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Abstract

Applications with varying array access patterns require to dynamically change array
mappings on distributed-memory parallel machines. HpF (High Performance Fortran)
provides such remappings, on data that can be replicated, explicitly through the realign
and redistribute directives and implicitly at procedure calls and returns. However such
features are left out of the HPF subset or of the currently discussed HPF kernel for efficiency
reasons. This paper presents a new compilation technique to handle HPF remappings for
message-passing parallel architectures. The first phase is global and removes all useless
remappings that appear naturally in procedures. The code generated by the second phase
takes advantage of replications to shorten the remapping time. It is proved optimal: A
minimal number of messages, containing only the required data, is sent over the network.
The technique is fully implemented in HPFC, our prototype HPF compiler. Experiments
were performed on a DEC Alpha farm.
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Introduction

Many applications, such as ADI (Alternating Direction Integration) and FFT [18] (Fast Fourier
Transform), require different array mappings at different computation phases for efficient exe-
cution on distributed-memory parallel machines (e.g. CrRaY T3D, IBM sP2, DEC Alpha farm).
Data replication, sometimes partial, is used to share data between processors. Data remapping
and replication often need to be combined: A parallel matrix multiplication accesses a whole
row and column of data to compute each single target element, hence the need to remap data
with some replication for parallel execution. Moreover, automatic data layout tools [24, 7] sug-
gest data remappings between computation phases. Thus handling data remappings efficiently
is an important issue for high performance computing.

HpF (High Performance Fortran [14, 27], a Fortran 90-based data-parallel language) targets
distributed-memory parallel architectures. Standard directives are provided to specify array
mappings that may involve some replication. These mappings are changed dynamically, explic-
itly with ezecutable directives (realign, redistribute) and implicitly at procedure calls and
returns for prescriptive argument mappings. These useful features are perceived as difficult to
compile efficiently and thus are left out of the HPF subset or of the currently discussed HPF
kernel [15]. If not supported, or even not well supported, applications requiring them will not
be ported to HPF...The key issues to be addressed are the reduction of the runtime overheads
induced by remappings, and the management of the rich variety of HPF mappings.

Related work

Any technique that handles all HPF array assignments can be used to compile remappings:
the induced communications are those of an array assignment A=B, where B is mapped as the
source and A as the target. Such techniques are based on finite state machines [6, 20, 25],
closed forms [17, 31, 19], diophantine equations [28, 5, 36] or polyhedra [1, 3, 34, 32]. However
none of these techniques considers load-balancing and broadcasts. Also issues such as handling
different processor sets, multidimensional distributions, communication generation and local
addresses. .. are not all clearly and efficiently managed in these papers, therefore dedicated
optimized techniques are needed.

In [33], support by runtime library is suggested for simple cases involving neither shape
changing', nor alignment or replication. Multidimensional remappings are decomposed into
1-D remappings, hence resulting in several remappings at runtime. Ad hoc descriptors called
pitfalls are devised in [30], but alignment, replication and shape changing are not considered
either. A polyhedron-based approach is outlined in [35], for realignments with a fixed general
cyclic distribution onto a 1-D processor array. The alignments, unlike HPF, involve arbitrary
affine functions.

Contributions

Remapping overheads are attacked at different levels by the compilation technique implemented
in HPFC, our prototype HPF compiler. At a global level, all useless remappings are removed.
This optimization is presented in the first part of the paper. Such remappings arise naturally
in programs.

The second part of paper focuses on the remapping code generation problem for message-
passing parallel architectures with non-blocking sends and blocking receives. The problem
is fitted into a single powerful linear framework, which integrates all issues. Arbitrary remap-
pings, involving partial replication, alignment strides, general cyclic distributions and differently
shaped processor grids are handled. The sPMD generated code is based on the enumeration of
polyhedron solutions that abstracts the required communications. Load balancing and broad-
casts are also considered. Correctness and optimality results are discussed. The technique
is fully implemented in HPFC [8, 9, 10], a prototype HPF compiler developed within the PIPS

1The distributed dimensions are the same for both source and target mappings.
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project [22]. Experiments on a DEC Alpha farm are also presented. To our knowledge, this
technique is the first to integrate all HPF mapping issues in a single framework, to address load
balancing and possible broadcasts in the generated code and to present optimality results.

Section 1 presents the remapping graph construction from the control flow graph and a global
optimization on this graph to remove statically all useless remappings. Section 2 introduces an
example and notations for the code generation. The remapping problem formalization into a
polyhedron is described and illustrated in Section 3: The HPF constraints are presented, then
optimizations taking into account (1) particular distribution of data onto the processors such as
replication and (2) efficient communication capabilities of distributed memory machines such
as broadcast, are added to the compilation scheme. The SPMD code generation is presented in
Section 4 and optimality properties are discussed in Section 5. Finally, Section 6 presents and
analyzes experimental results.

1 Remapping Graph

Useless remappings may appear naturally in HPF programs. First, the change of both alignment
and distribution of an array requires a realign and a redistribute, hence resulting in two
remappings if no special care is taken. Second, the redistribution of a template? induces the
remapping of all aligned arrays, even if they are not all referenced afterwards. Third, at an
interprocedural level, two consecutive subroutine calls may require the same remapping for a
given array, resulting in a useless remapping on return from the first subroutine and on entry
in the second. If two different mappings are required, it may also be interesting to remap data
directly rather than using the intermediate original mapping. Such examples do not arise from
badly written programs, but from a normal use of HPF features. They demonstrate the need
for compile time optimizations to avoid useless costly remappings at runtime.

