I am in Ps) then Free As Figure 11: Spmd remapping code



16 Coelho and AncourtThirdly, in a spmd code executed in parallel, each (maybe virtual) processor plays a part (ornone) in the processor grids Ps and Pt. Hence not all processors should enumerate the couplesof communicating processors: processors in Ps [resp. Pt] are just interested in enumeratingtheir matching target [resp. source] processors for sending [resp. receiving] data. P can beused to generate guards to select relevant processors and then to directly enumerate the solematching processors in the other grid. At last, processors from di�erent processor grids maybe allocated to the same physical processor. Thus the code must not send a message from aprocessor to itself, but rather generate a local copy of the required elements instead.Figure 11 shows the spmd code generated with P and E . The code is composed of a send anda receive part. The send part �rst selects the processors in Ps, and among them those which maycommunicate (Pj 0;�). Then the corresponding target processors are enumerated ( 0D loop). Ifthere is a broadcast or if the target and source physical processor di�er, the data are packedin a message (e loop). Then the message is sent of not empty. Function local source address()computes the local address for a given array element on the source processors. If the localaddressing scheme is integrated in the modelization, the local adress is directly enumeratedin e.The receive part is the dual of the send part. It selects the processors in Pt, and amongthem those processors which may have to receive some data. Then the corresponding sendersare enumerated, and the messages are lazily received and unpacked to the local target array.If the sender was the processor itself, a local copy is performed: the communicating couple ledto identical physical processors. The data is just copied from the source to target arrays. Thecopy is performed on the receive part in order not to delay the messages sending.The generated code requires the enumeration of some polyhedra. Techniques based onFourier elimination [21, 2] or a parametric simplex [13] generates code to exactly enumerate thesolutions to a polyhedron. The correctness of the communications requires that the messagesare packed and unpacked in the same order. This is enforced because the very same loop neston E is generated for both packing and unpacking.5 Optimality and discussionFor a given remapping, a minimal number of messages, containing only the required data, issent over the network:Theorem 2 (Only Required Data is Sent) If the source and target processor grids are dis-joined on the physical processors, only required data is communicated.Proof: E exactly describes the array elements and their mapping (derived from Proposition 2).Polyhedron scanning techniques exactly enumerate the elements in E and these elements mustbe communicated if the processors are disjoined. �Theorem 3 (Minimum Number of Messages is Sent) If the source and target processorgrids are disjoined on the real processors, a minimal number of messages is sent over thenetwork.Proof: Only required data is communicated (Theorem 2), all possible aggregations are per-formed (Proposition 6) and empty messages are not sent. �Theorem 4 (Memory Requirements) The maximum amount of memory required per hpfprocessor for a remapping is 2 � (memory(As) + memory(At)).Proof: Local arrays plus send and receive bu�ers may be allocated at the same time. Thebu�er sizes are bounded by the local array sizes because no more than owned is sent (even forbroadcasts) and no more than needed is received (Theorem 2). �



Optimal Compilation of Hpf Remappings 17� Special remappings that involve no communications can be automatically detected: if thetarget mapping is a particularization of the source mapping, i.e. all the needed data islocally available.� The usual Fourier elimination technique needs to know the number of processors. How-ever the parametric extension presented in [1] allows to generate code if this number isparametric.� Since processor distributed dimensions are independent in E , the practical complexity ofthe code generation for multiple dimensions roughly is the number of dimensions timesthe complexity of the code generation for one dimension. As expected, simple codes aregenerated for simple remappings, and more complicated ones for general cyclic distribu-tions.6 ExperimentsThe remapping generation technique is implemented in hpfc, our prototype hpf compiler.Pvm is used for handling communications. Hpfc aims primarily at demonstrating feasabil-ity and being portable, rather than achieving very high e�ciency on a peculiar architecture.These new features were tested on a DEC Alpha farm at LIFL (Universit�e de Lilles, France).The experimental results and derived data are presented in this section. They show some im-provement over communications generated by the dec hpf compiler, despite our high levelimplementation. Quite good performances for complex remappings compared to the simpleand straightforward block distribution