Corinne Ancourt

F ran cois Abien Coelho

Ronan Irigoin
email: irigoin@cri.ensmp.fr

Keryell
email: keryellg@cri.ensmp.fr

Fabien Coelho

A Linear Algebra Framework for Static HPF Code Distribution Technical report A-278-CRI

High Performance Fortran (hpf) w as developed to support data parallel programming for simd and mimd machines with distributed memory. The programmer is provided a familiar uniform logical address space and speci es the data distribution by directives. The compiler then exploits these directives to allocate arrays in the local memories, to assign computations to elementary processors and to migrate data between processors when required. We s h o w here that linear algebra is a powerful framework to encode Hpf directives and to synthesize distributed code with space-e cient array allocation, tight loop bounds and vectorized communications for INDEPENDENT loops. The generated code includes traditional optimizations such as guard elimination, message vectorization and aggregation, overlap analysis... The systematic use of an a ne framework makes it possible to prove the compilation scheme correct.

Introduction

Distributed memory multiprocessors can be used e ciently if each local memory contains the right pieces of data, if local computations use local data and if missing pieces of data are quickly moved at the right time between processors. Macro packages and libraries are available to ease the programmer's burden but the level of details still required transforms the simplest algorithm, e.g. a m a t r i x m ultiply, i n to hundreds of lines of code. This fact decreases programmer productivity and jeopardizes portability, as well as the economical survival of distributed memory parallel machines.

Manufacturers and research laboratories, led by Digital and Rice University, d ecided in 1991 to shift part of the burden onto compilers by providing the programmer a uniform address space to allocate objects and a (mainly) implicit way to express parallelism. Numerous research projects 38, 4 7 , 8 1] and a few commercial products had shown that this goal could be achieved and the High Performance Fortran Forum was set up to select the most useful functionalities and to standardize the syntax. The initial de nition of the new language, Hpf, w as frozen in May 1993, and corrections were added in November 1994 36]. Prototype compilers incorporating some Hpf features are available 18, 19, 26, 81, 8 8 , 1 4]. Commercial compilers from APR 64, 65], DEC 71,[START_REF] Benkner | Processing Array Statements and Procedure Interfaces in the Prepare High Performance Fortran Compiler[END_REF], IBM 42] and PGI 34,6 8] are also being developed or are already available. These compilers implement part or all of the Hpf Subset, which only allows static distribution of data and prohibits dynamic redistributions.

This paper deals with this Hpf static subset and shows how c hanges of basis and a ne constraints can be used to relate the global memory and computation spaces seen by the programmer to the local memory and computation spaces allocated to each e l e m e n tary processor. These relations, which d e p e n d o n Hpf directives added by the programmer, are used to allocate local parts of global arrays and temporary copies which are necessary when non-local data is used by local computations. These constraints are also used in combination with the owner-computes rule to decide which computations are local to a processor, and to derive loop bounds. Finally they are used to generate send and receive statements required to access non-local data.

These three steps, local memory allocation, local iteration enumeration and data communication, are put together as a general compilation scheme for parallel loops, known as INDEPENDENT in Hpf, with a ne bounds and subscript expressions. Hpf's FORALL statements or constructs, as well as a possible future ON extension to advise the compiler about the distribution of iterations onto the processors, can be translated into a set of independent loops by i n troducing a temporary array mapped as required to store the intermediate results. These translations are brie y outlined in Figures 1 and2. The resulting code is a pair of loops which can be compiled by our scheme, following the owner-computes rule, i f t h e ON clause is put into the a ne framework. The FORALL translation requires a temporary array due to its simd-like semantics. However, if the assigned array is not referenced in the rhs, t h e FORALL loop is independent and should be tagged as such to t directly our scheme. Such necessary temporary arrays are not expected to cost much, both on the compilation and execution point o f v i e w : The allocated memory is reusable (it may be allocated on the stack), and the copy assignment on local data should be quite fast.

This compilation scheme directly generates optimized code which includes techniques such as guard elimination 38], message vectorization and aggregation [START_REF] Hiranandani | Compilation techniques for block-cyclic distributions[END_REF][START_REF] Feautrier | Direct parallelization of call statements[END_REF].

! non-independent !

A in the rhs may ! induce RW dependences... FORALL (i=1:n, j=1:m, MASK(i,j))

A(i,j) = f(A, ...)

! array TMP declared and mapped as A ! initial copy of A into TMP ! because of potential RW dependences INDEPENDENT(j,i) do j=1, m do i=1, n TMP(i,j) = A(i,j) enddo enddo ! possible synchro... INDEPENDENT(j,i) do j=1, m do i=1, n if (MASK(i,j)) A(i,j) = f(TMP, ...) enddo enddo It is compatible with overlap analysis 38]. There are no restrictions neither on the kind of distribution (general cyclic distributions are handled), nor on the rank of array references (the dimension of the referenced space: for instance rank of A(i,i) is 1). The memory allocation part, whether based on overlap extensions, or dealing with temporary arrays needed to store both remote and local elements, is independent o f parallel loops and can always be used. The relations between the global programmer space and the local processor spaces can also be used to translate sequential loops with a run-time resolution mechanism or with some optimizations. The reader is assumed knowledgeable in Hpf directives 36] and optimization techniques for Hpf 38, 8 1].

The paper is organized as follow. Section 2 shows how Hpf directives can be expressed as a ne constraints and normalized to simplify the compilation process and its description. Section 3 presents an overview of the compilation scheme and introduces the basic sets Own, Compute, Send and Receive that are used to allocate local parts of Hpf arrays and temporaries, to enumerate local iterations and to generate data exchanges between processors. Section 4 re nes these sets to minimize the amount of memory space allocated, to reduce the number of loops whenever possible and to improve the communication pattern. This is achieved by using di erent coordinates to enumerate the same sets. Examples are shown in Section 5 and the method is compared with previous work in Section 6.

HPF directives

The basic idea of this work was to show that the hpf compilation problem can be put into a linear form, including both equalities and inequalities, then to show h o w t o u s e polyhedron manipulation and scanning techniques to compile an hpf program from this linear form. The linear representations of the array a n d hpf declarations, the data mapping and the loop nest accesses are presented in this section.

Hpf speci es data mappings in two steps. First, the array elements are aligned with a template, which is an abstract grid used as a convenient w ay to relate di erent a r r a ys together. Each array element is assigned to at least one template cell thru the ALIGN directive. Second, the template is distributed onto the processors, which i s a n a r r a y o f virtual processors. Each template cell is assigned to one and only one processor thru the DISTRIBUTE directive. The template and processors are declared with the TEMPLATE and PROCESSORS directives respectively.

Elements of arrays aligned on the same template cell are allocated on the same elementary processor. Expressions using these elements can be evaluated locally, without inter-processor communications. Thus the alignment step mainly depends on the algorithm. The template elements are packed in blocks to reduce communication and scheduling overheads without increasing load imbalance too much. The block sizes depend on the target machine, while the load imbalance stems from the algorithm. Templates can be bypassed by aligning an array on another array, and by distributing array directly on processors. This does not increase the expressiveness of the language but implies additional check o n hpf declarations. Templates are systematically used in this paper to simplify algorithm descriptions. Our framework deals with both stages and could easily tackle direct alignment and direct distribution. The next sections show that any hpf directive can be expressed as a set of a ne constraints.

Notations

Throughout this paper, a lower case letter as v denotes a vector of integers, which m a y be variables and constants. v i (i 0) the ith element o r v ariable of vector v. Subscript 0, as in v 0 , denotes a constant i n teger vector. As a convention, a denotes the variables which describe the elements of an array, t is used for templates and p for processors. An upper case letter as A denotes a constant i n teger matrix. Constants are implicitly expanded to the required number of dimensions. For instance 1 may d e n o t e a v ector of 1. jAj denotes the determinant of matrix A.

Declarations

The data arrays, the templates and the processors are declared as Cartesian grids in hpf. I f a is the vector of variables describing the dimensions of array A(3:8,-2:5,7), then the following linear constraints are induced on a: 3 a 1 8 ;2 a 2 5 1 a 3 7

These may be translated into the matrix form D A a d where:

D A = 0 B B B B B B B @ 1 0 0 ;1 0 0 0 1 0 0 ;1 0 0 0 1 0 0 ;1 1 C C C C C C C A a = 0 @ a 1 a 2 a 3 1 A d = 0 B B B B B B B @ 8 ;3 5 2 7 ;1 1 C C C C C C C A
Any v alid array element m ust verify the linear constraints, i.e. A(a 1 ,a 2 ,a 3) is a valid array element if Equation (1) is veri ed by v ector a. In the remaining of the paper it is assumed without loss of generality that the dimension lower bounds are equal to 0. This assumption simpli es the formula by deleting a constant o set at the origin. Thus the declaration constraints for A(0:5,0:7,0:6) can be written intuitively as 0 a < D : 1

(1) where D:1 = 0 @ 6 0 0 0 8 0 0 0 7

1 A 0 @ 1 1 1 1 A = 0 @ 6 8 7
1 A D is a diagonal matrix composed of the sizes of A. The rational for storing the sizes in a diagonal matrix instead of a vector is that this form is needed for the distribution formula (see Section 2.4). Likewise the template declaration constraints are 0 t < T : 1 and the processors 0 p < P : 1.