SUBROUTINE remaps(A)

! distribute A... => A mapping: O
local arrays B, C
! template T, align B, C with T, distribute T... => B and C mappings: O
use C
use B
1 redistribute T => B and C mappings: 1
Do ...
2 remap A... => A mapping 1
use A
3 remap A... => A mapping 2
use A
ENDDO
use B
END

Figure 1: Simple ADI-like structured example

Let us consider example remaps in Figure 1. The loop nest involving two remappings is
typical of ADI computations. Template T is redistributed at 1, inducing B and C remappings,
but C is not referenced afterwards. Moreover argument A is never referenced with its initial
mapping.

In this section, the remapping graph, its construction from the control flow graph and its
optimizations are presented. This approach deals with descriptive and prescriptive mappings,
t.e. when the compiler is aware of data distributions.

?Even when no templates are used [37] array redistributions generate the problem
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1.1 Definition and construction

Let us introduce the remapping graph Gr. This graph is a (usually much smaller) subgraph
of the control flow graph. The vertices of the graph are the (re)mapping statements, i.e.
(re)aligns and (re)distributes. An edge denotes a possible path in the control flow graph
where a same array is remapped at both vertices. Two vertices are added at entry in and on exit
from the subroutine. Mappings are designed by a number for each array. The same mapping
number is used for identical mappings of an array. To each vertex v in Gg are associated:

o the set of remapped arrays S(v)
e for all remapped arrays 4 in this set:

— one leaving mapping? for the statement: Ly (v)
— the set of mappings for & that may reach v: Ry(v)
— whether it may be referenced after the remapping: Usedp(v)

{1,3} {2}
B

Oa

0 -1

Figure 2: A simple vertex

This information is depicted in Figure 2. To the vertex is associated the remapped arrays A and
B, with the leaving mapping as a subscript (0 for 4, 1 for B) and the set of reaching mappings
as a superscript ({1,3} for A, {2} for B). Referenced arrays are underlined (here only B). The
compiler must generate remapping codes for each pair (reaching to leaving mappings).

Let us describe how Gg 1s built from the program control flow graph. First, the entry and
exit vertices are created. The distributed subroutine local variables are attached to the entry,
with their initial mapping as a leaving mapping. The subroutine distributed formal parameters
are attached to both entry and exit vertices. The leaving mapping for those variables on entry
is the initial mapping. The reaching (resp. leaving) mapping for the entry (resp. exit) is an
a priort unknown X mapping. If the directives are descriptive, the reaching mapping on entry
of the subroutine is the initial mapping (X¥=0). On exit, distributed formal parameters are
tagged as used: without further interprocedural information, the compiler assumes that the
final remapping is needed. Figure 3 shows the initial graph for remaps.

{x
EntryOA B0 C0
0

Exit A
- X

Figure 3: Gr for remaps at construction start

The next phase of the Gg construction is the propagation of the initial mappings from the
subroutine entry, till remappings are encountered. This must be done for each couple (v, 4) of
vertex and arrays remapped at this vertex. First, initialize the set of couples to be propagated
with the entry vertex associated to the distributed arrays. Then for each such couple (v, &),

3several may occur, this assumption just simplifies the presentation
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propagate in the control graph from the corresponding vertex till meeting remapping statements
for that array mapping. Tag the array remapping as used if a reference is encountered while
propagating. Let w be one of the encountered remapping statements. Add a corresponding
w vertex in G if necessary. Add A to S(w) and compute Ly (w) if necessary, and (w,4) is a
new couple to be explored later on. Add Ly(v) to Ry(w). The resulting remapping graph for
remaps is shown in Figure 4.

{x
Entry A B
o — O
gt% to
-1 1

C
=0

Exit

Figure 4: Initial Gg for remaps

If n is the number of vertices in the control graph, s the maximum number of successors of
a vertex, m the number of remapping statements and p the number of distributed arrays, then
the worst case complexity of the outlined construction algorithm is O(nsmp), if all arrays are
remapped at each remapping statements and the propagations in the control graph get through
all vertices.

1.2 Optimization

In Gg, arrays that are remapped after a remapping without having been referenced are tagged
as not used for this remapping. In such cases, at least two remappings will be performed at
runtime without referencing the array in between, as array A in Figure 4 after the entry vertex.
Such useless remappings must be removed. However the successive remapping statements must
be aware that they were not performed and that they may have to deal with other reaching
mappings. Indeed, the whole set of reaching mappings must be recomputed. Some are no
longer of use and others must be added. This optimization is performed as follow:

o First, remove all useless remappings*, simply by deleting the leaving mapping for those
vertices and arrays.

Vv, VA € S(v),not Usedy (v) = La(v) =0

e Second, recompute the mappings that may reach each vertex. This is a forward may data
flow problem [26, 23] on Gg:

4 As a convention in the interpretation of the remapping graph, remappings at vertex v for array & € S(v)
will not be generated if Ly (v) = 0.
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— initialization: Used 1-step reaching mappings

Yo, YA € S(v), Ry (v) = UJ Ly (w)
wepred(w)
AeS(w), Usedy(w)

— optimizing function: propagation

Vo,VA € S(v), Ry (v) = Ry(v) U UJ Ry (w)

wepred(w)
AeS(w), not Used  (w)

The iterative resolution of the optimizing function is increasing and bounded, thus it
converges. The resulting graph for remaps is shown in Figure 5.