case were obtained. Experimental conditions and rawmeasures are presented and analyzed.6.1 Experimental conditionsThis section presents the hardware and software environment used for the tests, the measure-ments and the experiments.DEC Alpha farm: 16 dec 3000 model 400 AXP (512KB cache, 133MHz Alpha 21064) 64MBmemory workstations linked with a 100Mb/s/link7 FDDI crossbar. Non dedicated ma-chines.Compilers: DEC Fortran OSF/1 f77 version 3.5 with "-fast -O3 -u" options. DEC COSF/1 cc with "-O4" option (for part of the hpfc runtime library). DEC hpf f90 versionFT1.2 with "-fast -wsf n" options for comparison with the remapping codes generatedby hpfc, our prototype hpf compiler.Communications: Pvm version 3.3.9 standard installation, used with direct route option andraw data encoding. PVMBUFSIZE not changed. 1MB intermediate bu�er used to avoidpacking each array element through pvm.Transposition: A square matrix transposition was tested for various matrix sizes8, processorarrangements and distributions. The time to complete A=TRANSPOSE(B) with A and Binitially aligned was measured. It includes packing, sending, receiving and unpackingthe data, plus performing the transposition. The code is shown in Figure 12. The 2dremapping compilation times ranged in 0:3�2:5s on a sun ss10. Other experiments with1d remappings ranged in 0:2� 1:5s.Measures: The �gures present the best wall-clock execution time of at least 20 instances,after substraction of a measure overhead under-estimation. The starting time was taken712:5MB/s/link8i.e. the number of lines and columns



18 Coelho and Ancourtsize bb cca bc c48c64 c5c7256 0.0564 0.0623 0.0681 0.0681 0.1257384 0.1218 0.1296 0.1238 0.1312 0.1471512 0.2161 0.2175 0.2389 0.2405 0.3082640 0.3287 0.3336 0.3912 0.4064 0.5792768 0.7958 0.7783 0.5967 0.6108 0.8914896 0.9168 0.9110 0.8183 0.8700 4.38241024 1.7519 1.8563 1.1189 1.1282 1.5577Table 5: Transposition time (seconds) on P(2,2)size bb cc bc c48c64 c5c7256 0.0368 0.1803 0.0417 0.0524 0.0963384 0.0875 0.4243 0.1120 0.0993 0.1256512 0.1525 0.7834 0.1871 0.1871 0.2203640 0.2423 1.2648 0.3072 0.3257 0.3706768 0.3731 2.4780 0.5058 0.4692 0.5804896 0.4838 - 0.6962 0.7001 3.31751024 0.6425 - 0.9480 0.8562 1.24861152 1.2037 - 1.1852 1.0270 1.33551280 1.3784 - 1.4008 1.3139 1.95871408 1.9197 - 1.6181 1.8723 2.19641536 2.9675 - 2.3970 2.2199 2.5921Table 6: Transposition time (seconds) on P(2,3)P(2,3) P(3,3) P(3,4) P(4,4)size hpfc dec hpfc dec hpfc dec hpfc dec256 0.0368 0.0429 0.0372 0.0332 0.0257 0.0229 0.0411 0.0173384 0.0875 0.0976 0.0698 0.0674 0.0433 0.0503 0.0593 0.0417512 0.1525 0.1825 0.1215 0.1416 0.0892 0.0942 0.0909 0.0710640 0.2423 0.3065 0.1947 0.2202 0.1272 0.1576 0.1007 0.1159768 0.3731 0.4256 0.2757 0.2827 0.1868 0.2201 0.1495 0.1696896 0.4838 0.5934 0.4383 0.4496 0.2512 0.3231 0.1911 0.23501024 0.6425 0.8575 0.4588 0.5970 0.3361 0.4279 0.2281 0.29111152 1.2037 1.0468 0.8086 0.7092 0.4128 0.5271 0.2900 0.39601280 1.3784 1.3036 0.9488 1.0020 0.5084 0.6749 0.3545 0.49131408 1.9197 1.5641 1.0522 1.1953 0.6295 0.8320 0.4312 0.59661536 2.9675 1.9561 1.8209 1.3236 1.0120 0.9819 0.8147 0.71871792 - - 2.1088 2.0908 1.6474 1.4240 1.0011 1.00852048 - - 3.3807 2.8654 2.1184 1.8043 1.8235 1.3663Table 7: Transposition time (seconds) for (block,block) distributionsaInvariant code motion and some code transformations where performed by hand for this distribution
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real*8 A(n,n), B(n,n)chpf$ dynamic Bchpf$ template T(n,n)chpf$ processors P(...)chpf$ distribute T(...) onto Pchpf$ align A, B with T...cc A = TRANSPOSE(B)cc first align A and B transposecchpf$ realign B(i,j) with T(j,i)cc now the assignment, everything is localcchpf$ independent(j, i)do j=1, ndo i=1, nA(i,j) = B(j,i)enddoenddocc DONEc ... Figure 12: Remapping-based transpose code for hpfc



20 Coelho and Ancourtbetween two global synchronizations. The �nal time was taken after an additional globalsynchronization.Raw measures for transpositions are displayed. Tables 5 and 6 show the transposition timesfor various matrix sizes and distributions. The column heads describe the distribution of thearray dimensions: for instance c5c7 stands for (cyclic(5),cyclic(7)). Table 7 show the(block,block) transposition time for various array arrangements, involving up to 16 proces-sors. These raw measures are analyzed in the next section.6.2 Performance analysisFrom the previous raw measures, derived data are presented in Figures 13, 14 and 15. For com-parison purposes, we introduce the transposition speed per processor, expressed in MB/s/pe9.This unit is independent of the matrix size n, the type length10 l and the number of processors pinvolved. If t is the measured time, then speed s is de�ned as:s = l:n2220:p:tComparable performances are obtained for di�erent matrix sizes, processor arrangementsand distributions. Simple transpositions on (block,block) distributed arrays perform gener-ally better than others. However the actual amount of data that is communicated vary fromone distribution to another, what is not taken into account.