Alignment

The ALIGN directive is used to specify the alignment relation between one object and one or many other objects through an a ne expression. The alignment o f a n a r r a y A on a template T is an a ne mapping from a to t. Alignments are speci ed dimension-wise with integer a ne expressions as template subscript expressions. Each a r r a y index can be used at most once in a template subscript expression in any given alignment, and each subscript expression cannot contain more than one index 36]. Let us consider the following hpf alignment directive, where the rst dimension of the array is collapsed and the most general alignment subscripts are used for the other dimensions: align A(*,i,j) with T(2*j-1,-i+7) it induces the following constraints between the dimensions of A and T represented respectively by v ector a and t: t 1 = 2 a 3 ; 1 t 2 = ;a 2 + 7 Thus the relation between A and T is given by t = Aa + s 0 where t = t 1 t 2 A = 0 0 2 0 ;1 0 a = 0 @ a 1 a 2 a 3 1 A s 0 = ;1 template T(0:99), T'(0:99) processors P(0:4) distribute T(block(20)), T'(cyclic(1)) onto P A (for alignment) is a matrix with at most one non-zero integer element per column (dummy v ariables must appear at most once in the alignment subscripts) and per row (no more than one dummy v ariable in an alignment subscript), and s 0 is a constant vector that denotes the constant shift associated to the alignment. Note that since the rst dimension of the array is collapsed the rst column of A is null, and that the remaining columns constitute an anti-diagonal matrix since i and j are used in reverse order in the subscript expressions. However this representation cannot express replication of elements on a dimension of the template, as allowed by hpf. The former relation is generalized by adding a projection matrix R (for replication) which selects the dimensions of the template which are actually aligned. Thus the following example:

align A(i) with T(2*i-1,*) is translated into Rt = Aa + s 0 (2)
where R = (10) t = t 1 t 2 A = (2) a = (a 1) s 0 = (;1)

The same formalism can also deal with a chain of alignment relations (A is aligned to B which is aligned to C: : :) b y composing the alignments. To summarize, a *" i n an array reference induces a zero column in A and a *" in a template reference a zero column in R. When no replication is speci ed, R is the identity matrix. The number of rows of R and A corresponds to the number of template dimensions that are actually aligned, thus leading to equations linking template and array dimensions. Template dimensions with no matching array dimensions are removed through R.

Distribution

Once optional alignments are de ned in Hpf, objects or aligned objects can be distributed on Cartesian processor arrangements, declared like a r r a ys and templates, and represented by the inequality 0 p < P : 1. Each dimension can be distributed by block, or in a cyclic way, on the processor set or even collapsed on the processors. Let us rst consider the Examples 1 and 2 in Figures 3 and5:

Example 1

In Example 1, the distributions of the templates creates a link between the templates elements t and the processors p, s o t h a t e a c h processor owns some of the template elements. These links can be translated into linear formulae with the addition of variables. For the block distribution of template T, assuming the local o set `within the size 20 block, 0 < 20, then the formula simply is: t = 2 0 p + For a xed processor p and the allowed range of o sets within a block `, the formula gives the corresponding template elements that are mapped on that processor. There is no constant in the equality due to the assumption that template and processor dimensions start from 0. For the cyclic distribution of template T', a cycle variable c counts the number of cycles over the processors for a given template element. Thus the formula is: t 0 = 5 c + p The cycle number c generates an initial o set on the template for each cycle over the processors. Then the p translation associates the processor's owned template element for that cycle. The general cyclic(n) multi-dimensional case necessitates both cycle c and local o set `variable vectors, and can be formulated with a matrix expression to deal with all dimensions at once.

General case

Hpf allows a di erent block size for each dimension. The extents (n in BLOCK(n) or CYCLIC(n)) are stored in a diagonal matrix, C. P is a square matrix with the size of the processor dimensions on the diagonal. Such a distribution is not linear according to its de nition 36] but may be written as a linear relation between the processor coordinate p, the template coordinate t and two additional variables, `and c: t= CPc+ Cp+ `(3) Vector `represents the o set within one block in one processor and vector c represents the number of wraparound (the sizes of which a r e CP) that must be performed to allocate blocks cyclically on processors as shown on Figure 4 for the example in Figure 7.

The projection matrix is needed when some dimensions are collapsed on processors, that means that all the elements on the dimension are on a same processor. These dimensions are thus orthogonal to the processor parallelism and can be eliminated. The usual modulo and integer division operators dealing with the block size are replaced by prede ned constraints on p and additional constraints on `. V ector c is implicitly constrained by a r r a y declarations and/or (depending on the replication) by the TEMPLATE declaration.

Specifying BLOCK(n) in a distribution instead of CYCLIC(n) is equivalent but tells the compiler that the distribution will not wrap around and the Equation (3) can be simpli ed by zeroing the c coordinate for this dimension. This additional equation reduces the number of free variables and, hence, removes a loop in the generated code. CYCLIC is equivalent t o CYCLIC(1) which is translated into an additional equation: `= 0 . BLOCK without parameter is equivalent t o BLOCK(d et ep e) where e t and e p are the template and processor extents in the matching dimensions. Since block distributions do not cycle around the processors, c = 0 can be added.

The variables are bounded by: 0 p < P : 1 0 t < T : 1 0 < C : template T(0:99,0:99,0:99) processors P(0:9,0:9) distribute T(*,cyclic(4),block(13)) onto P Let us consider the second, more general example, in Figure 5. These directives can be translated into the following matrix form: 0 1 0 0 0 1 t = 40 0 0 130 c + 4 0 0 13 p + ` 0 0 < 4 13 where t = 0 @ t 1 t 2 t 3 1 A p = p 1 p 2 c = c 1 c 2 = `1 `2 c 2 = 0 and = 0 1 0 0 0 1 C = 4 0 0 13 P = 10 0 0 10 In this example, the distribution is of type BLOCK in the last dimension, thus the added c 2 = 0. If a dimension of a template is collapsed on the processors, the corresponding coordinate is useless because even if it is used to distribute the dimension of an array, this dimension is collapsed on the processors. Thus it can be discarded from the equations. It means that it can be assumed that = I in Equation (3) if these useless dimensions are removed by a normalization process.

Iteration domains and subscript functions

Although iteration domains and subscript functions do not concern directly the placement and the distribution of the data in Hpf, they must be considered for the code generation. Since loops are assumed INDEPENDENT with a ne bounds, they can be represented by a set of inequalities on the iteration vectors i: The original enumeration order is not kept by this representation, but the independence of the loop means that the result of the computation does not depend on this very order. The array reference links the iteration vector to the array dimensions. Let us consider for instance the example in Figure 6. The iteration domain can be translated into a parametric (n 1 and n 2 may not be known at compile time) form, where the constant v ector is a function over the parameters. Thus the set of constraints for the loop nest iterations, with the additional change of variable j = 3 i 2 + 1 to normalize the loop 87], is: 0 B B @ 0 ;1

0 3 1 0 ;1 3 1 C C A i 1 i 2 0 B B @ 0 n 1 ; 1 n 2 + 1 ;3 1 C C A
Moreover the array reference can also be translated into a set of linear equalities:

a = a 1 a 2 = 2 0 1 ;3 i 1 i 2 + 1 n 1 ; 1
In the general case, a set of constraints is derived for the iteration domain of the loop nest (Equation (5), where n stands for a vector of parameters for the loop nest)

and for the array references (Equation (6)).

Li b 0 (n)

(5) a = Si+ a 0 (n) (6)

Putting it all together

Let us now consider the example in Figure 7. According to the previous Sections, all the declaration of distributions, alignments, arrays, processors and templates, iterations and references can be rewritten as real A(0:42) !HPF$ template T(0:127) !HPF$ processors P(0:3) !HPF$ align A(i) with T(3*i) !HPF$ distribute T(cyclic(4)) onto P A(0:U:3) = ...

? c - l f v v v v v v v v v v v v v v v 0 1 2 3 4 5 6 7 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 p = 0 p = 1 p = 2 p = 3
1 0 t < T:1 Rt = Aa + s 0 t = CPc+ Cp+ ` Li b 0 (n) a = Si+ a 0 (n) where D = (4 3) T = (128) A = (3) s 0 = (0) R = (1) C = (4) P = (4) L = 3 ;3 b 0 (n) = U 0 S = (3) a 0 (n) = (0)
The array mapping of A is represented by the \ " o r \ " on Figure 8 and the written elements (if U = 42) of A with \ ". As can be seen on this 2d representation of a 3d space, the mapping and the access are done according to a regular pattern, namely a lattice. This is exploited to translate the compilation problem in a linear algebra framework.