{x

Entry A B Ci

0 0

g0 o
-1

Exit

Figure 5: Optimized Gg for remaps

Let us assume a (1) set’s element put, get and in-test implementation. Let m be the
number of vertices in Gr, p the number of distributed arrays, ¢ the maximum number of
different mappings for an array and » the maximum number of predecessors for a vertex. Then
the worst case time complexity of the optimization, for a simple iterative implementation, is
O(m?pqr).

This optimization is correct and the result is optimal:

Theorem 1 The computed remappings (from new reaching to remaining leaving) are those and
only those that are needed (according to the static information provided by the data flow graph):
Yo, YA € S(v) A Usedy(v), Va € R 4(v),

Jw and a path from w to v in Gg, so that a € Lg(w) and A is not used on the path.

Proof: construction of the path by induction on the solution of the data flow problem. Note
that the path in Gg reflects an underlying path in the control flow graph with no use and no
remapping of the array.

1.3 Discussion

e If subroutine local arrays are not used from the entry point in their initial mapping, the
compiler may delay the allocation till a used mapping is needed, or chose another initial
mapping among directly useful ones.
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e Remappings involving unknown X mappings should be propagated to call sites in order
to be instantiated.

e The set of needed remappings after this optimization may have been reduced or extended.
What is minimized is the number of remappings performed at run-time, not those that
must be addressed at compile time. Our compiler keeps a database of generated remap-
ping codes in order not to generate some code twice.

e The remapping graph was presented at an intraprocedural level. It is natural to extend
it to the interprocedural level, for instance by providing a summary of the entry and
exit remappings to be used at the call sites foroptimizations. Remappings of arguments
should be decided and performed at call site.

e Gg for remaps includes an edge from the entry to the exit vertex, because the DO loop
may be empty and thus array A& may reach the exit vertex without remapping. If the
compiler can determine that the loop body 1s always executed, the skipping edge can be
removed from the control graph, thus improving remapping graph Gr quality.

e In order to simplify the presentation, it was assumed that only one mapping for an
array could leave a remapping statement. This is not necessarily the case in HPF. Thus
several leaving mappings may be associated to a vertex and array, and for each of these
mappings a set of reaching mappings. Care must also be taken in the building phase.
Use-information must be attached to the leaving mappings.

e The runtime needs to keep track of the mapping status of each array to chose the right
remapping routine when needed.

e Some additional benefits may be obtained by moving remapping in the control flow graph,
in order to perform a remapping only when the array is to be actually referenced in its
new shape.

2 Example and notations

Let us consider the example in Figure 6. This example is deliberately contrived, and designed
to show all the capabilities of our algorithm. Real application remappings should not present
all these difficulties at once, but they should frequently include some of them. Vector A is
remapped from a block distribution onto 3-D processor grid Ps to a general cyclic distribution
onto 2-D processor grid Pt through template T redistribution. Both source and target mappings
involve partial replication. The corresponding data layouts are depicted in Figure 7. The colors
denote the data to processor affectation. The initial mapping is a block distribution of A onto
the second dimension of Ps. Each column of (dark and light) processors in Ps owns a full copy
of A. Thus A is replicated 4 times. The target mapping is a cyclic(2) distribution onto Pt
first dimension. Each line owns a full copy of A and A is replicated twice.

Let us describe how the sSPMD generated code handles the remapping communications. The
arrows in Figure 7 denote the source to target processor assignment. On the target side, each
column of processors waits for ezactly the same data, hence the opportunity to broadcast the
same messages to these pairs. On the source side, each column can provide any needed data,
since it owns a full copy of A. The different columns can deal with different target processors,
thus balancing the load of generating and sending the messages. For the running example, b
different target processor sets are waiting for data that can be addressed by 4 source processor
groups. The source to target processor assignment statically cyclically balances the targets
among the possible senders.

Linear algebra provides a powerful framework to characterize array element sets, represent
HPF directives, generate efficient code, define and introduce optimizations and make possible
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chpf$
chpf$
chpf$
c

c Source

C

parameter (n=20)

array A(1:n)

template T(1:n,1:n,1:n)
dynamic 4, T

align A(i) with T(*,i,*)

chpf$ processors Ps(1:2,1:2,1:2)
chpf$ distribute T(block,block,block) onto Ps

C

¢ Target

C

chpf$ processors Pt(1:5,1:2)

C

c Array A remapping: Ps(*,block,*) -> Pt(cyclic(2),%)

C

chpf$ redistribute T(#,cyclic(2),block) onto Pt

Figure 6: Running example for code generation

Array Processors
A(1: 20)

bl ock
I [ [ [[T1TT]

Remappi ng

cyclic(2)

BN EESSEETTT ] on Pt(1:5, 1: 2) ( \(I\(I\
/ / J
\ \ \\—‘

Figure 7: Array A remapping
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correctness proof of the compilation scheme. Our compilation scheme uses polyhedra to repre-
sent the HPF data remapping problem. Notations are shown in Tables 1, 2 and 3. Greek letters
denote individual or set of integer variables; calligraphic letters systems of linear equalities and
inequalities on a set of variables. Such constraints implicitly define a polyhedron on the vari-
ables, 7.e. the set of integer vectors that are solutions to the system. Different operations can
be performed on systems of constraints such as projecting variables, or enumerating solutions
for some variables, the others being considered as parameters. . .