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Figure 15: Transposition speed per processor for (block,block) distributionswere presented. Namely, a minimal number of messages, containing only the required data, issent over the network. Thus the technique minimizes both the e�ects of latency and bandwith-related of the network, through message aggregation and exact enumeration of elements to besent. Moreover load balancing issues are discussed and (possibly partial) broadcasts are usedwhen possible.However, there is still a need for runtime support. Some hpf programs may instantiate toomany mapping parameters at runtime, making the parametric compile time code generationphase too tricky.Future work includes:� a new bu�er management to use the pvm in place option.� lattice extraction to generate better polyhedron enumeration codes.� mappings code motion to reduce the number of executed remappings,� reducing the remapped element set to what is used through advanced compile time anal-yses [12, 11].� generating temporary copies for read-only remapped arrays to avoid backward remap-pings,� compiling for other models, such as get/put/synchro communications.AcknowledgementsWe are thankful to (in alphabetical order) Fran�cois Bodin for informal discussions, B�eatriceCreusillet for pointers, Jean-Luc Dekeyser for access of the Alpha farm, Fran�cois Irigoin



Optimal Compilation of Hpf Remappings 23for the improvements he suggested, Pierre Jouvelot for corrections, Philippe Marquet fortechnical support on the farm,WilliamPugh for suggestions and Xavier Redon for comments.References[1] Saman P. Amarasinghe and Monica S. Lam. Communication Optimization and Code Generation forDistributed Memory Machines. In ACM SIGPLAN International Conference on Programming LanguageDesign and Implementation, June 1993.[2] Corinne Ancourt. G�en�eration automatique de codes de transfert pour multiprocesseurs �a m�emoires locales.PhD thesis, Universit�e Paris VI, March 1991.[3] Corinne Ancourt, Fabien Coelho, Fran�cois Irigoin, and Ronan Keryell. A Linear Algebra Framework forStatic HPF Code Distribution. In Workshop on Compilers for Parallel Computers, Delft, December 1993.Also available as TR EMP A/250/CRI on http://www.cri.ensmp.fr.[4] Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek, and Vaidy Sunderam. Recent Enhancementsto PVM. Int. J. of Supercomputer Applications and High Performance Computing, 9(2):108{127, summer1995.[5] Siegfried Benkner, Peter Brezany, and Hans Zima. Processing Array Statements and Procedure Inter-faces in the Prepare High Performance Fortran Compiler. In 5th International Conference on CompilerConstruction, April 1994. Springer-Verlag LNCS vol. 786, pages 324{338.[6] Siddhartha Chatterjee, John R. Gilbert, Fred J. E. Long, Robert Schreiber, and Shang-Hua Teng. Gener-ating local addresses and communication sets for data-parallel programs. In Symposium on Principles andPractice of Parallel Programming, 1993.[7] Siddhartha Chatterjee, John R. Gilbert, Robert Schreiber, and Thomas J. She�er. Array distribution indata-parallel programs. In Language and Compilers for Parallel Computing, pages 6.1{6.17, August 1994.[8] Fabien Coelho. �Etude de la Compilation du High Performance Fortran. Master's thesis, Universit�e ParisVI, September 1993. Rapport de DEA Syst�emes Informatiques. TR EMP E/178/CRI.[9] Fabien Coelho. Experiments with HPF Compilation for a Network of Workstations. In High-PerformanceComputing and Networking, Springer-Verlag LNCS 797, pages 423{428, April 1994.[10] Fabien Coelho. Compilation of I/O Communications for HPF. In 5th Symposium on the Frontiers ofMassively Parallel Computation, pages 102{109, February 1995.[11] B�eatrice Creusillet. IN and OUT array region analyses. InWorkshop on Compilers for Parallel Computers,June 1995.[12] B�eatrice Creusillet and Fran�cois Irigoin. Interprocedural Array Region Analyses. In Language and Com-pilers for Parallel Computing, August 1995.[13] Paul Feautrier. Parametric integer programming. RAIRO Recherche Op�erationnelle, 22:243{268, Septem-ber 1988.[14] High Performance Fortran Forum. High Performance Fortran Language Speci�cation. Rice University,Houston, Texas, May 1993. Version 1.0.[15] High Performance Fortran Forum. HPF-2 Scope of Activities and Motivation Examples. Rice University,Houston, Texas, November 1994.