Overview of the compilation scheme

The compilation scheme is based on the Hpf declarations, the owner computes rule and the spmd paradigm, and deals with INDEPENDENT loops. Loop bound expressions and array subscript expressions are assumed a ne. Such a parallel loop independently assigns elements of some left hand side X with some right hand side expression f on variables Y, Z,: : : (Figure 9). The loop is normalized to use unit steps as explained in the previous section. Since the loop is independent, S X must be injective o n t h e iteration domain for an independent parallel loop to be deterministic. The n models external runtime parameters that may b e i n volved in some subexpressions, namely the loop bounds and the reference shifts.

The Hpf standard does not specify the relationship between the Hpf processors and the actual physical processors. Thus, e ciently compiling loop nests involving arrays distributed onto di erent processor sets without further speci cation is beyond the scope of this paper. But if the processor virtualization process can be represented by a ne functions, which w ould be probably the case, we can encompass these di erent processor sets in our framework by remaining on the physical processors. In the following we assume for clarity that the interfering distributed array s i n a l o o p n e s t a r e distributed on the same processors set.

INDEPENDENT(i) forall(Li b 0 (n)) X(S X i + a X0 (n)) = f(Y(S Y i + a Y0 (n)), Z(S Z i + a Z0 (n)))
Figure 9: Generic loop

Own Set

The subset of X that is allocated on processor p according to Hpf directives must be mapped onto an array of the output program. Let Own X (p) be this subset of X and X 0 the local array mapping this subset. Each element o f Own X (p) m ust be mapped to one element o f X 0 but some elements of X 0 may not be used. Finding a good mapping involves a tradeo between the memory space usage and the access function complexity. This is studied in Section 4.3. Subset Own X (p) is derived from Hpf declarations, expressed in an a ne formalism (see Section 2), as:

Own X (p) = a j 9 t 9c 9` s:t: R X t = A X a + s X0 ^t = C X Pc+ C X p + `X ^0 a < D X :1 ^0 p < P : 1 ^0 < C X :1 ^0 t < T X :1
Subset Own X (p) can be mapped onto a Fortran array b y projection on c and `, o r on any equivalent s e t o f v ariables, i.e. up to an injective mapping. Although Own is not a dense polyhedron as de ned here, it can be seen as such in the higher dimensional (a c `) space. Thus this view is used in the following, although our interest it just to represent the array elements a. Note that for a given distributed dimension a i there is one and only one corresponding (p j c j j) triplet.

Compute set

Using the owner computes rule, the set of iterations local to p, Compute(p), is directly derived from the previous set, Own X (p). The iterations to be computed by a g i v en processor are those of the loop nest for which t h e lhs are owned by the processor: Compute(p) = fi j S X i + a X0 (n) 2 Own X (p) ^Li b 0 (n)g Note that Compute(p) a n d Own X (p) are equivalent sets if the reference is direct (S X = I, a X0 = 0) and if the iteration and array spaces conform. This is used in Section 4.3 to study the allocation of local arrays as a special case of local iterations. According to this de nition of Compute, when X is replicated, its new values are computed on all processors having a copy. Depending on a tradeo between communication and computation speed, the optimal choice may be to broadcast the data computed once in parallel rather than computing each v alue locally.

View set

The subset of Y (or Z,...) used by the loop that compute X is induced by the set of local iterations:

View Y (p) = fa j 9 i 2 Compute(p) s:t: a = S Y i + a Y0 (n)g Note that unlike S X , matrix S Y is not constrained and cannot always be inverted.

If the intersection of this set with Own Y (p) i s n o n -e m p t y, some elements needed by processor p for the computation are fortunately on the same processor p. Then, in order to simplify the access to View Y (p) without having to care about dealing di erently with remote and local elements in the computation part, the local copy Y 0 may b e enlarged so as to include its neighborhood, including View Y (p). The neighborhood is usually considered not too large when it is bounded by a n umerical small constant, which i s t ypically the case if X and Y are identically aligned and accessed at least on one dimension up to a translation, such as encountered in numerical nite di erence schemes. This optimization is known as overlap analysis 38]. Once remote values are copied into the overlapping Y 0 , all elements of View Y (p) can be accessed uniformly in Y 0 with no overhead. However such an allocation extension may be considered as very rough and expensive in some cases (e.g. a m a t r i x m ultiplication), because of the induced memory consumption. A reusable temporary array might be preferred, and locally available array elements must be copied. Such tradeo s to be considered in the decision process are not discussed in this paper, but present the techniques for implementing both solutions.

When Y (or X, o r Z,...) is referenced many times in the input loop or in the input program, these references must be clustered according to their connexion in the dependence graph 5]. Input dependencies are taken into account a s w ell as usual ones (ow-, anti-and output-dependencies). If two references are independent, they access two distant area in the array and two di erent local copies should be allocated to reduce the total amount of memory allocated: a unique copy w ould be as large as the convex hull of these distant regions. If the two references are dependent, only one local copy should be allocated to avoid any consistency problem between copies. If Y is a distributed array, its local elements must be taken into account as a special reference and be accessed with (p c `) instead of i.

The de nition of View is thus altered to take i n to account a r r a y regions. These regions are the result of a precise program analysis which is presented in 80, 50, 9, 11, 10, 33, 32, 3 1]. An array region is a set of array elements described by equalities and inequalities de ning a convex polyhedron. This polyhedron may be parameterized by program variables. Each array dimension is described by a v ariable. The equations due to subscript expression S Y are replaced by the array region, a parametric polyhedral subset of Y which can be automatically computed. For instance, the set of references to Y performed in the loop body of:

do i2 = 1, N do i1 = 1, N X(i1,i2) = Y(i1,i2) + Y(i1-1,i2) + Y(i1,i2-1) enddo enddo
is automatically summarized by the parametric region on a Y = (y 1 y 2) for the Y refer- ence in the loop body of the example above a s : Y(y 1 ,y 2):f(y 1 y 2) j y 1 i 1 ^y2 i 2 ^i1 + i 2 y 1 + y 2 + 1 g Subset View Y is still polyhedral and array bounds can be derived by projection, up to a c hange of basis. If regions are not precise enough because convex hulls are used to summarize multiple references, it is possible to use additional parameters to exactly express a set of references with regular holes 4]. This might be useful for red-black sor.

As mentioned before, if Y is a distributed array and its region includes local elements, it might be desired to simply extend the local allocation so as to simplify the addressing and to allow a uniform way of accessing these array elements, for a given processor p Y and cycle c Y . The required extension is computed simply by mixing the distribution and alignment equations to the View Y description. For the example above, assuming that X and Y are aligned and thus distributed the same way, the overlap is expressed on the block o s e t `Y with:

R Y t = A Y a Y + s Y0 t = CPc Y + Cp Y + `Y a Y 2 View Y (p)
Vectors c Y and p Y are constrained as usual by the loop, the processor declaration and the template declaration of X but vector `Y is no more constrained in the block size (C). It is indirectly constrained by a Y and the Y region. This leads to a ;1 `Y lower bound instead of the initial 0 `Y, expressing the size 1 overlap on the left.

Send and Receive Sets

The set of elements that are owned by p and used by other processors and the set of elements that are used by p but owned by other processors are both intersections of previously de ned sets:

Send Y (p p 0) = Own Y (p) \ View Y (p 0) Receive Y (p p 0) = View Y (p) \ Own Y (p 0)
These two sets cannot always be used to derive the data exchange code. Firstly, a processor p does not need to exchange data with itself. This cannot be expressed directly as an a ne constraint and must be added as a guard in the output code1 . Secondly, replicated arrays would lead to useless communication: each o wner would try to send data to each viewer. An additional constraint should be added to restrict the sets of communications to needed ones. Di erent t e c hniques can be used to address this issue: (1) replication allows broadcasts and/or load-balance, what is simply translated into linear constraints as described in 29]. (2) The a ectation of owners to viewers can also be optimized in order to reduce the distance between communicating processors.

For instance, the cost function could be the minimal Manhattan distance2 between p and p 0 or the lexicographically minimal vector3 p 0 ; p if the interconnection network is a jpj-dimension grid4 . A c o m bined cost function might e v en be better by taking advantage of the Manhattan distance to minimize the number of hops and of the lexicographical minimum to insure uniqueness. These problems can be cast as linear parametric problems and solved 35].

When no replication occurs, elementary data communications implied by Send Y and

Receive Y can be parametrically enumerated in basis (p u), where u is a basis for Y 0 , the local part of Y, the allocation and addressing of which are discussed in Section 4.3.

Send and Receive are polyhedral sets and algorithms in 4] can be used. If the last component o f u is allocated contiguously, v ector messages can be generated.

Output SPMD code

The generic output spmd code, parametric on the local processor p, is shown in Fig-

ure [START_REF]Calcul de r egions de tableaux exactes[END_REF]. U represents nay l o c a l a r r a y generated according to the dependence graph.