Variables Comments
« array dimensions
8 local array dimensions
0 template dimensions
) processor dimensions
) block offsets (for distributions)
0% cycle numbers (for distributions)
p all processor variables (p = ¢ U ¢’)
A cycle load-balancing variable
€ other variables
YD set of distributed dimensions
YR set of replicated dimensions
|| cardinal (or extent) operator
xz; 1th dimension of z
x’ corresponding target mapping variables
z['] shorthand for # and «'

Table 1: Variables

Polyhedrons Constraints
declarations
HPF-related

local declarations
load-balancing

remapping
elements
processors

T ATILHDI

Table 2: Polyhedrons

3 Linear formalization

Declarations, HPF directives and local address translations are embedded into linear constraints,
as suggested in [3, 10]. This gives a linear description of the data distribution and of the
communication problem, 7.e. the enumeration of the elements to be sent and received. This
section presents the derivation of a system of linear constraints that exactly describes the array
elements to be communicated, with their associated source and target processors, allowing code
generation.
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Notation Meaning
(V) linear system on variables V'
Ay system after projection of V' variables

7 € X[W] A solution enumeration parametrized by W
X3 = A1 UAs | union of systems
(i.e. intersection of polyhedrons...)
X3 = A1 x Xy | disjoined union
(i.e. union on disjoined set of variables)

Table 3: Polyhedron operators

3.1 HPF modelization

Figure 8 shows the declaration constraints for the objects involved in the source and target
mappings of the running example. Lower and upper bounds are defined for each dimension
of arrays, templates and processor grids. Figure 9 shows the constraints derived from HPF
directives. The sets of distributed and replicated dimensions are also shown. The alignment is
quite simple here, but affine expressions are needed for general alignments (for instance align
A(i,*) with T(*,3*i-2) would lead to #3 = 3a; — 2). The template distributions require
additional variables, for modeling blocks and cycles: 8 is the offset within a block; v is the cycle
number, 7.e. the number of wraps around the processors for cyclic distributions. General cyclic
distributions need both variables. Distributions on replicated dimensions are useless, thus are
not included. This linear modelization is extensivelly described in [3]. Figure 10 presents the
local declarations and global to local address translations generated by HPFC, expressed through
linear constraints. Thus they are directly included in our compilation scheme. However such
an integration is not required: providing global to local address translation functions would be
sufficient, although more expensive at run time.

Alay) 1<a; <20

source template T(f1,05,03) 1<, <20, 1<6,<20, 1<85<20

source processors Ps(¢y,00,¥3) 1< <2, 1< <2, 1<23<2
target template T(67,605,05) 1<6] <20, 1<6,<20, 1<05<20
target processors Pt (¢, ¢h) 1< 9] <5, 1< ¢, <2

Figure 8: declaration constraints D(c, 6], ¢¥[])

align A(i) with T(*,i,*) 02 =y
idem for targel mapping 64 = ay
distribution of A onto Ps thru T 0y = 10¥2+ 62— 9, 0<682 < 10

distribution of 4 onto Pt thru T 045 =109 +2¢) +6, —1, 0< 81 <2

Yp = {2} Yr = {¥1,¥s}
v = {1t PR = {¥at

Figure 9: HPF-related constraints H (e, 6]'], ¢'['], y['], 8[']) and dimension sets
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local source array As(f1) A =68 +1, 1<5 <10
local target array At(5]) 51 =2y1+é8 +1, 1 <f <4, 41 >0

Figure 10: local declaration constraints £(3['], 6['],7['], &)

Let us now gather all these constraints in the remapping system (Definition 1). They define a
polyhedron on «, 3, 9, §... and corresponding primed variables®. Solutions to this polyhedron
link the array elements « and their mapping on the source 1 and target ' processors. R
satisfies some properties because of the HPF mapping semantics.

Definition 1 (Remapping System R)
R(p,e) =R, e, B[], ..) =D(.. )UH(...)UL(...)
with p = ¥ U’ the source and target processor variables, e = o U ... the other variables.

Proposition 1 (Replication Independence) Processor variables on replicated dimensions
are disjoined from others in R withp = prUpp:

R(p,€) = Ripn(pp,€) X D(pr) = Ripr(pp, €) X D(Yr) X D(VR)

Proof: pr variables appear neither in A nor in £, and are digjoined in D. D(x) is simply the
cartesian declaration constraints on x variables. a

Proposition 2 (Disjoined Distribution) Array elements appear once in Ry,

VYo € D(a),3l(e,pp) withe = aU...|(e,pp) € Rjp(PD,¢)

1.e. apart from replicated dimensions, only one processor owns a data on the source and target
processor grids, thus constraining the possible communications.

Proof: HPF mapping semantics. a

3.2 Broadcasts and load balance

A sPMD code must be generated from such a polyhedron linking the array elements to their
corresponding source and target processors. However, in the general case, because of data
replication, R is not constrained enough for attributing one source to a target processor for
a given needed array element. Indeed, R|,, assigns exactly one source to a target as shown
in Proposition 2, but pr variables are still free (Proposition 1). The underconstrained system
allows choices to be made in the code generation. On the target side, replication provides an
opportunity for broadcasts. On the source side, it allows to balance the load of generating and
sending the messages.

Broadcasts

In the target processor grid, different processors on the replicated dimensions own the same
data set. Thus they must somehow receive the same data. Let us decide that the very same
messages will be broadcasted to replicated target processors from the source processors. From
the communication point of view, replicated target processors are seen as one abstract processor
to be sent a message. On the polyhedron point of view, ¢} dimensions are collapsed for message

5Some variables, as 6, are of no interest for the code generation and can be exactly eliminated, reducing the
size of the system without loss of generality nor precision.
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generation. The free choice on ¢/, variables is removed, since the decision implies that the source
processor choice is independent of these variables!