[16] Al Geist, Adam Beguelin, Jack Dongarra, Jiang Weicheng, Robert Manchek, and Vaidy Sunderam. PVM3 User's Guide and Reference Manual. Oak Ridge National Laboratory, Oak Ridge, Tennessee, May 1993.[17] S. K. S. Gupta, S. D. Kaushik, S. Mufti, S. Sharma, C.-H. Huang, and P. Sadayappan. On compilingarray expressions for e�cient execution on distributed-memory machines. In International Conference onParallel Processing, pages II{301{II{305, August 1993.[18] S.K.S. Gupta, C.-H. Huang, and P. Sadayappan. Implementing Fast Fourier Transforms on Distributed-Memory Multiprocessors using Data Redistributions. Parallel Processing Letters, 4(4):477{488, December1994.[19] S.K.S. Gupta, S. D. Kaushik, C.-H. Huang, and P. Sadayappan. On compiling array expressions for e�cientexecution on distributed-memory machines. TR 19, Department of Computer and Information Science,The Ohio State University, 1994.[20] Semma Hirannandani, Ken Kennedy, John Mellor-Crummey, and Ajay Sethi. Advanced CompilationTechniques for Fortran D. CRPC-TR 93338, Center for Research on Parallel Computation, Rice University,October 1993.[21] Fran�cois Irigoin. Code generation for the hyperplane method and for loop interchange. ENSMP-CAI-88E102/CAI/I, CRI, �Ecole des mines de Paris, October 1988.[22] Fran�cois Irigoin, Pierre Jouvelot, and R�emi Triolet. Semantical interprocedural parallelization: An overviewof the PIPS project. In ACM International Conference on Supercomputing, June 1991.



24 Coelho and Ancourt[23] Ken Kennedy. A survey of data ow analysis techniques. In S. Muchnick and N. Jones, editors, ProgramFlow Analysis: Theory and Applications, pages 5{54. Prentice-Hall, Inc., Engelwood Cli�s, 1979.[24] Ken Kennedy and Ulrich Kremer. Automatic Data Layout for High Performance Fortran. CRPC-TR94498-S, Center for Research on Parallel Computation, Rice University, December 1994.[25] Ken Kennedy, Nenad Nedeljkovi�c, and Ajay Sethi. A linear time algorithmfor computing thememoryaccesssequence in data-parallel programs. In Symposium on Principles and Practice of Parallel Programming,1995. Sigplan Notices Vol. 30:8.[26] Gary A. Kildall. A uni�ed approach to global program optimization. In Symposium on Principles ofProgramming Language, pages 194{206, 1973.[27] Charles Koelbel, David Loveman, Robert Schreiber, Guy Steele, and Mary Zosel. The High PerformanceFortran Handbook. MIT Press, Cambridge, MA, 1994.[28] Edwin M. Paalvast, Henk J. Sips, and A.J. van Gemund. Automatic parallel program generation and op-timization from data decompositions. In 1991 International Conference on Parallel Processing | VolumeII : Software, June 1991.[29] William Pugh. A pratical algorithm for exact array dependence analysis. CACM, 35(8):102{114, August1992.[30] Shankar Ramaswamy and Prithviraj Banerjee. Automatic generation of e�cient array redistribution rou-tines for distributed memory multicomputers. In 5th Symposium on the Frontiers of Massively ParallelComputation, pages 342{349, February 1995.[31] J. Stichnoth, D. O'Hallaron, and T. Gross. Generating communication for array statements: Design,implementation and evaluation. In Language and Compilers for Parallel Computing, August 1993.[32] Ernesto Su, Antonio Lain, Shankar Ramaswamy, Daniel J. Palermo, Eugene W. Hodges IV, and PrithvirajBanerjee. Advanced Compilation Techniques in the Paradigme Compiler for Distributed-Memory Multi-computers. In ACM International Conference on Supercomputing, pages 424{433, July 95.[33] Rajeev Thakur, Alok Choudhary, and Geo�rey Fox. Runtime array redistribution in HPF programs. InScalable High Performance Computing Conference, pages 309{316, 1994.[34] Vincent Van Dongen. Compiling distributed loops onto SPMD code. Parallel Processing Letters, 4(3):301{312, March 1994.[35] Vincent Van Dongen. Array redistribution by scanning polyhedra. In PARCO, September 1995.[36] C. van Reuuwijk, H. J. Sips, W. Denissen, and E. M. Paalvast. Implementing HPF distributed arrayson a message-passing parallel computer system. Computational Physics Report Series, CP-95 006, DelftUniversity of Technology, November 1994.[37] Hans Zima, Peter Brezany, Barbara Chapman, Piyush Mehrotra, and Andreas Schwald. Vienna Fortran -A Language Speci�cation. ftp cs.rice.edu public/HPFF/papers/vf.tex, 1992. Version 1.1.