Communications between processors can be executed in parallel when asynchronous send/receive calls and/or parallel hardware is available as in Transputer-based machines or in the Paragon. The guards Send U , : : : can be omitted if unused Hpf processors are not able to free physical processors for other useful tasks. The loop bound correctness ensures that no spurious iterations or communications occur. The parallel loop on U can be exchanged with the parallel inner loop on p 0 included in the forall. This other ordering makes message aggregation possible. This code presented in Figure 10 is quite di erent from the one suggested in 58, 5 7] .

Firstly, the set of local iterations Compute(p) is no longer expressed in the i frame but in the (c `) frame: There is no actual need to know about the initial index values in real X 0 ((c `) 2 Own X (p)), Y 0 ((c `) 2 View Y (p)), Z 0 ((c `) 2 View Z (p)) forall(U 2 f Y 0 Z 0 : : : g) forall((p p 0) p 6 = p 0 Send U (p p 0) 6 = ?) forall((` c) 2 Send U (p p 0)) send(p 0 , U(` c)) forall(U 2 f Y 0 Z 0 : : : g) forall((p p 0) p 6 = p 0 Receive U (p p 0) 6 = ?) forall((` c) 2 Receive U (p p 0))

U(` c) = receive(p 0) if Compute(p) 6 = ? forall((` c) 2 Compute(p)) X 0 (S X 0 (` c)) = f (Y 0 (S Y 0 (` c)), Z 0 (S Z 0 (` c)),...)
Figure 10: The output spmd code.

the original code. Secondly, no di erence is made between local and non-local iteration computations, at the price of possible communication and computation overlaps, but at the bene ce of an homogeneous addressing: Only one reference and addressing should be generated for each original reference in the computation expression, thus avoiding costly code duplications or runtime guards to deal with each reference of an expression that may o r m a y not be locally available at every iteration. The temporary array management and addressing issues are discussed further in the next sections. Thirdly, non-local iterations computed as a set di erence is not likely to produce an easily manageable set for code generation, since it should generally be non convex. Thirdly, the parametric description of the communications allows to enumerate a subset of active processors.

Additional changes of basis or changes of coordinates must be performed to reduce the space allocated in local memory and to generate a minimal number of more ecient scanning loops. Each c hange must exactly preserve i n teger points, whether they represent a r r a y elements or iterations. This is detailed in the next section.

Re nement

The pseudo-code shown in Figure 10 is still far from Fortran. Additional changes of coordinates are needed to generate proper Fortran declarations and loops.

Enumeration of iterations

A general method to enumerate local iterations is described below. It is based on (1) solving Hpf and loop Equations, both equalities (2, 3, 6) and inequalities (4, 5), on (2) searching a good lattice basis to scan the local iterations in an appropriate order using p as parameter since each processor knows its own identity and (3) on using linear transformations to switch from the user visible frame to the local frame.

In this section, a change of frame is computed based on the available equalities to nd a dense polyhedron that can be scanned e ciently with standard techniques. The change of frame computation uses two Hermite forms to preserve the order of the (` c) v ariables which are related to the allocation scheme, for bene ting from cache e ects.

Simplifying formalism

The subscript function S and loop bounds are a ne. All object declarations are normalized with 0 as lower bound. The Hpf array mapping is also normalized: = I.

Under these assumptions and according to Section 2, Hpf declarations and Fortran references are represented by the following set of equations: alignment (2) Rt = Aa + s 0 distribution (3) t = CPc+ Cp+ à ne reference (6) a = Si+ a 0 (n) 9 > = > [START_REF] Fran Coise Andr E | Compiling sequential programs for distributed memory parallel computers with Pandore II[END_REF] where p is the processor vector, `the local o set vector, c the cycle vector, a the accessed element i the iteration and n the parameters.

Problem description

Let x be the following set of variables:

x = (` c a t i) [START_REF] Fran Coise Andr E | Parallelization of a Wave Propagation Application using a Data Parallel Compiler[END_REF] They are needed to describe array references and iterations. The order of the `and c variables chosen here should be re ected by the local allocation in order to bene t from cache e ects. This order suits best cyclic distributions, as discussed in 83], because there should be more cycles (along c) than block elements (along `) in such cases. Putting the block o set after the cycle numb e r f o r a g i v en dimension would lead to larger inner loops for more b l o ck distributions. Note that the derivations discussed in this section are independent of this order. Equation (7) can be rewritten as Fx= f 0 (n p) [START_REF] Fran Coise Andr E | Pandore: A system to manage data distribution[END_REF] with F = 0 @ 0 0 A ;R 0 I CP 0 ;I 0 0 0 ;I 0 S 1 A and f 0 (n p) = 0 @ s 0 ;Cp a 0 (n)

1 A [START_REF]Calcul de r egions de tableaux exactes[END_REF] For instance in the Chatterjee et al. example in Figure 7, Equation 10 is: 0 @ 0 0 1 ;1 0 1 16 0 ;1 0 0 0 ;1 0 3

1 A 0 B B B B B @ `c a t i 1 C C C C C A = 0 @ 0 ;4p 0 1 A
The set of interest is the lattice F = fxjFx= f 0 (n p)g. The goal of this section is to nd a parametric solution for each component o f x. This allows each processor p to scan its part of F with minimal control overhead.

It is important to note that F is of full row-rank. The rows contain distinct variables that insure their independence one from the other: Firstly, the alignment equations are composed of independent equalities (they di er from a variables) This is also the case for the distribution and reference equations because of the `and t variables. Secondly the equalities composing the distribution equations are the only to contain `variables, thus they are independent from the alignment and reference. Thirdly, the alignment and reference equations are separated by the template variables thru R. Since all equalities are independent, F is a full row-rank. Note that Hpf restrictions about alignment are not exploited.

If additional equalities are taken into account, such as those arising from simple block (c i = 0) or cyclic (`i = 0) distributions, they can be used to remove the variables from the equation and do not actually change this property. Other degenerated cases may arise (for instance, there is only one processor on a given dimension: : :), but they are not actually discussed here. Our general scheme can directly take advantage of such extra information to optimize the generated code by including it as additional equalities and inequalities.

Parametric solution of equations

Lattice F is implicitly de ned but a parametric de nition is needed to enumerate its elements for a given processor p. T h e r e a r e t wo kinds of parameters that must be set apart. First the constant unknown parameters n and local processor id p the value of which are known at runtime on each processor. Second, the parameters we are interested in, that have t o b e e n umerated or instantiated on each processor to scan the integer solutions to the Hpf equations, namely the variables in vector x.

An Hermite form 76] o f i n teger matrix F is used to nd the parameters. This form associates to F (an n m matrix with m n) three matrices H, P and Q, such that H = PFQ . P is a permutation (a square n n matrix), H an n m lower triangular integer matrix and Q an m m unimodular change of basis. Since F is of full row-rank, no permutation is needed: P = I and H = FQ(a). By de nition, H is a l o wer triangular matrix, and thus can be decomposed as H = (H L 0), where H L is an n n integer triangular square matrix. We k n o w that jH L j 2 f ; 1 1g. Indeed, H L is of full rank (as F) and the column combinations performed by the Hermite form computation puts unit coe cients on H L diagonal. This is insured since independent unit coe cients appear in each r o w o f F. T h us H L is an integer triangular unimodular matrix, and has an integral inverse. Now w e can use Q as a change of basis between new variables v and x, with v = Q ;1 x (b). Vector v can also be decomposed like H in two components: v = (v 0 v 0), where jv 0 j is the rank of H. Using (a) and (b) Equation (9) can be rewritten as:

Fx= FQ Q ;1 x = Hv= (H L 0)(v 0 v 0) = H L v 0 = f 0 (n p) v 0 is a parametric solution at the origin which depends of the runtime value of the n and p parameters. Thus we h a ve v 0 (n p) = H ;1 L f 0 (n p). By construction, H does not constrain v 0 and Q can also be decomposed like v as Q = (Q 0 F 0). Lattice F can be expressed in a parametric linear way:

x = Qv = (Q 0 F 0)(v 0 (n p) v 0) = Q 0 v 0 (n p) + F 0 v 0
and with x 0 (n p) = Q 0 v 0 (n p) = Q 0 H ;1 L f 0 (n p): F = fxj9v 0 s:t: x = x 0 (n p) + F 0 v 0 g [START_REF]R egions exactes et privatisation de tableaux (exact array region analysis and array privatization)[END_REF] We h a ve switched from an implicit (9) description of a lattice on x to an explicit [START_REF]R egions exactes et privatisation de tableaux (exact array region analysis and array privatization)[END_REF] one through F 0 and v 0 . Note that F 0 is of full column-rank.