For the running example, ¢¥% = {4} and D(¢s) = {1 < ¢4 < 2}, thus messages are
broadcasted on Pt’s second dimension as shown in Figure 7.

Load balancing

Now one sender among the possible ones (¢r) must be chosen, as suggested in Figure 7.
This choice must be independent of the replicated target processors, because of the broadcast
decision. Moreover, in order to minimize the number of messages by sending elements in
batches, it should not depend on the array element to be communicated. Thus the only possible
action is to link the abstract target processors ¢, to ¢'g. These processors wait for disjoined data
sets (Proposition 2) that can be provided by any source replicated processors (Proposition 1).

To assign ¥, to ¥r in a balanced way, the basic idea is to attribute cyclically distributed
target to replicated source processor dimensions. This cyclic distribution must involve proces-
sors seen as vectors on both side. In order to obtain this view of ¢}, and g, a linearization is
required to associate a single identifier to a set of indices.

The rationale for the linearization is to get rid of the dimension structuration in order to
balance the cyclic distribution from all available source replicated processors onto all target
distributed processors. Source processors that own the same elements are attributed a unique
identifier through lin(yg), as well as target processors requiring different elements through

lin()).
Definition 2 (Linearization) Let V be a set of bounded variables. The linearization function
lin is defined recursively as: lin(0) = 0 and lin(V) = |v| - lin (V — {v}) + v — min(v).

Cardinal operator || is extended to linearized sets with [lin(Q)| = 1 and [lin(V)| = [, ¢y 0]

The following constraint expresses the cyclic distribution of distributed target to replicated
source processor dimensions. It introduces a new cycle number variable A.

Definition 3 (Load Balance B)

B(¥r,¥p, A) = {lin({p) = |lin(Yr)] - A + lin(¥r)}
For the running example, linearization of g = {¥1, 3} where 1 < ;3 <2, 1 < 93 < 2 leads
to lin(¢r) = 2¢5 + ¢1 — 3, ¥, = {¥i} with 1 < ¢ < 5 leads to lin(¢p) = ¢ — 1 thus B
is ] — 1 = 4X + 2¢3 + ¢1 — 3. The resulting assignment is shown in Table 4 and Figure 7.
Because there are 5 targets and 4 available sources, the distribution cycles around the sources,
and the first source processor set gets 2 targets.

Target Source Cycle
Y1 | lin(p) || 1 | ¢s | lin(¢r) A
1 0 1 1 0 0
2 1 2 1 1 0
3 2 1 2 2 0
4 3 2| 2 3 0
5 4 1 1 0 1

Table 4: B target to source assignment for the running example

Proposition 3 (Target Affection) Target processors are affecled lo one source processor
among the replicated ones through B:

Vo, Mbr AN (YR, ¥, A) € B

Proof: The linearization is dense. O
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4 SPMD code generation

Let us now introduce the final polyhedron which integrates these choices and 1s used for the
code generation:

Definition 4 (Elements &) With p =1y Uy =¢p U U Uih:
E(p, e, A) = R(p, ) UB(YR, ¥, A)

Polyhedron £ is constrained enough so that there is only one possible sender (Proposition 5)
for a given piece of data to be sent to all target processors requiring it. Thus a precise com-
munication code can be generated: If (o, ¢, ¢') is a solution to &, then ¢ must send o to ¢’.
Indeed, this polyhedron has the following properties:

Proposition 4 (Orthogonality of % in &)
g(pa €, A) = glw%(PD 5 1/)Ra €, A) X D(,l/)%{)
Proof: Definition 4 and Proposition 1. a

Proposition 5 (One Sender) For a required dala on a larget processor, there is only one
sender defined in £, which is independent of the replicated target (Y's):

V(¥p,a) € R(p,e), M|(¢, ¥, a) € E
Proof: Propositions 2, 3 and 4. |

Proposition 6 (Aggregation) If a targel processor requires two different pieces of datla that
can be sent by the same processor, then there is only one such processor:

V’l/)/,VOZi,Va]’KH'l/)D, (djl, ’l/)Da ai) S EN (1/)/a 1/)Da O[]) S g) = (El',l/)|(1/)/a 1/)a ai) S EN (1/)/a 1/)a O[]) € g)
Proof: Propositions 2 and 3: ¥ = ¥p U ¥g, and g choice in B is independent of «. |

If all processors must enumerate all the integer solutions to polyhedron &, this is equivalent
to the runtime resolution technique and is very inefficient. Moreover, it would be interesting to
pack at once the data to be sent between two processors, in order to have only one buffer for
message aggregation. Therefore some manipulations are needed to generate efficient code.

Firstly, replicated dimensions of target processors (¢%) are extracted from & as allowed by
Proposition 4. This information is only required for broadcasting the message to the target
processors. &|y: stores the remaining information.

Secondly, in order to first enumerate the couples of processors that must communicate,
and then to generate the associated message, a superset of these communicating processors is
derived:

Definition 5 (Processors P)
P(,l/)Da 1/)Ra 1/)/D’ A) = gl"p%ye

This projection may not be exact. P represents processors that may have to communicate:
empty messages may be generated for processor couples in P. To avoid sending and receiving
these empty messages, while preserving the balance of messages, the following runtime technique
is used: (1) in the send part, messages empty after packing are not sent; (2) in the receive part,
messages are lazily received when some data must be unpacked. The technique is shown in
Figure 11.

6 A projection may be exact or approximate [2, 29], that is the integer solution to the projection may always
reflects, or not, an integer solution to the original polyhedron.
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— remapping of array A from processors Ps to processors Pt
— local declarations: As on source and At on target

if (I am in Ps) then - send part
¥ = my id in Ps
if (¢ € Py a(¥)) then — I may have to send something
for (A, ¢p) € PIng] - enumerate target processors
if (¥ # 0 or pid(y) # pid(v})) then — some distributed targets
empty = true
for e € SW%W, ¥, A] — enumerate elements to send
pack As(local source_address(e)) in buffer
empty = false — now the buffer is not empty
endfor
if (not empty) then broadcast buffer to ¢}, x D(1%) except myself
endif
endfor
endif
endif

if (T am in Pt) then - receive or copy part
Allocate At
' = my id in Pt
if (W, € 77|¢;%7¢7>\(1//D)) then — I may have to receive something
for (¢, A) € 7?|¢;%[1//D] — enumerate Source processors
if (pid(¢) # pid(¢')) then — non local, lazy reception and unpacking
first = true
for e € SW%W, ¥, A] - enumerate elements to receive
if (first) then receive buffer from ¢, first = false
unpack At(local_target_address(e)) from buffer
endfor
else — copy local data
for e € SW%WJ, 1/)/D, /\]
At(local_target_address(e)) = As(localsource_address(e))
endfor
endif
endfor
endif
endif

if (T am in Ps) then Free As

Figure 11: SPMD remapping code
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Thirdly, in a sSPMD code executed in parallel, each (maybe virtual) processor plays a part (or
none) in the processor grids Ps and Pt. Hence not all processors should enumerate the couples
of communicating processors: processors in Ps [resp. Pt] are just interested in enumerating
their matching target [resp. source] processors for sending [resp. receiving] data. P can be
used to generate guards to select relevant processors and then to directly enumerate the sole
matching processors in the other grid. At last, processors from different processor grids may
be allocated to the same physical processor. Thus the code must not send a message from a
processor to itself, but rather generate a local copy of the required elements instead.

Figure 11 shows the SPMD code generated with P and €. The code is composed of a send and
a receive part. The send part first selects the processors in Ps; and among them those which may
communicate (P}ys »). Then the corresponding target processors are enumerated (¢, loop). If
there is a broadcast or if the target and source physical processor differ, the data are packed
in a message (e loop). Then the message is sent of not empty. Function local source_address()
computes the local address for a given array element on the source processors. If the local
addressing scheme is integrated in the modelization, the local adress is directly enumerated
in e.

The receive part is the dual of the send part. It selects the processors in Pt, and among
them those processors which may have to receive some data. Then the corresponding senders
are enumerated, and the messages are lazily received and unpacked to the local target array.
If the sender was the processor itself, a local copy is performed: the communicating couple led
to identical physical processors. The data is just copied from the source to target arrays. The
copy is performed on the receive part in order not to delay the messages sending.

The generated code requires the enumeration of some polyhedra. Techniques based on
Fourier elimination [21, 2] or a parametric simplex [13] generates code to ezxactly enumerate the
solutions to a polyhedron. The correctness of the communications requires that the messages
are packed and unpacked in the same order. This is enforced because the very same loop nest
on & is generated for both packing and unpacking.

5 Optimality and discussion

For a given remapping, a minimal number of messages, containing only the required data, is
sent over the network:

Theorem 2 (Only Required Data is Sent) If the source and target processor grids are dis-
joined on the physical processors, only required data is communicated.

Proof: £ exactly describes the array elements and their mapping (derived from Proposition 2).
Polyhedron scanning techniques ezactly enumerate the elements in £ and these elements must
be communicated if the processors are disjoined. a

Theorem 3 (Minimum Number of Messages is Sent) If the source and targel processor
grids are disjoined on the real processors, a minimal number of messages ts sent over the
network.

Proof: Only required data is communicated (Theorem 2), all possible aggregations are per-
formed (Proposition 6) and empty messages are not sent. a

Theorem 4 (Memory Requirements) The mazimum amount of memory required per HPF
processor for a remapping is 2 - (memory(4s) + memory(At)).

Proof: Local arrays plus send and receive buffers may be allocated at the same time. The
buffer sizes are bounded by the local array sizes because no more than owned is sent (even for
broadcasts) and no more than needed is received (Theorem 2). O
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e Special remappings that involve no communications can be automatically detected: if the
target mapping is a particularization of the source mapping, 7.e. all the needed data is
locally available.

e The usual Fourier elimination technique needs to know the number of processors. How-
ever the parametric extension presented in [1] allows to generate code if this number is
parametric.

e Since processor distributed dimensions are independent in &£, the practical complexity of
the code generation for multiple dimensions roughly is the number of dimensions times
the complexity of the code generation for one dimension. As expected, simple codes are
generated for simple remappings, and more complicated ones for general cyclic distribu-
tions.

6 Experiments

The remapping generation technique is implemented in HPFC, our prototype HPF compiler.
PvM is used for handling communications. HPFC aims primarily at demonstrating feasabil-
ity and being portable, rather than achieving very high efficiency on a peculiar architecture.
These new features were tested on a DEC Alpha farm at LIFL (Université de Lilles, France).
The experimental results and derived data are presented in this section. They show some im-
provement over communications generated by the DEC HPF compiler, despite our high level
implementation. Quite good performances for complex remappings compared to the simple
and straightforward block distribution case were obtained. Experimental conditions and raw
measures are presented and analyzed.