Cache-friendly order

As mentionned earlier, the allocation is based somehow on the (` c) v ariables. The order used for the enumeration should re ect as much as possible the one used for the allocation, so as to bene t from memory locality. Equation (11) is a parametric de nition of x . H o wever the new variables v 0 are not necessarily ordered as the variables we a r e i n terested in. The aim of this paragraph is to reorder the variables as desired, by computing a new transformation based on the Hermite form of F 0 . Let H 0 = P 0 F 0 Q 0 be this form. Let Q 0 de ne a new basis: u = Q 0;1 v 0 (12) x ; x 0 (n p) = F 0 v 0 = P 0;1 H 0 Q ;1 v 0 = P 0;1 H 0 u [START_REF] Balasa | Transformation on nested loops with modulo indexing to a ne recurrences[END_REF] If P 0 = I, the new generating system of F is based on a triangular transformation between x and u [START_REF] Balasa | Transformation on nested loops with modulo indexing to a ne recurrences[END_REF]. Since H 0 i s a l o wer triangular integer matrix, the variables of u and of x simply correspond one to the other. Knowing this correspondance allows to order the variable u components to preserve l o c a l i t y of accesses. If P 0 6 = I, the variables are shu ed and some cache e ect may b e l o s t . H o wever we h a ve n e v er encountered such an example.

Let Kx k 0 (n) be these constraints on x. Using (13) the constraints on u can be written K(x 0 (n p) + P 0;1 H 0 u) k 0 (n), that is K 0 u k 0 0 (n p), where K 0 = KP 0;a H 0 and k 0 0 (n p) = k 0 (n) ; Kx 0 (n p).

Algorithms presented in 4] or others 35, 3 0 , 53, 2, 24, 23, 62, 5 9 , 5 4 , 86] can be used to generate the loop nest enumerating the local iterations. When S is of rank jaj, optimal code is generated because no projections are required. Otherwise, the quality of the control overhead depends on the accuracy of integer projections 73] but the correctness does not.

Correctness

The correctness of this enumeration scheme stems from (1) the exact solution of integer equations using the Hermite form to generate a parametric enumeration, from (2) the unimodularity of the transformation used to obtain a triangular enumeration, and from (3) the independent parallelism of the loop which a l l o ws any e n umeration order.

Symbolic resolution

The previous method can be applied in a symbolic way, if the dimensions are not coupled and thus can be dealt with independently, a s a r r a y sections in 25, [START_REF] Gupta | An HPF Compiler for the IBM SP2[END_REF][START_REF] Stichnoth | Generating communication for array statements: Design, implementation and evaluation[END_REF]. Equations (7) then become for a given dimension: alignment t = a + t 0 distribution t = c+ p+ à ne reference a = i+ a 0 9 > = > [START_REF] Balasundaram | A technique for summarizing data access and its use in parallelism enhancing transformations[END_REF] where is the number of processors (a diagonal coe cient o f P), and the block size (i.e. a diagonal coe cient i n C). In order to simplify the symbolic resolution, variables a and t are eliminated. The matrix form of the system is then f 0 = (a 0 + t 0 ; p), x = (` c i) a n d F = (1 ;). The Hermite form is H = (10 0) = PFQ , with P = I and:

Q = 0 B @ 1 ; 0 1 0 0 0 1 1 C A
Let g, and ! be such that g is gcd() a n d g = ; ! is the Bezout identity. T h e Hermite form H 0 of the two r i g h tmost columns of Q noted F 0 (H 0 = P 0 F 0 Q 0) i s s u c h that x ; x 0 = H 0 u with:

H 0 = 0 B @ ;g 0 g ! g 1 C A x 0 = 0 B @ a 0 + t 0 ; p 0 0 1 C A P 0 = I and Q 0 = g ! g
This links the two unconstrained variables u to the elements x of the original lattice F. V ariables a and t can be retrieved using Equations [START_REF] Balasundaram | A technique for summarizing data access and its use in parallelism enhancing transformations[END_REF].

The translation of constraints on x to u gives a way to generate a loop nest to scan the polyhedron. Under the assumption > 0 a n d > 0, assuming that loop bounds 8p 2 0 : : : ; 1] do u 1 = a 0 +t 0 ; p+ +g;2 g , a 0 +t 0 ; p g do u 2 = ;!u 1 + g ;1 g , ;1;!u 1 g x = H 0 u + x 0 (p) Figure 11: Generated code are rectangular5 and using the constraints in K: 0 < 0 a < s 0 i < the constraints on x (the a one is redundant if the code is correct) are:

B B B @

;1 0 0

1 0 0 0 0 ;1 0 0 1 1 C C C A 0 B @ c i 1 C A 0 B B B @ 0 ; 1 0 ; 1 1 C C C A
and can be translated as constraints on u:

0 B B B @ g 0 ;g 0 ;! ; g ! g 1 C C C A u 1 u 2 ! 0 B B B @ a 0 + t 0 ; p ; a 0 ; t 0 + p+ ; 1 0 ; 1 1 C C C A
The resulting generic spmd code for an array section is shown in Figure 11. As expected, the loop nest is parameterized by p, the processor identity. I n teger divisions with positive remainders are used in the loop bounds.

HPF array allocation

The previous two sections can also be used to allocate local parts of Hpf distributed arrays. A loop nest referencing a whole array through an identity subscript function (S = I a 0 = 0) serves as a basis for the allocation. The dense polyhedron obtained by the changes of bases for the enumeration purpose can be used to store the required elements, since local iterations and local elements are strictly equivalent. Thus the constraints on local iterations can be reused as constraints on local elements.

However, Fortran array declarations are based on Cartesian sets and are not as general as Fortran loop bounds. General methods have been proposed to allocate polyhedra 85]. For or particular case, it is possible to add another change of frame to t Fortran array declaration constraints better and to reduce the amount of allocated memory at the expense of the access function complexity. An array dimension can be collapsed or distributed. If the dimension is collapsed no packing is needed, so the initial declaration is preserved. If the dimension is aligned, there are three corresponding coordinates (p ` c). For every processor p, local (` c) pairs have t o b e p a c ked onto a smaller area. This is done by rst packing up the elements along the columns, then by r e m o ving the empty ones. Of course, a dual m e t h o d i s t o p a c k rst along the rows, then removing the empty ones. This last method is less e cient for the example on Figure 12 since it would require 16 (8 2) elements instead of 12 (3 4). The two p a c king schemes can be chosen according to this criterion. Other issues of interest are the induced e ects for the cache behavior and the enumeration costs. Formulae are derived below to perform these packing schemes.

Packing of the symbolic resolution

Let us consider the result of the above s y m bolic resolution, when the subscript expression is the identity (= 1 a 0 = 0). The equation between u and the free variables of x is obtained by selecting the triangular part of H 0 , i.e. its rst rows. If H 00 = (I 0)H 0 is the selected sub-matrix, we h a ve x 0 ; x 0 0 = H 00 u, i.e.: `; t 0 + p c

! = ;g 0 g ! u 1 u 2 !
Variables and a 0 were substituted by their values in the initial de nition of H 0 . Variables (u 1 u 2) could be used to de ne an e cient p a c king, since holes are removed by the rst change of basis (Figure 12). In order to match simply and closely the ` c space, the sign of u 1 (linked to `) c a n b e c hanged, and the vector should be shifted so that the rst local array element i s m a p p e d n e a r (0 0). 0 p ; 1 0 ` ; 1 t 0 c (s ; 1) + t 0 array A'(0: & max(c);min(c)+1 g ' ,0: g) Figure 13: Local new declaration Some space may b e w asted at the beginning and end of the allocated space. For a contrived example (with very few cycles) the wasted space can represent an arbitrary amount o n e a c h dimension. Let us assume that two third of the space is wasted for a given dimension. Thus the memory actually used for an array with 3 of these dimensions is 1=27 and 26=27 of the allocated memory is wasted: : : If such a case occurs, the allocation may b e s k ewed to match a rectangle as closely as possible. This may be done if space is at a premium and if more complex, non-a ne access functions are acceptable. The improved and more costly scheme is described in the next section.

Allocation basis

Let M be the positive diagonal integer matrix composed of the absolute value of the diagonal coe cients of H 00 . u 0 = alloc(u) = bM ;1 (x 0 ; x 0 0)c = bM ;1 H 00 uc [START_REF] Banerjee | An Overview of the PARADIGME Ccompiler for Distributed-Memory Multicomputers[END_REF] M provides the right parameters to perform the proposed packing scheme. To every u a v ector u 0 is associated through Formula 15. This formula introduces an integer division. Let's show w h y u 0 is correct and induces a better mapping of array elements on local memories than u. Since H 00 is lower triangular, Formula 15 can be rewritten: 8i 2 1 : : : juj] u 0 i = h i i jh i i j u i + P i;1 j=1 h i j u j jh i i j [START_REF] Benkner | Handling Block-Cyclic Distributed Arrays in Vienna Fortran[END_REF] Function alloc(u) is bijective: alloc(u) is injective: if u a and u b are di erent v ectors, and i is the rst dimension for which they di er, Formula 16 shows that u 0a i and u 0b i will also di er. The function is also surjective, since the property a l l o ws to construct a vector that matches any u 0 by induction on i.