6.1 Experimental conditions

This section presents the hardware and software environment used for the tests, the measure-
ments and the experiments.

DEC Alpha farm: 16 DEc 3000 model 400 AXP (512KB cache, 133MHz Alpha 21064) 64 MB
memory workstations linked with a 100Mb/s/link” FDDI crossbar. Non dedicated ma-
chines.

Compilers: DEC Fortran OSF/1 £77 version 3.5 with "-fast -03 -u" options. DEC C
OSF/1 cc with "-04" option (for part of the hpfc runtime library). DEC HPF £90 version
FT1.2 with "-fast -wsf n" options for comparison with the remapping codes generated
by HPFC, our prototype HPF compiler.

Communications: PvM version 3.3.9 standard installation, used with direct route option and
raw data encoding. PVMBUFSIZE not changed. 1MB intermediate buffer used to avoid
packing each array element through pvM.

Transposition: A square matrix transposition was tested for various matrix sizes®, processor
arrangements and distributions. The time to complete A=TRANSPOSE(B) with A and B
initially aligned was measured. It includes packing, sending, receiving and unpacking
the data, plus performing the transposition. The code is shown in Figure 12. The 2D
remapping complation times ranged in 0.3 —2.5s on a SUN $510. Other experiments with
1D remappings ranged in 0.2 — 1.5s.

Measures: The figures present the best wall-clock execution time of at least 20 instances,
after substraction of a measure overhead under-estimation. The starting time was taken

712.5MB/s/link

84.e. the number of lines and columns
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size bb cc? bc c48c64 c5c7
256 0.0564 | 0.0623 | 0.0681 0.0681 0.1257
384 0.1218 | 0.1296 | 0.1238 0.1312 0.1471
512 0.2161 | 0.2175 | 0.2389 0.2405 0.3082
640 0.3287 | 0.3336 | 0.3912 0.4064 0.5792
768 0.7958 | 0.7783 | 0.5967 0.6108 0.8914
896 0.9168 | 0.9110 | 0.8183 0.8700 4.3824
1024 | 1.7519 | 1.8563 | 1.1189 1.1282 1.5577

Table 5: Transposition time (seconds) on P(2,2)

size bb cc bc c48c64 c5c7
256 0.0368 | 0.1803 | 0.0417 0.0524 0.0963
384 0.0875 | 0.4243 | 0.1120 0.0993 0.1256
512 0.1525 | 0.7834 | 0.1871 0.1871 0.2203
640 0.2423 | 1.2648 | 0.3072 0.3257 0.3706
768 0.3731 | 2.4780 | 0.5058 0.4692 0.5804

896 | 0.4838 - 0.6962 | 0.7001 | 3.3175
1024 | 0.6425 - 0.9480 | 0.8562 | 1.2486
1152 | 1.2037 - 1.1852 | 1.0270 | 1.3355
1280 | 1.3784 - 1.4008 | 1.3139 | 1.9587
1408 | 1.9197 - 1.6181 | 1.8723 | 2.1964
1536 | 2.9675 - 2.3970 | 2.2199 | 2.5921

Table 6: Transposition time (seconds) on P(2,3)

P(2,3) P(3,3) P(3,4) P(4,4)
size HPFC DEC HPFC DEC HPFC DEC HPFC DEC
256 0.0368 | 0.0429 || 0.0372 | 0.0332 || 0.0257 | 0.0229 || 0.0411 | 0.0173
384 0.0875 | 0.0976 || 0.0698 | 0.0674 || 0.0433 | 0.0503 || 0.0593 | 0.0417
512 0.1525 | 0.1825 || 0.1215 | 0.1416 || 0.0892 | 0.0942 || 0.0909 | 0.0710
640 0.2423 | 0.3065 || 0.1947 | 0.2202 || 0.1272 | 0.1576 || 0.1007 | 0.1159
768 0.3731 | 0.4256 || 0.2757 | 0.2827 || 0.1868 | 0.2201 || 0.1495 | 0.1696
896 0.4838 | 0.5934 || 0.4383 | 0.4496 || 0.2512 | 0.3231 || 0.1911 | 0.2350
1024 || 0.6425 | 0.8575 || 0.4588 | 0.5970 || 0.3361 | 0.4279 || 0.2281 | 0.2911
1152 || 1.2037 | 1.0468 || 0.8086 | 0.7092 || 0.4128 | 0.5271 || 0.2900 | 0.3960
1280 || 1.3784 | 1.3036 || 0.9488 | 1.0020 || 0.5084 | 0.6749 || 0.3545 | 0.4913
1408 || 1.9197 | 1.5641 1.0522 | 1.1953 || 0.6295 | 0.8320 | 0.4312 | 0.5966
1536 || 2.9675 | 1.9561 1.8209 | 1.3236 || 1.0120 | 0.9819 || 0.8147 | 0.7187
1792 - - 2.1088 | 2.0908 || 1.6474 | 1.4240 | 1.0011 | 1.0085
2048 - - 3.3807 | 2.8654 || 2.1184 | 1.8043 | 1.8235 | 1.3663

Table 7: Transposition time (seconds) for (block,block) distributions

?Invariant code motion and some code transformations where performed by hand for this distribution
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real*8 A(n,n), B(n,n)
chpf$ dynamic B
chpt$ template T(n,n)
chpf$ processors P(...)
chpf$ distribute T(...) onto P
chpf$ align A, B with T

A = TRANSPOSE(B)

O o0

c first align A and B transpose

c

chpf$ realign B(i,j) with T(j,i)

c

c now the assignment, everything is local

c
chpf$ independent(j, i)
do j=1, n
do i=1, n
A(i,j) = B(j,1)
enddo
enddo
c
¢ DONE
c

Figure 12: Remapping-based transpose code for HPFC

19
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between two global synchronizations. The final time was taken after an additional global
synchronization.

Raw measures for transpositions are displayed. Tables 5 and 6 show the transposition times
for various matrix sizes and distributions. The column heads describe the distribution of the
array dimensions: for instance cbc¢7 stands for (cyclic(5),cyclic(7)). Table 7 show the
(block,block) transposition time for various array arrangements, involving up to 16 proces-
sors. These raw measures are analyzed in the next section.

6.2 Performance analysis

From the previous raw measures, derived data are presented in Figures 13, 14 and 15. For com-
parison purposes, we introduce the transposition speed per processor, expressed in MB/s/pe®.
This unit is independent of the matrix size n, the type length'® [ and the number of processors p
involved. If ¢ is the measured time, then speed s is defined as:

I.n?
§$= —
220 pt

Comparable performances are obtained for different matrix sizes, processor arrangements
and distributions. Simple transpositions on (block,block) distributed arrays perform gener-
ally better than others. However the actual amount of data that is communicated vary from
one distribution to another, what is not taken into account.

2.5 T T T T T T T
2 - -
15 B
[
3
@
Joa)
=
1 - -
(block,block) —~— N /
0s L (cyclic,cyclic) —+-- N/ |
: (block,cyclic) -a-- N
(cyclic(48),cyclic(64)) —x x
(cyclic(5),cyclic(7)) -2~
0 1 1 1 1 1 1 1

256 384 512 640 768 896 1024
matrix size

Figure 13: Transposition speed per processor on P(2,2)

Figure 13 displays the performances on P(2,2). Cases bb and cc are very similar: Indeed, in
both cases 2 processors must exchange all their local data and 2 do not have to communicate at
all, thus the generated codes are very similar. Also two degradations due to PVM are noticeable
for large matrix sizes, when the amount of communication steps over 1 MB and 2 MB. bc and
c48c64 show similar performances. c5¢7 is a tricky case, and the enumeration costs are higher.

9MB stands for Mega Bytes, and 1M = 220 = 1048576
107 = 8 in our experiments based on real*8 arrays.
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Figure 14: Transposition speed per processor on P(2,3)

Figure 14 presents quite similar results on P(2,3), but for the cc case. Additional transfor-
mations [3], which are not yet implemented in the prototype, are needed to extract the lattice
of accessed elements.

Finally Figure 15 shows performance of (block,block) transpositions on various processor
arrangements for HPFC and the DEC HPF compiler. The transpose intrinsic is serialized accord-
ing to the release notes, so it was not used. Since the independent, realign and redistribute
directives are not implemented, only the available HPF forall instruction was used to trans-
pose the matrix. Our performance is degraded for large matrix sizes because of the pvMm 1 MB
buffer size limit. Also the more processor the larger the matrix size is needed to get compara-
ble speeds. Transposition speed based on our code show 20-30% improvements over the DEC
compiler, up to pvM buffer size problems. However these results are not comparable: our code
is a higher level one, based on PvM, and simple standard optimizations would be usefull for the
compiling enumeration code efficiently.'!

Complex remappings show quite good results with respect to simple ones. However the
performances should be compared somehow to the peak 12.5 MB/s/link available. Some mea-
surements show that the PvM overhead represents up to 80% of the measured time. A more
aggressive buffer management for the remappings and the PvmDataInPlace option [4] may re-
duce this overhead. Generating code closer to the machine would also help, but at the price of
portability. The experiments also show that lattice detection i1s an important issue for generat-
ing good code, and that optimizations such as invariant code motion can have a great influence
on the performances of the polyhedron enumeration code.

Conclusion

A general compilation technique was presented to handle HPF remappings efficiently. This
technique is implemented in HPFC, our prototype HPF compiler. Portable pvM-based [16] code
is generated. The remapping code generation problem is put in a single linear framework that
deals with all HPF issues such as alignments or general cyclic distributions. Optimality results

11 This point will be detailed in the final version of the paper.
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Figure 15: Transposition speed per processor for (block,block) distributions

were presented. Namely, a minimal number of messages, containing only the required data, is
sent over the network. Thus the technique minimizes both the effects of latency and bandwith-
related of the network, through message aggregation and exact enumeration of elements to be
sent. Moreover load balancing issues are discussed and (possibly partial) broadcasts are used
when possible.

However, there 1s still a need for runtime support. Some HPF programs may instantiate too
many mapping parameters at runtime, making the parametric compile time code generation
phase too tricky.

Future work includes:

e a new buffer management to use the pPvM in place option.
e lattice extraction to generate better polyhedron enumeration codes.
e mappings code motion to reduce the number of executed remappings,

e reducing the remapped element set to what is used through advanced compile time anal-
yses [12, 11].

e generating temporary copies for read-only remapped arrays to avoid backward remap-
pings,

e compiling for other models, such as get/put/synchro communications.
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