Array declaration

Two of the three components of x 0 , namely p and `, are explicitly bounded in K. Implicit bounds for the third component, c, are obtained by projecting K on c. These three pairs of bounds, divided by M, are used to declare the local part of the Hpf array. Figure 13 shows the resulting declaration for the local part of the array, in the The packing scheme induced by u 0 is better than the one induced by u because there are no non-diagonal coe cients between u 0 and x 0 that would introduce a waste of space, and u 0 is as packed as u because contiguity is preserved by F ormula 16. The row packing scheme would have been obtained by c hoosing (c `) instead of (` c) f o r x 0 . Di erent c hoices can be made for each dimension. The access function requires an integer division for the reduced memory allocation. Techniques have been suggested to handle divisions by i n variant i n tegers e ciently 41] that could help reduce this cost. Also, because contiguity is preserved, only one division per column is required to compute the base location. These packing schemes de ne two parameters (u 0 1 u 0 2) to map one element of one dimension of the Hpf array to the processor's local part.

The local array declaration can be linearized with the u 0 3 dimension rst, if the Fortran limit of 7 dimensions is exceeded.

Properties

The proposed iteration enumeration and packing scheme has several interesting properties. It is compatible with e cient c a c he exploitation and overlap analysis. Moreover, some improvements can statically enhance the generated code.

According to the access function, the iteration enumeration order and the packing scheme in Figure 11 can be reversed via loop u 2 direction in order that accesses to the local array are contiguous. Thus the local cache and/or prefetch m e c hanisms, if any, are e ciently used. The packing scheme is also compatible with overlap analysis techniques 38]. Local array declarations are extended to provide space for border elements that are owned by neighbor processors, and to simplify accesses to non-local elements. The overlap is induced by relaxing constraints on `, which is transformed through the scheme as = 3 t 0 = 0 = 3 a 0 = 0 = 4 = 4 = 1 5 8p 2 0 : : : 3] do u 0 1 = 0, 3 lb 2 = 16p+4u 0 1 +8 9 u b 2 = 16p+4u 0 1 +7 9 lb 0 2 = 9lb2;4u 0 1 ;16p 3 do u 0 2 = lb 0 2 , lb 0 2 + (ub 2 ; lb 2) : : : 2 . This allows overlaps to be simply considered by the scheme. Moreover a translated access in the original loop leading to an overlap is transformed into a translated access in the local spmd generated code.

For example unsing the Hpf array mapping of Figure 7: The generic code proposed in Figure 11 can be greatly improved in many cases. Integer division may be simpli ed, or performed e ciently with shifts, or even removed by strength reduction. Node splitting and loop invariant code motion should be used to reduce the control overhead. Constraints may also be simpli ed, for instance if the concerned elements just match a cycle. Moreover, it is possible to generate the loop nest directly on u 0 , when u is not used in the loop body. F or the main example in 25], such transformations produce the code shown in Figure 15.

In the general resolution (Section 4.1) the cycle variables c were put after the local o sets `. The induced inner loop nest is then on c. I t m a y b e i n teresting to exchange ànd c in x 0 when the block size is larger than the number of cycles: the loop with the larger range would then be the inner one. This may be useful when elementary processors have s o m e v ector capability.

Allocation of temporaries

Temporary space must be allocated to hold non-local array elements accessed by l o c a l iterations. For each l o o p L and array X, this set is inferred from Compute L (p) a n d from subscript function S X . F or instance, references to array Y in Figure 18 require local copies. Because of Y's distribution, overlap analysis is ne but another algorithm is necessary for other cases.

Let us consider the generic loop in Figure 9 and assume that local elements of Y cannot e ciently be stored using overlap analysis techniques. First of all, if all or most of local elements of the lhs reference are de ned by the loop nest, and if S Y has the same input: fy = f:w Ww 0g output: fy 0 = f 0 :wg initial system: f 0 = f for i = 1 : : : (jwj ; 1) g i = g c d (ff i;1 j j>i g) T i = ftjt = P j i f i;1 j w j ^Ww j 0g s i = m a x t2Ti t ; min t2Ti t if (s i g i) then f i = f i;1 else 8j i f i j = f i;1 j and 8j > i f i j = f i;1 j gi s i end for f 0 = f jwj;1 Figure 16: Heuristic to reduce allocated space rank as S X , temporaries can be stored as X. If furthermore the access function S X uses one and only one index in each dimension, the resulting access pattern is still Hpf like, so the result of Section 4.3 can be used to allocate the temporary array. Otherwise, another multi-stage change of coordinates is required to allocate a minimal area. The general idea of the temporary allocation scheme is rst to reduce the number of necessary dimensions for the temporary array v i a a n Hermite transformation, then to use this new basis for declaration, or the compressed form to reduce further the allocated space.

The set of local iterations, Compute(p), is now de ned by a new basis and new constraints, such that x ; x 0 = P 0;1 H 0 u (13) and K 0 u k 0 . Some rows of P 0;1 H 0 de ne iteration vector i, w h i c h i s p a r t o f x [START_REF] Fran Coise Andr E | Parallelization of a Wave Propagation Application using a Data Parallel Compiler[END_REF]. Let H 0 i be this sub-matrix: i = H 0 i u. Let H Y = P Y S Y Q Y be S Y 's Hermite form. Let v = Q ;1 Y i be the new parameters, then S Y i = P ;1 Y H Y v. V ector v can be decomposed as (v 0 v 00) w h e r e v 0 = v contributes to the computation of i and v 00 belongs to H Y 's kernel. If H YL is a selection of the non-zero columns of H Y = (H YL 0), then we h a ve: a Y ; a Y0 = S Y i = P ;1 Y H YL v 0 v 0 = Q ;1 Y i and by substituting i: v 0 = Q ;1 Y H 0 i u It is sometime possible to use x 0 instead of v 0 . F or instance, if the alignments and the subscript expressions are translations, i is an a ne function of x 0 and v 0 simply depends on x 0 . The allocation algorithm is based on u but can also be applied when x 0 is used instead.

Since the local allocation does not depend on the processor identity, the rst jpj components of u should not appear in the access function. This is achieved by d e c o mposing u as (u 0 u 00) with ju 0 j = jpj and Q ;1 Y H 0 i in (F P F Y) such that: v 0 = F P u 0 + F Y u 00 and the local part v 00 is introduced as:

v 00 = F Y u 00
Then the rst solution is to compute the amount of memory to allocate by projecting constraints K onto v 00 . This is always correct but may l e a d t o a w aste of space because periodic patterns of accesses are not recognized and holes are allocated. In order to reduce the amount of allocated memory, a heuristic, based on large coe cients in F Y and constraints K, is suggested.

Each dimension, i.e. component o f v 00 , is treated independently. Let F i Y be a line of F Y and y the corresponding component o f v 00 : y = fv 00 . A c hange of basis G (not related to the previous alloc operation) is applied to v 00 to reduce f to a simpler equivalent linear form f 0 where each coe cient appears only once and where coe cients are sorted by increasing order. For instance: f = (1 63 ;4 ;16 0) is replaced by:

f = f 0 G G = 0 B @ 0 1 0 0 0 0 0 ;1 0 0 1 0 0 ;1 0 1 C A f 0 = (3 4 16)
and v 00 is replaced by w = Gv 00 . Constraints K on u are rewritten as constraints W on w by r e m o ving the constraints due to processors and by using projections and G. Linear form f is then processed by the heuristic shown in Figure 16. It reduces the extent b y si gi at each step, if the constraints W show that there is a hole. A hole exists when g i is larger than the extent of the partial linear form being built, under constraints W. Linearity of access to temporary elements is preserved.

This scheme is correct if and only if a unique location y 0 is associated to each y.

Further insight on this problem, the minimal covering of a set by i n terval congruences, can be found in 40, 6 7].

Data movements

The relationships between the bases and frames de ned in the previous sections are shown in Figure 17. Three areas are distinguished. The top one contains user level bases for iterations, i, and array elements, a X , a Y ,... The middle area contains the bases and frames used by the compiler to enumerate local iterations, u, and to allocate local parts of Hpf arrays, a 0 X , a 0 Y ,... as well as the universal bases, x 0 X and x 0 Y , used to de ne the lattices of interest, F and F 0 . The bottom area shows new bases used to allocate temporary arrays, a 00 Y and a 000 Y , as de ned in Section 4.5. Solid arrows denote a ne functions between di erent spaces and dashed arrows denote possibly non-a ne functions built with integer divide and modulo operators. A quick look at these arrows shows that u, which w as de ned in Section 4.1 is the central Two kinds of data exchanges must be generated: updates of overlap areas and initializations of temporary copies. Overlap areas are easier to handle because the local parts are mapped in the same way o n e a c h processor, using the same alloc function. Let us consider array X in Figure 17. The send and receive statements are enumerated from the same polyhedron, up to a permutation of p and p 0 , with the same basis u. To e a c h u corresponds only one element in the user space, a X , b y construction6 of u. To e a c h a X corresponds only one a 0 X on each processor 7 . As a result, data exchanges controlled by l o o p o n u enumerate the same element at the same iteration.

Because the allocation scheme is the same on each processor, the inner loop may be transformed into a vector message if the corresponding dimension is contiguous and/or the send/receive library supports constant but non-unit strides. Block copies of larger areas also are possible when alloc is a ne, which is not the general case from a theoretical point of view but should very often happen in real applications.

Temporary arrays like Y 00 and Y 000 are more di cult to initialize because there is no such identity b e t ween their allocation function as local part of an Hpf array, a l l o c Y , and their allocation functions as temporaries, t alloc Y 00 and t alloc Y 000 . H o wever, basis u can still be used.

When the temporary is allocated exactly like the master array, e.g. Y 000 and X 0 , any e n umeration of elements u in U enumerates every element a 000 Y once and only once because the input loop is assumed independent. On the receiver side, a 000 Y is directly derived from u. On the sender side, a Y is computed as S Y F i u and a non-a ne function is used to obtain x 0 Y and a 0 Y . Vector messages can be used when every function is a ne, because a constant stride is transformed into another constant stride, and when such transfers are supported by the target machine. Otherwise, calls to packing and unpacking routines can be generated.

When the temporary is allocated with its own allocation function M, it is more di cult to nd a set of u enumerating exactly once its elements. This is the case for copy Y 00 in Figure 17. Elements of Y 00 , a 00 Y , m ust be used to compute one related u among many possible one. This can be achieved by using a pseudo-inverse of the access matrix M: u = M t (MM t) ;1 a 00 Y [START_REF] Benkner | Processing Array Statements and Procedure Interfaces in the Prepare High Performance Fortran Compiler[END_REF] Vector u is the rational solution of equation a 00 Y = Muwhich has a minimum norm. It may w ell not belong to U, the polyhedron of meaningful u which are linked to a user iteration. However, M was built to have the same kernel as S Y F i . T h us the same element a Y is accessed as it would be by a regular u. Since only linear transformations are applied, these steps can be performed with integer computations by m ultiplying Equation [START_REF] Benkner | Processing Array Statements and Procedure Interfaces in the Prepare High Performance Fortran Compiler[END_REF] with the determinant o f MM t and by dividing the results by the same quantity. The local address, a 0 Y , is then derived as above. This proves that sends and receives can be enumerated by scanning elements a 00 Y .

implicit integer (a-z) real X(0:24,0:18), Y(0:24,0:18) !HPF$ template T(0:80,0:18) !HPF$ align X(I,J) with T(3*I,J) !HPF$ align Y with X !HPF$ processors P(0:3,0:2) !HPF$ distribute T(cyclic(4

Examples

The di erent algorithms presented in the previous section were used to distribute the contrived piece of code of Figure 18, using functions of a linear algebra library developed at Ecole des mines de Paris.

This is an extension of the example in 25] s h o wing that allocation of Hpf arrays may be non-trivial. The reference to X in the rst loop requires an allocation of X 0 and the computation of new loop bounds. It is not a simple case because the subscript function is not the identity and because a cyclic(4) and block distribution is speci ed. The two references to Y in the rst loop are similar but they imply some data exchange between processors and the allocation of an overlap area in Y 0 . F urthermore, the values of the I and J are used in the computation, the iteration domain is non rectangular and is parameterized with m.

The second loop shows that the Compute(p) set may h a ve f e w er dimensions than the array referenced and that fewer loops have to be generated.

The output code is too long to be printed here. Interesting excerpts are shown in gures 19 and 20 and commented below.

X = A Y = 3 0 0 1 R X = R Y = 1 0 0 1 t 0X = t 0Y = 0 0 5.2 Allocation of X 0
Array X is referenced only once, as a lhs. Thus its local part is directly derived from the set Own X (p) using the algorithm described in section 4.3.

Own X (p) = (x 1 x 2) j t 1 = 3 x 1 t 2 = x 2 t 1 = 1 6 c 1 + 4 p 1 + `1 t 2 = 2 1 c 2 + 7 p 2 + `2 0 x 1 24 0 x 2 18 0 p 1 3 0 p 2 2 0 `1 3 0 `2 6 0 t 1 80 0 t 2 18 The equations are parametrically solved and x is replaced by u in the constraints according to the following change of basis: u 1 = p 1 u 2 = p 2 u 3 = c 1 3u 5 ; 16u 3 ; 4u 1 = `1 u 4 = c 2 u 5 = x 1 u 6 = x 2 u 6 ; 21u 4 ; 7u 2 = `2 Then, Frame u is replaced by F rame u 0 (represented with the w variables in the Fortran c o d e) t o a void non-diagonal terms in the constraints. Frame u 0 is linked to the user basis x by: u 0 1 = p 1 u 0 2 = p 2 u 0 3 = c 1 u 0 4 = c 2 3u 0 5 = `1 u 0 6 = `2 and constraints K are projected on each component o f u 0 to derive the declaration bounds of X 0 : 0 u 0 6 , are the local array coordinates. Note that since we h a ve a block distribution in the second dimension, u 0 4 = 0. The Fortran declaration of X 0 is shown in Figure 19 as X_hpf. 1 0 7 elements are allocated while 7 7 w ould be enough. The e ciency factor may be better in the (p ` c) b a s i s . I t w ould also be better with less contrived alignments and subscript expressions and/or larger blocks.

Sending Y 0

Before the rst loop nest is executed, each processor (p 1 p 2) m ust send some elements of Y to its right neighbor (p 1 + 1 p 2), with a wrap-around for the rightmost processors, (3 p 2). The pairs of communicating processors are not accurately represented by c o n vex constraints and the dest p1 and dest p2 loop is not as tight as it could. This suggests that central and edge processors should be handled di erently when overlap is observed. A linearized view of the processors could also help to x this issue.

The bounds for the inner loops are complicated but they could mostly be evaluated iteratively if node splitting and loop invariant code motion are used. Also, the test on u7 can be simpli ed as a modulo operation. Finally w5 and w6 can also be evaluated iteratively.

Local iterations for the second loop

As for the rst loop, the second loop cannot be represent e d a s a n a r r a y section assignment, which m a k es it harder to handle than the rst one. The set of local iteration is de ned by: Compute Y (p) = (y 1 y 2) j y 1 = i y 2 = i t 1 = 3 y 1 t 2 = y 2 t 1 = 1 6 c 1 + 4 p 1 + `1 t 2 = 2 1 c 2 + 7 p 2 + `2 0 i n 0 y 1 24 0 y 2 18 0 p 1 3 0 p 2 2 0 `1 3 0 `2 6 0 t 1 80 0 t 2 [START_REF] Bircsak | Compiling High Performance Fortran for Distributed-Memory Systems[END_REF] The loop bounds were retrieved by projection on u. It is probably useless to generate a guard on the processor identity because non-involved processor have nothing to do and because this does not delay the other ones. The guard may a s w ell be hidden in the inner loop bounds. Experiments are needed to nd out the best approach.

Note that an extra-loop is generated. Y diagonal can be enumerated with only two loops and three are generated. This is due to the use of an imprecise projection algorithm but does not endanger correctness 4]. Further work is needed in this area.

Integer divide

One implementation of the integer divide is nally shown. The divider is assumed strictly positive, as is the case in all call sites. It necessary because Fortran remainder is not positive for negative n umbers. It was added to insure the semantics of the output code. Nevertheless, if we can prove the dividend is positive, we can use the Fortran division.

Related work

Techniques to generate distributed code from sequential or parallel code using a uniform memory space have been extensively studied since 1988 22, 7 0 , [START_REF] Fran Coise Andr E | Parallelization of a Wave Propagation Application using a Data Parallel Compiler[END_REF] The most obvious, most general and safest technique is called run-time resolution 22, 7 0 , 7 4]. Each instruction is guarded by a condition which is only true for processors that must execute it. Each memory address is checked before it is referenced to decide whether the address is local and the reference is executed, whether it is remote, and a receive is executed, or whether it is remotely accessed and a send is executed. This rewriting scheme is easy to implement 2 6] but very ine cient at run-time because guards, tests, sends and receives are pure overhead. Moreover every processor has to execute the whole control ow of the program, and even for parallel loop, communications may sequentialize the program at run-time 22].

Many optimization techniques have b e e n i n troduced to handle speci c cases. Gerndt introduced overlap analysis in 38] for block distributions. When local array parts are allocated with the necessary overlap and when parallel loops are translated, the instruction guards can very often be moved in the loop bounds and the send/receive statements are globally executed before the local iterations, i.e. the loop nest with run-time resolution is distributed into two loop nests, one for communications and one for computations. The communication loops can be rearranged to generate vector messages.

Tseng 81] presents lots of additional techniques (message aggregation and coalescing, message and vector message pipelining, computation replication, collective communication: : :). He assumes a ne loop bounds and array subscripts to perform most optimizations. He only handles block and cyclic(1) distributions and the alignment coe cient m ust be 1.

Recent publications tackle any alignment and distribution but often restrict references to array sections. Each dimension is independent of the others as was assumed in Section 4.2.

In Paalvast et al. 72, 8 3] a t e c hnique based on the resolution of the associated Diophantine equations is presented. Row-and column-wise allocation and addressing schemes are discussed. Benkner et al. [START_REF] Benkner | Handling Block-Cyclic Distributed Arrays in Vienna Fortran[END_REF], 1 5] present similar techniques.

Chatterjee et al. 25] d e v eloped a nite state machine approach t o e n umerate local elements. No memory space is wasted and local array elements are ordered by Fortran lexicographic order exactly like user array elements. They are sequentially accessed by while loops executing the fsm's, which m a y be a problem if vector units are available. Moreover, accesses to an auxiliary data structure, the fsm transition map, add to the overhead. Note that the code generated in Figure 11 may be used to compute the fsm. I n f a c t t h e l o wer iteration of the innermost loop is computed by the algorithm that builds the fsm. Kennedy et al. 55, 5 6 , 48, 46] and others 79] h a ve suggested improvements to this technique, essentially to compute faster at run-time the automaton transition map. Also multi-dimensional cases need many transition maps to be handled.

Papers by Stichnoth et al. [START_REF] Stichnoth | Generating communication for array statements: Design, implementation and evaluation[END_REF][START_REF] Schrijver | Theory of linear and integer programming[END_REF] on the one hand and Gupta et al. [START_REF] Gupta | An HPF Compiler for the IBM SP2[END_REF], 4 4 , 5 2] on the other hand present t wo similar methods based on closed forms for this problem.

They use array sections but compute some of the coe cients at run-time. Gupta et al. solve the block distribution case and use processor virtualization to handle cyclic distributions. Arrays are densely allocated as in 25] and the initial order is preserved but no formulae are given. Stichnoth uses the dual method for array allocation as in 26], that is blocks are rst compressed, and the cycle number is used as a second argument.

In 3, 5] polyhedron-based techniques are presented to generate transfer code for machines with a distributed memory. I n 2 , 8 2] advanced analyses are used as an input to a code generation phase for distributed memory machines. Polyhedron scanning techniques are used for generating the code. Two family of techniques have been suggested for that purpose. First, Fourier elimination based techniques 49, 4 , 5 3 , 2 , 62, 5 9 , 54, 86], and second, parametric integer programming based methods [START_REF] Dagum | Data Parallel Direct Simulation Monte Carlo in High Performance Fortran[END_REF][START_REF] Coelho | Optimal Compilation of HPF Remappings[END_REF]24,[START_REF] Callahan | Compiling programs for distributed-memory multiprocessors[END_REF]. In 12] , a t wo-fold Hermite transformation is also used to remove modulo indexing from a loop nest. First, variables are added to explicit the modulo computation, then the Hermite computations are used to regenerate simply new loop bounds. While the aim is di erent, the transformations are very similar to those presented here.

Conclusion

The generation of e cient SPMD code from an HPF program is not a simple task and, up to now, many attempts have p r o vided partial solutions and many t e c hniques. A translation of HPF directives in a ne constraints, avoiding integer division and modulo, was presented in Section 2 to provide a unique and powerful framework for HPF optimizations. Homogeneous notations are used to succinctly represent user speci cations and a normalization step is then applied to reduce the number of objects used in the compilation scheme overviewed in Section 3. New algorithms are presented to (1) enumerate local iterations, to (2) allocate local parts of distributed arrays, to (3) generate send and receive blocks and to (4) allocate temporaries implied by rhs references. They are based on changes of basis and enumeration schemes. It is shown in Section 4 that problem (2) can be casted as special case of problem (1) by using an identity subscript function but that constraints on array bounds are more di cult to e ciently satisfy than loop bounds. Problem (3) is an extension of problem (1): a unique reference to an array is replaced by a set of references and the equation used to express the reference is replaced by a set of inequalities. Problem (4) is an extension of problem (2). The set of elements to allocate is no longer the image of a rectangle but the image of an iteration set which c a n h a ve a n y polyhedral shape. This shows that all these problems are closely linked.

Although the usual a ne assumptions are made for loop bounds and subscript expressions, our compilation scheme simultaneously lifts several restrictions: Array references are not restricted to array sections. General Hpf alignments and distributions are supported, and the same algorithms also generate e cient codes for classical block distributions, similar to the ones produced by classical techniques. Memory allocation is almost 100 % e cient on large blocks and performs quite well on small ones when strange alignments are used. We believe that this slight memory waste is more than compensated by the stride-1 vector load, store, send and receive which c a n b e performed on the copies and which are necessary for machines including vector units.

These contiguous accesses also perform well with a cache. The overlap analysis and allocation is integrated to the basic allocation scheme. Finally, most computations are performed at compile-time and no auxiliary data structures are used.

Our scheme can also be extended to cope with processor virtualization if the virtualization scheme is expressed with a ne constraints. Such a s c heme could reuse HPF distribution to map HPF processors on physical processors.

Many partial optimization techniques are integrated in our direct synthesis approach: message vectorization, and aggregation 47], overlap analysis 38]. A new storage management s c heme is also proposed. Moreover other optimizations techniques may be applied to the generated code such a s v ectorization 87], loop invariant c o d e motion 1] and software pipelining 37, 8 4].

This technique uses algorithms, directly or indirectly, that may be costly, such a s Fourier elimination or the simplex algorithm, which h a ve e x p o n e n tial worst-case behaviors. They are used for array region analysis, in the set manipulations and in the code generation for polyhedron scanning. However our experience with such algorithms is that they remain practical for our purpose: Polyhedron-based techniques are widely implemented in the PIPS framework 51] where hpfc, our prototype Hpf compiler, is developped. Firstly, for a given loop nest, the number of equalities and inequalities is quite low, typically a dozen or less. Moreover these systems tend to be composed of independent subsystems on a dimension per dimension basis, resulting in a more e cient practical behavior. Secondly e cient and highly tuned versions of such algorithms are available, for instance in the Omega library. Thirdly, potentially less precise but faster program analysis 21, 1 3 , 45] can also be used in place of the region analysis.

Polyhedron-based techniques are already implemented in hpfc, our prototype Hpf compiler 27] to deal with I/O communications in a host/nodes model 28] and also to deal with dynamic remappings 29] (realign and redistribute directives). For instance, the code generation times for arbitrary remappings are in 0.1{2s range. Future work includes the implementation of our scheme in hpfc, experiments, extensions to optimize sequential loops, to overlap communication and computation, and to handle indirections.

Figure 1 :

 1 Figure 1: Masked FORALL to INDEPENDENT loops

Figure 2 :

 2 Figure 2: ON to INDEPENDENT loops

Figure 3 :

 3 Figure 3: Example 1

Figure 4 :

 4 Figure 4: Example of a template distribution (from 25]).

Figure

 Figure 5: Example 2

Figure 7 :

 7 Figure 7: Example in Chatterjee et al. 25]

Figure 8 :

 8 Figure 8: Example of an array mapping and writing (from 25]).

Figure 12 :

 12 Figure 12: Packing of elements

Figure 14 :

 14 Figure 14: Overlap before and after packing.

Figure 15 :

 15 Figure 15: Optimized code.

 align B with A A(1:42) = B(0:41) has a View B area represented in grey on Figure 14 in the unpacked template space and the local packed array space. The local array B 0 can be extended by o verlap to contain the grey area. Thus, constraint 0 ` 3 i n Own becomes ;3 ` 3, expressing the size 3 overlap on the left.

Figure 17 :

 17 Figure 17: Relationships between frames

Figure 18 :

 18 Figure 18: Code example.

5. 1 Figure 19 :

 119 Figure 19: Output code (excerpts, part 1).

Figure 20 :

 20 Figure 20: Output code (excerpts, part 2).

A

 9] . T echniques and prototypes have been developed based on Fortran 38, 39, 47, 18, 6 9 , 8 8 , 19, 20], C 8, 63, 6 , 6 0 , 7, 61] or others languages 74, 75, 58, 6 6 , 5 7].

This could be avoided by exchanging data rst with processors p 0 such t h a t p 0 < p and then with processors such that p 0 > p , using the lexicographic order. But this additional optimization is not likely to decrease the execution time much, because the loop over p 0 is an outermost loop.

The Manhattan norm of a vector is the sum of the absolute values of its coordinates, i.e. the l1 norm.

i.e. the closest on the rst dimension, and then the closest on the second dimension, and so on, dimension per dimension, till one processor is determined.

Fo r a v ector v, l e t jvj denotes its dimension.

This assumption is, of course, not necessary for the general algorithm described in Section 4.1, but met by array sections.

As explained in Section 4.3, allocation is handled as a special case by c hoosing the identity for S X .

Acknowledgments

We are thankful to B eatrice Creusillet for her many questions, Pierre Jouvelot for his careful reading and many suggestions, William Pugh for helpful comments and debugging, William (Jingling) Xue for the many remarks which helped improve the paper and to the referees for their precise and constructive comments.

Code generation

Variable u de ning x in lattice F and polyhedron K are easy to scan with DO loops. The constraints de ning polyhedron K are coming from declarations, Hpf directives and normalized loop bounds. They are: 0 < C : 1 0 t < T : 1 0 a < D : 1 Li b 0 (n)