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Abstract

High Performance Fortran �hpf� was developed to support data parallel
programming for simd and mimd machines with distributed memory� The pro�
grammer is provided a familiar uniform logical address space and speci�es the
data distribution by directives� The compiler then exploits these directives to allo�
cate arrays in the local memories� to assign computations to elementary processors
and to migrate data between processors when required� We show here that linear
algebra is a powerful framework to encode Hpf directives and to synthesize dis�
tributed code with space�e�cient array allocation� tight loop bounds and vectorized
communications for INDEPENDENT loops� The generated code includes traditional
optimizations such as guard elimination� message vectorization and aggregation�
overlap analysis��� The systematic use of an a�ne framework makes it possible to
prove the compilation scheme correct�

�An early version of this paper was presented at the Fourth International Workshop on Compilers

for Parallel Computers held in Delft� the Netherlands� December �����
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� Introduction

Distributed memory multiprocessors can be used e�ciently if each local memory con�
tains the right pieces of data� if local computations use local data and if missing pieces
of data are quickly moved at the right time between processors� Macro packages and
libraries are available to ease the programmer�s burden but the level of details still
required transforms the simplest algorithm� e�g� a matrix multiply� into hundreds of
lines of code� This fact decreases programmer productivity and jeopardizes portability�
as well as the economical survival of distributed memory parallel machines�

Manufacturers and research laboratories� led by Digital and Rice University� de�
cided in ���� to shift part of the burden onto compilers by providing the programmer
a uniform address space to allocate objects and a 	mainly
 implicit way to express
parallelism� Numerous research projects ��
� ��� 
�� and a few commercial products
had shown that this goal could be achieved and the High Performance Fortran Forum
was set up to select the most useful functionalities and to standardize the syntax� The
initial de�nition of the new language� Hpf� was frozen in May ����� and corrections
were added in November ���� ����� Prototype compilers incorporating some Hpf fea�
tures are available ��
� ��� ��� 
�� 

� ���� Commercial compilers from APR ���� ����
DEC ���� ���� IBM ���� and PGI ���� �
� are also being developed or are already avail�
able� These compilers implement part or all of the Hpf Subset� which only allows static
distribution of data and prohibits dynamic redistributions�

This paper deals with this Hpf static subset and shows how changes of basis and
a�ne constraints can be used to relate the global memory and computation spaces
seen by the programmer to the local memory and computation spaces allocated to
each elementary processor� These relations� which depend on Hpf directives added
by the programmer� are used to allocate local parts of global arrays and temporary
copies which are necessary when non�local data is used by local computations� These
constraints are also used in combination with the owner�computes rule to decide which
computations are local to a processor� and to derive loop bounds� Finally they are used
to generate send and receive statements required to access non�local data�

These three steps� local memory allocation� local iteration enumeration and data
communication� are put together as a general compilation scheme for parallel loops�
known as INDEPENDENT in Hpf� with a�ne bounds and subscript expressions� Hpf�s
FORALL statements or constructs� as well as a possible future ON extension to advise the
compiler about the distribution of iterations onto the processors� can be translated into
a set of independent loops by introducing a temporary array mapped as required to
store the intermediate results� These translations are brie�y outlined in Figures � and ��
The resulting code is a pair of loops which can be compiled by our scheme� following
the owner�computes rule� if the ON clause is put into the a�ne framework� The FORALL
translation requires a temporary array due to its simd�like semantics� However� if
the assigned array is not referenced in the rhs� the FORALL loop is independent and
should be tagged as such to �t directly our scheme� Such necessary temporary arrays
are not expected to cost much� both on the compilation and execution point of view�
The allocated memory is reusable 	it may be allocated on the stack
� and the copy
assignment on local data should be quite fast�

This compilation scheme directly generates optimized code which includes tech�
niques such as guard elimination ��
�� message vectorization and aggregation ���� 
���
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Figure �� Masked FORALL to INDEPENDENT loops
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Figure �� ON to INDEPENDENT loops
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It is compatible with overlap analysis ��
�� There are no restrictions neither on the
kind of distribution 	general cyclic distributions are handled
� nor on the rank of ar�
ray references 	the dimension of the referenced space� for instance rank of A�i�i� is
�
� The memory allocation part� whether based on overlap extensions� or dealing with
temporary arrays needed to store both remote and local elements� is independent of
parallel loops and can always be used� The relations between the global programmer
space and the local processor spaces can also be used to translate sequential loops with
a run�time resolution mechanism or with some optimizations� The reader is assumed
knowledgeable in Hpf directives ���� and optimization techniques for Hpf ��
� 
���

The paper is organized as follow� Section � shows how Hpf directives can be
expressed as a�ne constraints and normalized to simplify the compilation process and
its description� Section � presents an overview of the compilation scheme and introduces
the basic sets Own� Compute� Send and Receive that are used to allocate local parts
of Hpf arrays and temporaries� to enumerate local iterations and to generate data
exchanges between processors� Section � re�nes these sets to minimize the amount
of memory space allocated� to reduce the number of loops whenever possible and to
improve the communication pattern� This is achieved by using di�erent coordinates to
enumerate the same sets� Examples are shown in Section � and the method is compared
with previous work in Section ��
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� HPF directives

The basic idea of this work was to show that the hpf compilation problem can be put
into a linear form� including both equalities and inequalities� then to show how to use
polyhedron manipulation and scanning techniques to compile an hpf program from
this linear form� The linear representations of the array and hpf declarations� the data
mapping and the loop nest accesses are presented in this section�

Hpf speci�es data mappings in two steps� First� the array elements are aligned with
a template� which is an abstract grid used as a convenient way to relate di�erent arrays
together� Each array element is assigned to at least one template cell thru the ALIGN

directive� Second� the template is distributed onto the processors� which is an array of
virtual processors� Each template cell is assigned to one and only one processor thru
the DISTRIBUTE directive� The template and processors are declared with the TEMPLATE
and PROCESSORS directives respectively�

Elements of arrays aligned on the same template cell are allocated on the same
elementary processor� Expressions using these elements can be evaluated locally� with�
out inter�processor communications� Thus the alignment step mainly depends on the
algorithm� The template elements are packed in blocks to reduce communication and
scheduling overheads without increasing load imbalance too much� The block sizes
depend on the target machine� while the load imbalance stems from the algorithm�
Templates can be bypassed by aligning an array on another array� and by distributing
array directly on processors� This does not increase the expressiveness of the language
but implies additional check on hpf declarations� Templates are systematically used
in this paper to simplify algorithm descriptions� Our framework deals with both stages
and could easily tackle direct alignment and direct distribution� The next sections
show that any hpf directive can be expressed as a set of a�ne constraints�

��� Notations

Throughout this paper� a lower case letter as v denotes a vector of integers� which may
be variables and constants� vi� 	i � �
 the ith element or variable of vector v� Subscript
�� as in v�� denotes a constant integer vector� As a convention� a denotes the variables
which describe the elements of an array� t is used for templates and p for processors�
An upper case letter as A denotes a constant integer matrix� Constants are implicitly
expanded to the required number of dimensions� For instance � may denote a vector
of �� jAj denotes the determinant of matrix A�

��� Declarations

The data arrays� the templates and the processors are declared as Cartesian grids in
hpf� If a is the vector of variables describing the dimensions of array A������	�
����
then the following linear constraints are induced on a�

� � a� � 
� �� � a� � �� � � a� � �

These may be translated into the matrix form DAa � d where�
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DA �

�
BBBBBBB�

� � �
�� � �
� � �
� �� �
� � �
� � ��

�
CCCCCCCA
� a �

�
�a�
a�
a�

�
A � d �

�
BBBBBBB�



��
�
�
�
��

�
CCCCCCCA

Any valid array element must verify the linear constraints� i�e� A�a��a��a�� is a
valid array element if Equation 	�
 is veri�ed by vector a� In the remaining of the paper
it is assumed without loss of generality that the dimension lower bounds are equal to
�� This assumption simpli�es the formula by deleting a constant o�set at the origin�
Thus the declaration constraints for A���
�������
� can be written intuitively as

� � a � D�� 	�


where

D�� �

�
� � � �
� 
 �
� � �

�
A
�
� �
�
�

�
A �

�
� �


�

�
A

D is a diagonal matrix composed of the sizes of A� The rational for storing the sizes in
a diagonal matrix instead of a vector is that this form is needed for the distribution
formula 	see Section ���
� Likewise the template declaration constraints are � � t � T��
and the processors � � p � P���

��� Alignment

The ALIGN directive is used to specify the alignment relation between one object and
one or many other objects through an a�ne expression� The alignment of an array A on
a template T is an a�ne mapping from a to t� Alignments are speci�ed dimension�wise
with integer a�ne expressions as template subscript expressions� Each array index can
be used at most once in a template subscript expression in any given alignment� and
each subscript expression cannot contain more than one index ����� Let us consider the
following hpf alignment directive� where the �rst dimension of the array is collapsed
and the most general alignment subscripts are used for the other dimensions�

align A���i�j� with T�	�j����i���

it induces the following constraints between the dimensions of A and T represented
respectively by vector a and t�

t� � �a� � �� t� � �a� � �

Thus the relation between A and T is given by t � Aa� s� where

t �

�
t�
t�

�
� A �

�
� � �
� �� �

�
� a �

�
�a�
a�
a�

�
A � s� �

�
��
�

�
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template T������� T�������

processors P�����

distribute T�block�	���� T��cyclic���� onto P

Figure �� Example �

A 	for alignment
 is a matrix with at most one non�zero integer element per column
	dummy variables must appear at most once in the alignment subscripts
 and per row
	no more than one dummy variable in an alignment subscript
� and s� is a constant
vector that denotes the constant shift associated to the alignment� Note that since
the �rst dimension of the array is collapsed the �rst column of A is null� and that the
remaining columns constitute an anti�diagonal matrix since i and j are used in reverse
order in the subscript expressions�

However this representation cannot express replication of elements on a dimension
of the template� as allowed by hpf� The former relation is generalized by adding
a projection matrix R 	for replication
 which selects the dimensions of the template
which are actually aligned� Thus the following example�

align A�i� with T�	�i�����

is translated into

Rt � Aa� s� 	�


where R � 	� � 
 � t �

�
t�
t�

�
� A � 	 � 
 � a � 	a� 
 � s� � 	�� 


The same formalism can also deal with a chain of alignment relations 	A is aligned
to B which is aligned to C� � � 
 by composing the alignments� To summarize� a ��� in
an array reference induces a zero column in A and a ��� in a template reference a zero
column in R� When no replication is speci�ed� R is the identity matrix� The number
of rows of R and A corresponds to the number of template dimensions that are actually
aligned� thus leading to equations linking template and array dimensions� Template
dimensions with no matching array dimensions are removed through R�

��� Distribution

Once optional alignments are de�ned in Hpf� objects or aligned objects can be dis�
tributed on Cartesian processor arrangements� declared like arrays and templates� and
represented by the inequality � � p � P��� Each dimension can be distributed by
block� or in a cyclic way� on the processor set or even collapsed on the processors� Let
us �rst consider the Examples � and � in Figures � and ��

Example �

In Example �� the distributions of the templates creates a link between the templates
elements t and the processors p� so that each processor owns some of the template
elements� These links can be translated into linear formulae with the addition of
variables� For the block distribution of template T� assuming the local o�set � within
the size �� block� � � � � ��� then the formula simply is�
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t � ��p� �

For a �xed processor p and the allowed range of o�sets within a block �� the formula
gives the corresponding template elements that are mapped on that processor� There
is no constant in the equality due to the assumption that template and processor
dimensions start from �� For the cyclic distribution of template T�� a cycle variable c
counts the number of cycles over the processors for a given template element� Thus
the formula is�

t� � �c� p

The cycle number c generates an initial o�set on the template for each cycle over the
processors� Then the p translation associates the processor�s owned template element
for that cycle� The general cyclic�n� multi�dimensional case necessitates both cycle c
and local o�set � variable vectors� and can be formulated with a matrix expression to
deal with all dimensions at once�

General case

Hpf allows a di�erent block size for each dimension� The extents 	n in BLOCK�n� or
CYCLIC�n�
 are stored in a diagonal matrix� C� P is a square matrix with the size of
the processor dimensions on the diagonal� Such a distribution is not linear according
to its de�nition ���� but may be written as a linear relation between the processor
coordinate p� the template coordinate t and two additional variables� � and c�

�t � CPc� Cp� � 	�


Vector � represents the o�set within one block in one processor and vector c represents
the number of wraparound 	the sizes of which are CP 
 that must be performed to
allocate blocks cyclically on processors as shown on Figure � for the example in Figure ��

The projection matrix � is needed when some dimensions are collapsed on pro�
cessors� that means that all the elements on the dimension are on a same processor�
These dimensions are thus orthogonal to the processor parallelism and can be elimi�
nated� The usual modulo and integer division operators dealing with the block size
are replaced by prede�ned constraints on p and additional constraints on �� Vector c is
implicitly constrained by array declarations and�or 	depending on the replication
 by
the TEMPLATE declaration�

Specifying BLOCK�n� in a distribution instead of CYCLIC�n� is equivalent but tells
the compiler that the distribution will not wrap around and the Equation 	�
 can be
simpli�ed by zeroing the c coordinate for this dimension� This additional equation
reduces the number of free variables and� hence� removes a loop in the generated code�
CYCLIC is equivalent to CYCLIC��� which is translated into an additional equation�
� � �� BLOCK without parameter is equivalent to BLOCK�d et

ep
e� where et and ep are the

template and processor extents in the matching dimensions� Since block distributions
do not cycle around the processors� c � � can be added�

The variables are bounded by�

� � p � P��� � � t � T��� � � � � C�� 	�
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�
c
�l p � � p � � p � � p � �

� � � � � � � � 	 
 �� �� �� �� �� ��

�� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� ��

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� ��

�	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

�� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �


	� 	� 	� 	� 	� 	� 	� 	� 		 	
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� 
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� 
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 ��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ���

��� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

�

�

�

� � � � � � � � � � � � � � � �

chpf� processors P�����

chpf� template T����	
�

chpf� distribute T�cyclic���� onto P

Figure �� Example of a template distribution 	from ����
�

template T����������������

processors P���������

distribute T���cyclic����block����� onto P

Figure �� Example �

Example �

Let us consider the second� more general example� in Figure �� These directives
can be translated into the following matrix form�

�
� � �
� � �

�
t �

�
�� �
� ���

�
c�

�
� �
� ��

�
p� ��

�
�
�

�
� � �

�
�
��

�

where

t �

�
� t�
t�
t�

�
A � p �

�
p�
p�

�
� c �

�
c�
c�

�
� � �

�
��
��

�
� c� � �

and

� �

�
� � �
� � �

�
� C �

�
� �
� ��

�
� P �

�
�� �
� ��

�

In this example� the distribution is of type BLOCK in the last dimension� thus the
added c� � �� If a dimension of a template is collapsed on the processors� the corre�
sponding coordinate is useless because even if it is used to distribute the dimension of
an array� this dimension is collapsed on the processors� Thus it can be discarded from
the equations� It means that it can be assumed that � � I in Equation 	�
 if these
useless dimensions are removed by a normalization process�
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��� Iteration domains and subscript functions

Although iteration domains and subscript functions do not concern directly the place�
ment and the distribution of the data in Hpf� they must be considered for the code
generation� Since loops are assumed INDEPENDENT with a�ne bounds� they can be
represented by a set of inequalities on the iteration vectors i� The original enumeration
order is not kept by this representation� but the independence of the loop means that
the result of the computation does not depend on this very order� The array reference
links the iteration vector to the array dimensions�

INDEPENDENT�i	�i��

do j��� n�� �

do i��j�	� n	��

A�	�i���� n��j�i�� � ���

enddo

enddo

� normalized �stride �� version

do i	��� �n������

do i����i	��� n	��

A�	�i���� n����i	�i���� � ���

enddo

enddo

Figure �� Loop example

Let us consider for instance the example in Figure �� The iteration domain can be
translated into a parametric 	n� and n� may not be known at compile time
 form� where
the constant vector is a function over the parameters� Thus the set of constraints for
the loop nest iterations� with the additional change of variable j � �i��� to normalize
the loop �
��� is�

�
BB�

� ��
� �
� �
�� �

�
CCA
�
i�
i�

�
�

�
BB�

�
n� � �
n� � �
��

�
CCA

Moreover the array reference can also be translated into a set of linear equalities�

a �

�
a�
a�

�
�

�
� �
� ��

��
i�
i�

�
�

�
�

n� � �

�

In the general case� a set of constraints is derived for the iteration domain of the
loop nest 	Equation 	�
� where n stands for a vector of parameters for the loop nest

and for the array references 	Equation 	�

�

Li � b�	n
 	�


a � Si� a�	n
 	�


��� Putting it all together

Let us now consider the example in Figure �� According to the previous Sections� all
the declaration of distributions� alignments� arrays� processors and templates� iterations
and references can be rewritten as
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real A����	�

�HPF� template T����	��

�HPF� processors P�����

�HPF� align A�i� with T���i�

�HPF� distribute T�cyclic���� onto P

A���U��� � ���

Figure �� Example in Chatterjee et al� ����

�
c
�l

f f f f f f
f f f f f

f f f f f
f f f f f f

f f f f f
f f f f f

f f f f f f
f f f f f

v v
v v

v v
v v

v
v v

v v
v v

�

�

�

�

�

�

�

�

� � � � � � � � � � � � � � � �

p � � p � � p � � p � �

Figure 
� Example of an array mapping and writing 	from ����
�

� � � � C���

� � a � D���

� � p � P���

� � t � T���

Rt � Aa� s��

t � CPc� Cp� ��

Li � b�	n
�

a � Si� a�	n


where

D � 	��
� T � 	��

� A � 	�
� s� � 	�
� R � 	�
� C � 	�
� P � 	�
�

L �

�
�
��

�
� b�	n
 �

�
U

�

�
� S � 	�
� a�	n
 � 	�
�

The array mapping of A is represented by the ��� or ��� on Figure 
 and the written
elements 	if U � ��
 of A with ���� As can be seen on this �d representation of a �d
space� the mapping and the access are done according to a regular pattern� namely
a lattice� This is exploited to translate the compilation problem in a linear algebra
framework�
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� Overview of the compilation scheme

The compilation scheme is based on the Hpf declarations� the owner computes rule

and the spmd paradigm� and deals with INDEPENDENT loops� Loop bound expressions
and array subscript expressions are assumed a�ne� Such a parallel loop independently
assigns elements of some left hand side X with some right hand side expression f on
variables Y� Z�� � �	Figure �
� The loop is normalized to use unit steps as explained
in the previous section� Since the loop is independent� SX must be injective on the
iteration domain for an independent parallel loop to be deterministic� The n models
external runtime parameters that may be involved in some subexpressions� namely the
loop bounds and the reference shifts�

The Hpf standard does not specify the relationship between the Hpf processors
and the actual physical processors� Thus� e�ciently compiling loop nests involving
arrays distributed onto di�erent processor sets without further speci�cation is beyond
the scope of this paper� But if the processor virtualization process can be represented
by a�ne functions� which would be probably the case� we can encompass these di�er�
ent processor sets in our framework by remaining on the physical processors� In the
following we assume for clarity that the interfering distributed arrays in a loop nest are
distributed on the same processors set�

INDEPENDENT�i�

forall�Li � b�	n
�
X�SXi� aX�	n
� � f�Y� SYi� aY�	n
�� Z�SZi� aZ�	n
��

Figure �� Generic loop

��� Own Set

The subset of X that is allocated on processor p according to Hpf directives must be
mapped onto an array of the output program� Let OwnX	p
 be this subset of X and X�

the local array mapping this subset� Each element of OwnX	p
 must be mapped to one
element of X� but some elements of X� may not be used� Finding a good mapping involves
a tradeo� between the memory space usage and the access function complexity� This
is studied in Section ���� Subset OwnX	p
 is derived from Hpf declarations� expressed
in an a�ne formalism 	see Section �
� as�

OwnX	p
 �
�
a j �t� �c� ��� s�t� RXt � AXa � sX�

� t � CXPc� CXp� �X
� � � a � DX��
� � � p � P��
� � � � � CX��
� � � t � TX��

�
Subset OwnX	p
 can be mapped onto a Fortran array by projection on c and �� or

on any equivalent set of variables� i�e� up to an injective mapping� Although Own is
not a dense polyhedron as de�ned here� it can be seen as such in the higher dimensional
	a� c� �
 space� Thus this view is used in the following� although our interest it just to
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represent the array elements a� Note that for a given distributed dimension ai there is
one and only one corresponding 	pj� cj� �j
 triplet�

��� Compute set

Using the owner computes rule� the set of iterations local to p� Compute	p
� is directly
derived from the previous set� OwnX	p
� The iterations to be computed by a given
processor are those of the loop nest for which the lhs are owned by the processor�

Compute	p
 � fi j SXi� aX�	n
 � OwnX	p
 � Li � b�	n
g

Note that Compute	p
 andOwnX	p
 are equivalent sets if the reference is direct 	SX � I �
aX� � �
 and if the iteration and array spaces conform� This is used in Section ��� to
study the allocation of local arrays as a special case of local iterations� According
to this de�nition of Compute� when X is replicated� its new values are computed on
all processors having a copy� Depending on a tradeo� between communication and
computation speed� the optimal choice may be to broadcast the data computed once
in parallel rather than computing each value locally�

��� View set

The subset of Y 	or Z����
 used by the loop that compute X is induced by the set of local
iterations�

ViewY	p
 � fa j �i � Compute	p
 s�t� a � SYi� aY�	n
g

Note that unlike SX� matrix SY is not constrained and cannot always be inverted�
If the intersection of this set with OwnY	p
 is non�empty� some elements needed by

processor p for the computation are fortunately on the same processor p� Then� in order
to simplify the access to ViewY	p
 without having to care about dealing di�erently
with remote and local elements in the computation part� the local copy Y� may be
enlarged so as to include its neighborhood� including ViewY	p
� The neighborhood is
usually considered not too large when it is bounded by a numerical small constant�
which is typically the case if X and Y are identically aligned and accessed at least on
one dimension up to a translation� such as encountered in numerical �nite di�erence
schemes� This optimization is known as overlap analysis ��
�� Once remote values are
copied into the overlapping Y�� all elements of ViewY	p
 can be accessed uniformly
in Y� with no overhead� However such an allocation extension may be considered as
very rough and expensive in some cases 	e�g� a matrix multiplication
� because of the
induced memory consumption� A reusable temporary array might be preferred� and
locally available array elements must be copied� Such tradeo�s to be considered in
the decision process are not discussed in this paper� but present the techniques for
implementing both solutions�

When Y 	or X� or Z����
 is referenced many times in the input loop or in the input
program� these references must be clustered according to their connexion in the de�
pendence graph ���� Input dependencies are taken into account as well as usual ones
	�ow�� anti� and output�dependencies
� If two references are independent� they access
two distant area in the array and two di�erent local copies should be allocated to re�
duce the total amount of memory allocated� a unique copy would be as large as the
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convex hull of these distant regions� If the two references are dependent� only one local
copy should be allocated to avoid any consistency problem between copies� If Y is a
distributed array� its local elements must be taken into account as a special reference
and be accessed with 	p� c� �
 instead of i�

The de�nition of View is thus altered to take into account array regions � These
regions are the result of a precise program analysis which is presented in �
�� ��� �� ���
��� ��� ��� ���� An array region is a set of array elements described by equalities and
inequalities de�ning a convex polyhedron� This polyhedron may be parameterized by
program variables� Each array dimension is described by a variable� The equations due
to subscript expression SY are replaced by the array region� a parametric polyhedral
subset of Y which can be automatically computed� For instance� the set of references
to Y performed in the loop body of�

do i	 � �
 N

do i� � �
 N

X�i�
i	� � Y�i�
i	� � Y�i���
i	� � Y�i�
i	���

enddo

enddo

is automatically summarized by the parametric region on aY � 	y�� y�
 for the Y refer�
ence in the loop body of the example above as�

Y�y��y���f	y�� y�
 j y� � i� � y� � i� � i� � i� � y� � y� � �g

Subset ViewY is still polyhedral and array bounds can be derived by projection� up to
a change of basis� If regions are not precise enough because convex hulls are used to
summarize multiple references� it is possible to use additional parameters to exactly
express a set of references with regular holes ���� This might be useful for red�black
sor�

As mentioned before� if Y is a distributed array and its region includes local elements�
it might be desired to simply extend the local allocation so as to simplify the addressing
and to allow a uniform way of accessing these array elements� for a given processor pY
and cycle cY� The required extension is computed simply by mixing the distribution
and alignment equations to the ViewY description� For the example above� assuming
that X and Y are aligned and thus distributed the same way� the overlap is expressed
on the block o�set �Y with�

RYt � AYaY � sY�

t � CPcY � CpY � �Y

aY � ViewY	p


Vectors cY and pY are constrained as usual by the loop� the processor declaration and
the template declaration of X but vector �Y is no more constrained in the block size
	C
� It is indirectly constrained by aY and the Y region� This leads to a �� � �Y lower
bound instead of the initial � � �Y� expressing the size � overlap on the left�

��� Send and Receive Sets

The set of elements that are owned by p and used by other processors and the set of
elements that are used by p but owned by other processors are both intersections of
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previously de�ned sets�

SendY	p� p
�
 � OwnY	p
	ViewY	p

�


ReceiveY	p� p
�
 � ViewY	p
	 OwnY	p

�


These two sets cannot always be used to derive the data exchange code� Firstly� a
processor p does not need to exchange data with itself� This cannot be expressed
directly as an a�ne constraint and must be added as a guard in the output code��
Secondly� replicated arrays would lead to useless communication� each owner would try
to send data to each viewer� An additional constraint should be added to restrict the
sets of communications to needed ones� Di�erent techniques can be used to address this
issue� 	�
 replication allows broadcasts and�or load�balance� what is simply translated
into linear constraints as described in ����� 	�
 The a�ectation of owners to viewers can
also be optimized in order to reduce the distance between communicating processors�
For instance� the cost function could be the minimal Manhattan distance� between p
and p� or the lexicographically minimal vector� p� � p if the interconnection network
is a jpj�dimension grid�� A combined cost function might even be better by taking
advantage of the Manhattan distance to minimize the number of hops and of the
lexicographical minimum to insure uniqueness� These problems can be cast as linear
parametric problems and solved �����

When no replication occurs� elementary data communications implied by SendY and
ReceiveY can be parametrically enumerated in basis 	p� u
� where u is a basis for Y��
the local part of Y� the allocation and addressing of which are discussed in Section ����
Send and Receive are polyhedral sets and algorithms in ��� can be used� If the last
component of u is allocated contiguously� vector messages can be generated�

��� Output SPMD code

The generic output spmd code� parametric on the local processor p� is shown in Fig�
ure ��� U represents nay local array generated according to the dependence graph�
Communications between processors can be executed in parallel when asynchronous
send�receive calls and�or parallel hardware is available as in Transputer�based ma�
chines or in the Paragon� The guards SendU� � � �can be omitted if unused Hpf

processors are not able to free physical processors for other useful tasks� The loop
bound correctness ensures that no spurious iterations or communications occur� The
parallel loop on U can be exchanged with the parallel inner loop on p� included in the
forall� This other ordering makes message aggregation possible�

This code presented in Figure �� is quite di�erent from the one suggested in ��
� ����
Firstly� the set of local iterations Compute	p
 is no longer expressed in the i frame but
in the 	c� �
 frame� There is no actual need to know about the initial index values in

�This could be avoided by exchanging data �rst with processors p� such that p� � p and then with

processors such that p� � p� using the lexicographic order� But this additional optimization is not

likely to decrease the execution time much� because the loop over p� is an outermost loop�
�The Manhattan norm of a vector is the sum of the absolute values of its coordinates� i�e� the l�

norm�
�
i�e� the closest on the �rst dimension� and then the closest on the second dimension� and so on�

dimension per dimension� till one processor is determined�
�For a vector v� let jvj denotes its dimension�
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real X��	c� �
 � OwnX	p
��
Y��	c� �
 � ViewY	p
��
Z��	c� �
 � ViewZ	p
�

forall�U � fY�� Z�� � � �g�
forall�	p� p�
� p 
� p�� SendU	p� p

�
 
� � �

forall�	�� c
 � SendU	p� p
�
�

send�p�� U	�� c
�
forall�U � fY�� Z�� � � �g�

forall�	p� p�
� p 
� p��ReceiveU	p� p
�
 
� � �

forall�	�� c
 � ReceiveU	p� p
�
�

U��� c� � receive�p��
if Compute	p
 
� �

forall�	�� c
 � Compute	p
�
X��SX�	�� c
� � f�Y��SY�	�� c
��

Z��SZ�	�� c
������

Figure ��� The output spmd code�

the original code� Secondly� no di�erence is made between local and non�local iteration
computations� at the price of possible communication and computation overlaps� but at
the bene�ce of an homogeneous addressing� Only one reference and addressing should
be generated for each original reference in the computation expression� thus avoiding
costly code duplications or runtime guards to deal with each reference of an expression
that may or may not be locally available at every iteration� The temporary array
management and addressing issues are discussed further in the next sections� Thirdly�
non�local iterations computed as a set di�erence is not likely to produce an easily
manageable set for code generation� since it should generally be non convex� Thirdly�
the parametric description of the communications allows to enumerate a subset of active
processors�

Additional changes of basis or changes of coordinates must be performed to reduce
the space allocated in local memory and to generate a minimal number of more e��
cient scanning loops� Each change must exactly preserve integer points� whether they
represent array elements or iterations� This is detailed in the next section�
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� Re�nement

The pseudo�code shown in Figure �� is still far from Fortran� Additional changes of
coordinates are needed to generate proper Fortran declarations and loops�

��� Enumeration of iterations

A general method to enumerate local iterations is described below� It is based on 	�

solving Hpf and loop Equations� both equalities 	�� �� �
 and inequalities 	�� �
� on 	�

searching a good lattice basis to scan the local iterations in an appropriate order using
p as parameter since each processor knows its own identity and 	�
 on using linear
transformations to switch from the user visible frame to the local frame�

In this section� a change of frame is computed based on the available equalities to
�nd a dense polyhedron that can be scanned e�ciently with standard techniques� The
change of frame computation uses two Hermite forms to preserve the order of the
	�� c
 variables which are related to the allocation scheme� for bene�ting from cache
e�ects�

Simplifying formalism

The subscript function S and loop bounds are a�ne� All object declarations are nor�
malized with � as lower bound� The Hpf array mapping is also normalized� � � I �
Under these assumptions and according to Section �� Hpf declarations and Fortran
references are represented by the following set of equations�

alignment 	�
 Rt � Aa� s�
distribution 	�
 t � CPc� Cp� �

a�ne reference 	�
 a � Si� a�	n


�	

	� 	�


where p is the processor vector� � the local o�set vector� c the cycle vector� a the
accessed element i the iteration and n the parameters�

Problem description

Let x be the following set of variables�

x � 	�� c� a� t� i
 	



They are needed to describe array references and iterations� The order of the � and
c variables chosen here should be re�ected by the local allocation in order to bene�t
from cache e�ects� This order suits best cyclic distributions� as discussed in �
���
because there should be more cycles 	along c
 than block elements 	along �
 in such
cases� Putting the block o�set after the cycle number for a given dimension would lead
to larger inner loops for more block distributions� Note that the derivations discussed
in this section are independent of this order� Equation 	�
 can be rewritten as

Fx � f�	n� p
 	�


with
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F �

�
� � � A �R �
I CP � �I �
� � �I � S

�
A and f�	n� p
 �

�
� s�
�Cp
a�	n


�
A 	��


For instance in the Chatterjee et al� example in Figure �� Equation �� is�

�
� � � � �� �
� �� � �� �
� � �� � �

�
A
�
BBBBB�

�

c
a
t

i

�
CCCCCA �

�
� �
��p
�

�
A

The set of interest is the lattice F � fxjFx � f�	n� p
g� The goal of this section is to
�nd a parametric solution for each component of x� This allows each processor p to
scan its part of F with minimal control overhead�

It is important to note that F is of full row�rank� The rows contain distinct variables
that insure their independence one from the other� Firstly� the alignment equations are
composed of independent equalities 	they di�er from a variables
� This is also the case
for the distribution and reference equations because of the � and t variables� Secondly
the equalities composing the distribution equations are the only to contain � variables�
thus they are independent from the alignment and reference� Thirdly� the alignment
and reference equations are separated by the template variables thru R� Since all
equalities are independent� F is a full row�rank� Note that Hpf restrictions about
alignment are not exploited�

If additional equalities are taken into account� such as those arising from simple
block 	ci � �
 or cyclic 	�i � �
 distributions� they can be used to remove the variables
from the equation and do not actually change this property� Other degenerated cases
may arise 	for instance� there is only one processor on a given dimension� � � 
� but they
are not actually discussed here� Our general scheme can directly take advantage of
such extra information to optimize the generated code by including it as additional
equalities and inequalities�

Parametric solution of equations

Lattice F is implicitly de�ned but a parametric de�nition is needed to enumerate its
elements for a given processor p� There are two kinds of parameters that must be set
apart� First the constant unknown parameters n and local processor id p the value
of which are known at runtime on each processor� Second� the parameters we are
interested in� that have to be enumerated or instantiated on each processor to scan the
integer solutions to the Hpf equations� namely the variables in vector x�

An Hermite form ���� of integer matrix F is used to �nd the parameters� This
form associates to F 	an n�m matrix with m � n
 three matrices H � P and Q� such
that H � PFQ� P is a permutation 	a square n � n matrix
� H an n � m lower
triangular integer matrix and Q an m �m unimodular change of basis� Since F is of
full row�rank� no permutation is needed� P � I and H � FQ 	a
� By de�nition� H is
a lower triangular matrix� and thus can be decomposed as H � 	HL �
� where HL is
an n� n integer triangular square matrix� We know that jHLj � f��� �g� Indeed� HL

is of full rank 	as F 
 and the column combinations performed by the Hermite form
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computation puts unit coe�cients on HL diagonal� This is insured since independent
unit coe�cients appear in each row of F � Thus HL is an integer triangular unimodular
matrix� and has an integral inverse�

Nowwe can use Q as a change of basis between new variables v and x� with v � Q��x
	b
� Vector v can also be decomposed like H in two components� v � 	v�� v

�
� where jv�j
is the rank of H � Using 	a
 and 	b
 Equation 	�
 can be rewritten as�

Fx � FQQ��x � Hv � 	HL�
	v�� v
�
 � HLv� � f�	n� p


v� is a parametric solution at the origin which depends of the runtime value of the n
and p parameters� Thus we have v�	n� p
 � H��

L f�	n� p
� By construction� H does not
constrain v� and Q can also be decomposed like v as Q � 	Q� F

�
� Lattice F can be
expressed in a parametric linear way�

x � Qv � 	Q� F
�
	v�	n� p
� v

�
 � Q�v�	n� p
 � F �v�

and with x�	n� p
 � Q�v�	n� p
 � Q�H
��
L f�	n� p
�

F � fxj�v� s�t� x � x�	n� p
 � F �v�g 	��


We have switched from an implicit 	�
 description of a lattice on x to an explicit 	��

one through F � and v�� Note that F � is of full column�rank�

Cache�friendly order

As mentionned earlier� the allocation is based somehow on the 	�� c
 variables� The
order used for the enumeration should re�ect as much as possible the one used for
the allocation� so as to bene�t from memory locality� Equation 	��
 is a parametric
de�nition of x � However the new variables v� are not necessarily ordered as the variables
we are interested in� The aim of this paragraph is to reorder the variables as desired� by
computing a new transformation based on the Hermite form of F �� Let H � � P �F �Q�

be this form� Let Q� de�ne a new basis�

u � Q���v� 	��


x� x�	n� p
 � F �v� � P ���H �Q��v� � P ���H �u 	��


If P � � I � the new generating system of F is based on a triangular transformation
between x and u 	��
� Since H � is a lower triangular integer matrix� the variables of u
and of x simply correspond one to the other� Knowing this correspondance allows to
order the variable u components to preserve locality of accesses� If P � 
� I � the variables
are shu�ed and some cache e�ect may be lost� However we have never encountered
such an example�

Code generation

Variable u de�ning x in lattice F and polyhedron K are easy to scan with DO loops�
The constraints de�ning polyhedron K are coming from declarations� Hpf directives
and normalized loop bounds� They are�

� � � � C��� � � t � T��� � � a � D��� Li � b�	n
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Let Kx � k�	n
 be these constraints on x� Using 	��
 the constraints on u can be
written K	x�	n� p
 � P ���H �u
 � k�	n
� that is K

�u � k��	n� p
� where K
� � KP ��aH �

and k��	n� p
 � k�	n
�Kx�	n� p
�
Algorithms presented in ��� or others ���� ��� ��� �� ��� ��� ��� ��� ��� 
�� can be

used to generate the loop nest enumerating the local iterations� When S is of rank jaj�
optimal code is generated because no projections are required� Otherwise� the quality
of the control overhead depends on the accuracy of integer projections ���� but the
correctness does not�

Correctness

The correctness of this enumeration scheme stems from 	�
 the exact solution of integer
equations using the Hermite form to generate a parametric enumeration� from 	�
 the
unimodularity of the transformation used to obtain a triangular enumeration� and from
	�
 the independent parallelism of the loop which allows any enumeration order�

��� Symbolic resolution

The previous method can be applied in a symbolic way� if the dimensions are not
coupled and thus can be dealt with independently� as array sections in ���� ��� �
��
Equations 	�
 then become for a given dimension�

alignment t � �a � t�
distribution t � ��c� �p� �

a�ne reference a � 	i� a�

�	

	� 	��


where � is the number of processors 	a diagonal coe�cient of P 
� and � the block
size 	i�e� a diagonal coe�cient in C
� In order to simplify the symbolic resolution�
variables a and t are eliminated� The matrix form of the system is then f� � 	�a� �
t� � �p
� x � 	�� c� i
 and F � 	 � �� ��	 
�

The Hermite form is H � 	 � � � 
 � PFQ� with P � I and�

Q �

�
B� � ��� �	

� � �
� � �

�
CA

Let g� 
 and � be such that g is gcd	��� �	
 and g � ��
� �	� is the Bezout
identity� The Hermite form H � of the two rightmost columns of Q noted F � 	H � �
P �F �Q�
 is such that x � x� � H �u with�

H � �

�
B�

�g �

 ��

g

� ��

g

�
CA � x� �

�
B� �a� � t� � �p

�
�

�
CA � P � � I and Q� �

�

 ��

g

� ��

g

�

This links the two unconstrained variables u to the elements x of the original lat�
tice F � Variables a and t can be retrieved using Equations 	��
�

The translation of constraints on x to u gives a way to generate a loop nest to scan
the polyhedron� Under the assumption � � � and 	 � �� assuming that loop bounds
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�p � �� � � �� � ��

do u� �
�a�	t���p	�	g��

g
� �a�	t���p

g

do u� �
��u�	

��

g
��

��

g

�
�����u�

��

g

x � H �u� x�	p


Figure ��� Generated code

are rectangular� and using the constraints in K�

� � � � �� � � a � s� � � i � 


the constraints on x 	the a one is redundant if the code is correct
 are�

�
BBB�

�� � �
� � �
� � ��
� � �

�
CCCA
�
B� �

c

i

�
CA �

�
BBB�

�
� � �
�


 � �

�
CCCA

and can be translated as constraints on u�

�
BBB�

g �
�g �
�� ���

g

� ��

g

�
CCCA
�
u�
u�



�

�
BBB�

�a� � t� � �p

��a� � t� � �p� � � �
�


 � �

�
CCCA

The resulting generic spmd code for an array section is shown in Figure ��� As
expected� the loop nest is parameterized by p� the processor identity� Integer divisions
with positive remainders are used in the loop bounds�

��� HPF array allocation

The previous two sections can also be used to allocate local parts of Hpf distributed
arrays� A loop nest referencing a whole array through an identity subscript func�
tion 	S � I� a� � �
 serves as a basis for the allocation� The dense polyhedron obtained
by the changes of bases for the enumeration purpose can be used to store the required
elements� since local iterations and local elements are strictly equivalent� Thus the
constraints on local iterations can be reused as constraints on local elements�

However� Fortran array declarations are based on Cartesian sets and are not as
general as Fortran loop bounds� General methods have been proposed to allocate
polyhedra �
��� For or particular case� it is possible to add another change of frame to
�t Fortran array declaration constraints better and to reduce the amount of allocated
memory at the expense of the access function complexity�

�This assumption is� of course� not necessary for the general algorithm described in Section ���� but

met by array sections�
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Figure ��� Packing of elements

The local array elements are packed onto local memories dimension by dimension�
The geometric intuition of the packing scheme for the ���� example is shown in Fig�
ure ��� The basic idea is to remove the regular holes due to the alignment stride by
allocating the dense u space on each processor� The ��� and ��� are just used to sup�
port the geometrical intuition of the change of frame� The �rst grid is the part of the
template local to the processor� in the cycle and o�set coordinate system� The second
grid shows the same grid through transformation from x to u� The third one is the
�nal packed form� which could be used if no space must be wasted� but at the expense
of a complex access function�

An array dimension can be collapsed or distributed� If the dimension is collapsed
no packing is needed� so the initial declaration is preserved� If the dimension is aligned�
there are three corresponding coordinates 	p� �� c
� For every processor p� local 	�� c

pairs have to be packed onto a smaller area� This is done by �rst packing up the
elements along the columns� then by removing the empty ones� Of course� a dual
method is to pack �rst along the rows� then removing the empty ones� This last
method is less e�cient for the example on Figure �� since it would require �� 	
 � �

elements instead of �� 	�� �
� The two packing schemes can be chosen according to
this criterion� Other issues of interest are the induced e�ects for the cache behavior and
the enumeration costs� Formulae are derived below to perform these packing schemes�

Packing of the symbolic resolution

Let us consider the result of the above symbolic resolution� when the subscript expres�
sion is the identity 		 � �� a� � �
� The equation between u and the free variables of x
is obtained by selecting the triangular part of H �� i�e� its �rst rows� If H �� � 	I �
H � is
the selected sub�matrix� we have x� � x�� � H ��u� i�e��

�
� � t� � �p

c



�

�
�g �

 �

g


�
u�
u�




Variables 	 and a� were substituted by their values in the initial de�nition of H ��
Variables 	u�� u�
 could be used to de�ne an e�cient packing� since holes are re�

moved by the �rst change of basis 	Figure ��
� In order to match simply and closely
the �� c space� the sign of u� 	linked to �
 can be changed� and the vector should be
shifted so that the �rst local array element is mapped near 	�� �
�
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� � p � � � �� � � � � � � ��
t�
��

�
� c �

�
�	s� �
 � t�

��

�

array A����

�
max�c��min�c��	

�
g

�
���

�
�
g
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Figure ��� Local new declaration

Some space may be wasted at the beginning and end of the allocated space� For a
contrived example 	with very few cycles
 the wasted space can represent an arbitrary
amount on each dimension� Let us assume that two third of the space is wasted
for a given dimension� Thus the memory actually used for an array with � of these
dimensions is ���� and ����� of the allocated memory is wasted� � � If such a case occurs�
the allocation may be skewed to match a rectangle as closely as possible� This may
be done if space is at a premium and if more complex� non�a�ne access functions are
acceptable� The improved and more costly scheme is described in the next section�

Allocation basis

Let M be the positive diagonal integer matrix composed of the absolute value of the
diagonal coe�cients of H ���

u� � alloc	u
 � bM��	x� � x��
c � bM��H ��uc 	��


M provides the right parameters to perform the proposed packing scheme� To
every u a vector u� is associated through Formula ��� This formula introduces an
integer division� Let�s show why u� is correct and induces a better mapping of array
elements on local memories than u� Since H �� is lower triangular� Formula �� can be
rewritten�

�i � �� � � � juj�� u�i �
hi�i
jhi�ij

ui �

Pi��
j�� hi�juj

jhi�ij
	��


Function alloc	u
 is bijective� alloc	u
 is injective� if ua and ub are di�erent vectors�
and i is the �rst dimension for which they di�er� Formula �� shows that u�ai and u�bi
will also di�er� The function is also surjective� since the property allows to construct a
vector that matches any u� by induction on i�

Array declaration

Two of the three components of x�� namely p and �� are explicitly bounded in K�
Implicit bounds for the third component� c� are obtained by projecting K on c� These
three pairs of bounds� divided by M � are used to declare the local part of the Hpf
array� Figure �� shows the resulting declaration for the local part of the array� in the
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Figure ��� Overlap before and after packing�

general symbolic case� for one dimension of the array� Bounds min	c
 and max	c
 are
computed by Fourier projection�

The packing scheme induced by u� is better than the one induced by u because
there are no non�diagonal coe�cients between u� and x� that would introduce a waste
of space� and u� is as packed as u because contiguity is preserved by Formula ��� The
row packing scheme would have been obtained by choosing 	c� �
 instead of 	�� c
 for
x�� Di�erent choices can be made for each dimension� The access function requires an
integer division for the reduced memory allocation� Techniques have been suggested
to handle divisions by invariant integers e�ciently ���� that could help reduce this
cost� Also� because contiguity is preserved� only one division per column is required
to compute the base location� These packing schemes de�ne two parameters 	u��� u

�
�


to map one element of one dimension of the Hpf array to the processor�s local part�
The local array declaration can be linearized with the u�� dimension �rst� if the Fortran
limit of � dimensions is exceeded�

��� Properties

The proposed iteration enumeration and packing scheme has several interesting proper�
ties� It is compatible with e�cient cache exploitation and overlap analysis� Moreover�
some improvements can statically enhance the generated code�

According to the access function� the iteration enumeration order and the packing
scheme in Figure �� can be reversed via loop u� direction in order that accesses to the
local array are contiguous� Thus the local cache and�or prefetch mechanisms� if any�
are e�ciently used�

The packing scheme is also compatible with overlap analysis techniques ��
�� Local
array declarations are extended to provide space for border elements that are owned
by neighbor processors� and to simplify accesses to non�local elements� The overlap
is induced by relaxing constraints on �� which is transformed through the scheme as
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 	�

�p � �� � � ���
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�
� �� �

lb� �
��p	�u�

�
	


�
� ub� �

��p	�u�
�
	�

�

lb�� �
�lb���u

�

�
���p

�

do u�� � lb
�
�� lb

�
�� 	ub� � lb�


� � �

Figure ��� Optimized code�

relaxed constraints on u��� This allows overlaps to be simply considered by the scheme�
Moreover a translated access in the original loop leading to an overlap is transformed
into a translated access in the local spmd generated code�

For example unsing the Hpf array mapping of Figure ��

align B with A

A����	� � B������

has a ViewB area represented in grey on Figure �� in the unpacked template space and
the local packed array space� The local array B� can be extended by overlap to contain
the grey area� Thus� constraint � � � � � in Own becomes �� � � � �� expressing the
size � overlap on the left�

The generic code proposed in Figure �� can be greatly improved in many cases�
Integer division may be simpli�ed� or performed e�ciently with shifts� or even removed
by strength reduction� Node splitting and loop invariant code motion should be used
to reduce the control overhead� Constraints may also be simpli�ed� for instance if the
concerned elements just match a cycle� Moreover� it is possible to generate the loop
nest directly on u�� when u is not used in the loop body� For the main example in �����
such transformations produce the code shown in Figure ���

In the general resolution 	Section ���
 the cycle variables c were put after the local
o�sets �� The induced inner loop nest is then on c� It may be interesting to exchange �
and c in x� when the block size is larger than the number of cycles� the loop with
the larger range would then be the inner one� This may be useful when elementary
processors have some vector capability�

��� Allocation of temporaries

Temporary space must be allocated to hold non�local array elements accessed by local
iterations� For each loop L and array X� this set is inferred from ComputeL	p
 and
from subscript function SX� For instance� references to array Y in Figure �
 require
local copies� Because of Y�s distribution� overlap analysis is �ne but another algorithm
is necessary for other cases�

Let us consider the generic loop in Figure � and assume that local elements of Y
cannot e�ciently be stored using overlap analysis techniques� First of all� if all or most
of local elements of the lhs reference are de�ned by the loop nest� and if SY has the same
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input� fy 
 f�w�Ww � �g
output� fy� 
 f ��wg

initial system� f� 
 f

for i 
 	 � � � �jwj � 	�
gi 
 gcd�ff i��j � j 	 ig�

Ti 
 ftjt 

P

j�i f
i��
j wj �Wwj � �g

si 
 maxt�Ti t � mint�Ti t
if �si � gi�

then f i 
 f i��

else �j � i� f ij 
 f i��j and �j 	 i� f ij 

f
i��

j

gi
si

end for

f � 
 f jwj��

Figure ��� Heuristic to reduce allocated space

rank as SX� temporaries can be stored as X� If furthermore the access function SX uses
one and only one index in each dimension� the resulting access pattern is still Hpf like�
so the result of Section ��� can be used to allocate the temporary array� Otherwise�
another multi�stage change of coordinates is required to allocate a minimal area�

The general idea of the temporary allocation scheme is �rst to reduce the number
of necessary dimensions for the temporary array via an Hermite transformation� then
to use this new basis for declaration� or the compressed form to reduce further the
allocated space�

The set of local iterations� Compute	p
� is now de�ned by a new basis and new
constraints� such that x � x� � P ���H �u 	��
 and K �u � k�� Some rows of P ���H �

de�ne iteration vector i� which is part of x 	

� Let H �
i be this sub�matrix� i � H �

iu�
Let HY � PYSYQY be SY�s Hermite form� Let v � Q��

Y i be the new parameters�
then SYi � P��

Y HYv� Vector v can be decomposed as 	v�� v��
 where v� � �v contributes
to the computation of i and v�� belongs to HY�s kernel� If HYL is a selection of the
non�zero columns of HY � 	HYL �
� then we have�

aY � aY� � SYi � P��
Y HYL v

�

v� � �Q��
Y i

and by substituting i�

v� � �Q��
Y H �

iu

It is sometime possible to use x� instead of v�� For instance� if the alignments and
the subscript expressions are translations� i is an a�ne function of x� and v� simply
depends on x�� The allocation algorithm is based on u but can also be applied when x�

is used instead�
Since the local allocation does not depend on the processor identity� the �rst jpj

components of u should not appear in the access function� This is achieved by decom�
posing u as 	u�� u��
 with ju�j � jpj and �Q��

Y H �
i in 	FP � FY
 such that�

v� � FPu
� � FYu

��
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and the local part v�� is introduced as�

v�� � FYu
��

Then the �rst solution is to compute the amount of memory to allocate by projecting
constraints K onto v��� This is always correct but may lead to a waste of space because
periodic patterns of accesses are not recognized and holes are allocated� In order to
reduce the amount of allocated memory� a heuristic� based on large coe�cients in FY
and constraints K� is suggested�

Each dimension� i�e� component of v��� is treated independently� Let F i
Y be a

line of FY and y the corresponding component of v��� y � fv��� A change of basis G
	not related to the previous alloc operation
 is applied to v�� to reduce f to a simpler
equivalent linear form f � where each coe�cient appears only once and where coe�cients
are sorted by increasing order� For instance�

f � 	 �� � �� ��� � 


is replaced by�

f � f �G

G �

�
B� � � � � �

� � �� � �
� � � �� �

�
CA

f � � 	 � � �� 


and v�� is replaced by w � Gv��� Constraints K on u are rewritten as constraints W
on w by removing the constraints due to processors and by using projections and G�

Linear form f is then processed by the heuristic shown in Figure ��� It reduces
the extent by si

gi
at each step� if the constraints W show that there is a hole� A hole

exists when gi is larger than the extent of the partial linear form being built� under
constraints W � Linearity of access to temporary elements is preserved�

This scheme is correct if and only if a unique location y� is associated to each y�
Further insight on this problem� the minimal covering of a set by interval congruences�
can be found in ���� ����

��� Data movements

The relationships between the bases and frames de�ned in the previous sections are
shown in Figure ��� Three areas are distinguished� The top one contains user level
bases for iterations� i� and array elements� aX� aY���� The middle area contains the bases
and frames used by the compiler to enumerate local iterations� u� and to allocate local
parts of Hpf arrays� a�X� a

�
Y���� as well as the universal bases� x�X and x�Y� used to de�ne

the lattices of interest� F and F �� The bottom area shows new bases used to allocate
temporary arrays� a��Y and a���Y � as de�ned in Section ����

Solid arrows denote a�ne functions between di�erent spaces and dashed arrows
denote possibly non�a�ne functions built with integer divide and modulo operators� A
quick look at these arrows shows that u� which was de�ned in Section ��� is the central
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Figure ��� Relationships between frames

basis of the scheme� because every other coordinates can be derived from u� along one
or more paths�

Two kinds of data exchanges must be generated� updates of overlap areas and
initializations of temporary copies� Overlap areas are easier to handle because the local
parts are mapped in the same way on each processor� using the same alloc function�
Let us consider array X in Figure ��� The send and receive statements are enumerated
from the same polyhedron� up to a permutation of p and p�� with the same basis u�
To each u corresponds only one element in the user space� aX� by construction� of u�
To each aX corresponds only one a�X on each processor�� As a result� data exchanges
controlled by loop on u enumerate the same element at the same iteration�

Because the allocation scheme is the same on each processor� the inner loop may
be transformed into a vector message if the corresponding dimension is contiguous
and�or the send�receive library supports constant but non�unit strides� Block copies
of larger areas also are possible when alloc is a�ne� which is not the general case from
a theoretical point of view but should very often happen in real applications�

Temporary arrays like Y�� and Y��� are more di�cult to initialize because there is no
such identity between their allocation function as local part of an Hpf array� allocY�
and their allocation functions as temporaries� t allocY�� and t allocY��� � However� basis u
can still be used�

When the temporary is allocated exactly like the master array� e�g� Y��� and X��
any enumeration of elements u in U enumerates every element a���Y once and only once
because the input loop is assumed independent� On the receiver side� a���Y is directly
derived from u� On the sender side� aY is computed as SYFiu and a non�a�ne function
is used to obtain x�Y and a�Y� Vector messages can be used when every function is
a�ne� because a constant stride is transformed into another constant stride� and when
such transfers are supported by the target machine� Otherwise� calls to packing and
unpacking routines can be generated�

�As explained in Section ���� allocation is handled as a special case by choosing the identity for SX�
�Elements in overlap area are allocated more than once� but on di	erent processors�
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When the temporary is allocated with its own allocation function M � it is more
di�cult to �nd a set of u enumerating exactly once its elements� This is the case for
copy Y�� in Figure ��� Elements of Y��� a��Y� must be used to compute one related u among
many possible one� This can be achieved by using a pseudo�inverse of the access matrix
M �

u � M t	MM t

��
a��Y 	��


Vector u is the rational solution of equation a��Y � Mu which has a minimum norm�
It may well not belong to U � the polyhedron of meaningful u which are linked to a
user iteration� However� M was built to have the same kernel as SYFi� Thus the same
element aY is accessed as it would be by a regular u� Since only linear transformations
are applied� these steps can be performed with integer computations by multiplying
Equation 	��
 with the determinant of MM t and by dividing the results by the same
quantity� The local address� a�Y� is then derived as above� This proves that sends and
receives can be enumerated by scanning elements a��Y�
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implicit integer 
a	z


real X
���������
� Y
���������


�HPF� template T
���������


�HPF� align X
I�J
 with T
��I�J


�HPF� align Y with X

�HPF� processors P
�������


�HPF� distribute T
cyclic
�
�block
 onto P

read �� m� n

�HPF� independent
I�J


do I � m� ��m

do J � �� ��I

X
��I�J
 � Y
��I�J
 � Y
��I���J
 � I 	 J

enddo

enddo

�HPF� independent
I


do I � �� n

Y
I�I
 � I

enddo

Figure �
� Code example�

� Examples

The di�erent algorithms presented in the previous section were used to distribute the
contrived piece of code of Figure �
� using functions of a linear algebra library developed
at  Ecole des mines de Paris�

This is an extension of the example in ���� showing that allocation of Hpf arrays
may be non�trivial� The reference to X in the �rst loop requires an allocation of X�

and the computation of new loop bounds� It is not a simple case because the subscript
function is not the identity and because a cyclic��� and block distribution is speci�ed�
The two references to Y in the �rst loop are similar but they imply some data exchange
between processors and the allocation of an overlap area in Y�� Furthermore� the values
of the I and J are used in the computation� the iteration domain is non rectangular
and is parameterized with m�

The second loop shows that the Compute	p
 set may have fewer dimensions than
the array referenced and that fewer loops have to be generated�

The output code is too long to be printed here� Interesting excerpts are shown in
�gures �� and �� and commented below�

��� HPF Declarations

Hpf declarations are already normalized� Templates are all used thus � � I � Other
key parameters are�

P 


�

 �
� �

�
� T 


�
�� �
� 	�

�
� C 


�

 �
� �

�



Submitted to Scienti�c Programming ��

implicit integer �a�z�

c Local declaration of X and Y�����	������

real X
hpf����	 ���	 ����	 Y
hpf����	 ���	 ����

read 
	 m	 n

c For each processor P�p�	p��

c Send view
Y to compute
X�

do dest
p� � �	 �

do dest
p� � �	 �

if �dest
p��ne�p��or�dest
p��ne�p�� then

do u� � max����	 �� � �
p��	 min��	 ��
p��

do u� � max��	 divide��� � �
u�	 ����	

� min��	 divide��� � �
u�	 ����

do u� � �
p�	 min���	 �
p��

do u� � �	 �

do u�� � max��	 divide���
u� � �
u�	��	 m	 �� � �
dest
p� � �
u�����	

� min���	 divide���
u� � �
u�	��	 �
m	 ��
dest
p� � �
u�����

do u�� � max��	 divide��
u�� � u�	 ���	 divide��
dest
p� � u�	 ����	

� min��	 divide��� � �
dest
p� � u�	 ����

w� � �
u� � u�

w� � ��u� � �
p����

w� � u� � �
p�

send�P�dest
p�	dest
p��	 Y
hpf�w�	w�	w���

enddo

enddo

enddo

enddo

enddo

enddo

endif

enddo

enddo

c receive
Y

c ���

c compute
X�

do u� � �	 �

do u� � max��	 m	 �� � �
p� � �
u�����	

� min���	 �
m	 �� � �
p� � �
u�����

do u� � max��	 �
p��	 min���	 �
u�	 � � �
p��

w� � u�

w� � ��
u� � ��
u� � �
p����

w� � u� � �
p�

i � u�

j � u�

X
hpf�w�	 w�	 w�� � Y
hpf�w�	 w�	 w��

� � i � j � Y
hpf�w�	 w� � �	 w��

enddo

enddo

enddo

Figure ��� Output code 	excerpts� part �
�
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c compute
Y�

do u� � �	 �

do u� � max��	 �
p�	 �� � �
p� � ��
u�����	

� min���	 � � �
p�	 n	 �� � �
p� � ��
u�����

w� � u�

w� � ��
u� � ��
u� � �
p����

w� � u� � �
p�

i � u�

Y
hpf�w�	 w�	 w�� � i

enddo

enddo

end

c Integer divide with positive remainder� Assumes j���

integer function divide�i	j�

integer i	j

if�i�ge��� then

divide � i�j

else

divide � ���i�j����j

endif

end

Figure ��� Output code 	excerpts� part �
�

AX 
 AY 


�
� �
� 	

�
� RX 
 RY 


�
	 �
� 	

�
� t�X 
 t�Y 


�
�
�

�

��� Allocation of X�

Array X is referenced only once� as a lhs� Thus its local part is directly derived from
the set OwnX	p
 using the algorithm described in section ����

OwnX	p
 �
�

	x�� x�
 j t� � �x�� t� � x�
t� � ��c� � �p� � ��� t� � ��c�� �p� � ��
� � x� � ��� � � x� � �
� � � p� � �� � � p� � �
� � �� � �� � � �� � �� � � t� � 
�� � � t� � �


�
The equations are parametrically solved and x is replaced by u in the constraints
according to the following change of basis�

u� � p�� u� � p�� u� � c�� �u� � ��u� � �u� � ��
u� � c�� u� � x�� u� � x�� u� � ��u� � �u� � ��

Then� Frame u is replaced by Frame u� 	represented with the w variables in the Fortran
code
 to avoid non�diagonal terms in the constraints� Frame u� is linked to the user
basis x by�

u�� � p�� u�� � p�� u�� � c�� u�� � c�� �u�� � ��� u�� � ��

and constraints K are projected on each component of u� to derive the declaration
bounds of X��

� � u�� � �� � � u�� � �� � � u�� � �
� � u�� � �� � � u�� � �� � � u�� � �



Submitted to Scienti�c Programming ��

Coordinates u�� and u�� are the processor coordinates� The other coordinates� u�� to
u��� are the local array coordinates� Note that since we have a block distribution in
the second dimension� u�� � �� The Fortran declaration of X� is shown in Figure ��
as X�hpf� ��� � elements are allocated while � � � would be enough� The e�ciency
factor may be better in the 	p� �� c
 basis� It would also be better with less contrived
alignments and subscript expressions and�or larger blocks�

��� Sending Y�

Before the �rst loop nest is executed� each processor 	p�� p�
 must send some elements
of Y to its right neighbor 	p���� p�
� with a wrap�around for the rightmost processors�
	�� p�
� The pairs of communicating processors are not accurately represented by convex
constraints and the dest p� and dest p	 loop is not as tight as it could� This suggests
that central and edge processors should be handled di�erently when overlap is observed�
A linearized view of the processors could also help to �x this issue�

The bounds for the inner loops are complicated but they could mostly be evaluated
iteratively if node splitting and loop invariant code motion are used� Also� the test on
u� can be simpli�ed as a modulo operation� Finally w
 and w
 can also be evaluated
iteratively�

��� Local iterations for the second loop

As for the �rst loop� the second loop cannot be represented as an array section assign�
ment� which makes it harder to handle than the �rst one� The set of local iteration is
de�ned by�

ComputeY	p
 �
�

	y�� y�
 j y� � i� y� � i� t� � �y�� t� � y�
t� � ��c� � �p� � ��� t� � ��c� � �p� � ��
� � i � n� � � y� � ��� � � y� � �
� � � p� � �� � � p� � �
� � �� � �� � � �� � �� � � t� � 
�� � � t� � �


�
The loop bounds were retrieved by projection on u� It is probably useless to generate

a guard on the processor identity because non�involved processor have nothing to do
and because this does not delay the other ones� The guard may as well be hidden in
the inner loop bounds� Experiments are needed to �nd out the best approach�

Note that an extra�loop is generated� Y diagonal can be enumerated with only
two loops and three are generated� This is due to the use of an imprecise projection
algorithm but does not endanger correctness ���� Further work is needed in this area�

Integer divide

One implementation of the integer divide is �nally shown� The divider is assumed
strictly positive� as is the case in all call sites� It necessary because Fortran remainder
is not positive for negative numbers� It was added to insure the semantics of the output
code� Nevertheless� if we can prove the dividend is positive� we can use the Fortran
division�
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� Related work

Techniques to generate distributed code from sequential or parallel code using a uniform
memory space have been extensively studied since ��

 ���� ��� 
��� Techniques and
prototypes have been developed based on Fortran ��
� ��� ��� �
� ��� 

� ��� ���� C �
�
��� �� ��� �� ��� or others languages ���� ��� �
� ��� ����

The most obvious� most general and safest technique is called run�time resolution
���� ��� ���� Each instruction is guarded by a condition which is only true for processors
that must execute it� Each memory address is checked before it is referenced to decide
whether the address is local and the reference is executed� whether it is remote� and
a receive is executed� or whether it is remotely accessed and a send is executed� This
rewriting scheme is easy to implement ���� but very ine�cient at run�time because
guards� tests� sends and receives are pure overhead� Moreover every processor has to
execute the whole control �ow of the program� and even for parallel loop� communica�
tions may sequentialize the program at run�time �����

Many optimization techniques have been introduced to handle speci�c cases� Gerndt
introduced overlap analysis in ��
� for block distributions� When local array parts are
allocated with the necessary overlap and when parallel loops are translated� the in�
struction guards can very often be moved in the loop bounds and the send�receive
statements are globally executed before the local iterations� i�e� the loop nest with
run�time resolution is distributed into two loop nests� one for communications and
one for computations� The communication loops can be rearranged to generate vector
messages�

Tseng �
�� presents lots of additional techniques 	message aggregation and co�
alescing� message and vector message pipelining� computation replication� collective
communication� � � 
� He assumes a�ne loop bounds and array subscripts to perform
most optimizations� He only handles block and cyclic��� distributions and the align�
ment coe�cient must be ��

Recent publications tackle any alignment and distribution but often restrict refer�
ences to array sections� Each dimension is independent of the others as was assumed
in Section ����

In Paalvast et al� ���� 
�� a technique based on the resolution of the associated
Diophantine equations is presented� Row� and column�wise allocation and addressing
schemes are discussed� Benkner et al� ���� ��� present similar techniques�

Chatterjee et al� ���� developed a �nite state machine approach to enumerate
local elements� No memory space is wasted and local array elements are ordered by
Fortran lexicographic order exactly like user array elements� They are sequentially
accessed by while loops executing the fsm�s� which may be a problem if vector units
are available� Moreover� accesses to an auxiliary data structure� the fsm transition
map� add to the overhead� Note that the code generated in Figure �� may be used to
compute the fsm� In fact the lower iteration of the innermost loop is computed by the
algorithm that builds the fsm� Kennedy et al� ���� ��� �
� ��� and others ���� have
suggested improvements to this technique� essentially to compute faster at run�time the
automaton transition map� Also multi�dimensional cases need many transition maps
to be handled�

Papers by Stichnoth et al� ��
� ��� on the one hand and Gupta et al� ���� ��� ���
on the other hand present two similar methods based on closed forms for this problem�
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They use array sections but compute some of the coe�cients at run�time� Gupta et

al� solve the block distribution case and use processor virtualization to handle cyclic
distributions� Arrays are densely allocated as in ���� and the initial order is preserved
but no formulae are given� Stichnoth uses the dual method for array allocation as
in ����� that is blocks are �rst compressed� and the cycle number is used as a second
argument�

In ��� �� polyhedron�based techniques are presented to generate transfer code for
machines with a distributed memory� In ��� 
�� advanced analyses are used as an input
to a code generation phase for distributed memory machines� Polyhedron scanning
techniques are used for generating the code� Two family of techniques have been
suggested for that purpose� First� Fourier elimination based techniques ���� �� ��� ��
��� ��� ��� 
��� and second� parametric integer programming based methods ���� ��� ���
���� In ����� a two�foldHermite transformation is also used to remove modulo indexing
from a loop nest� First� variables are added to explicit the modulo computation� then
the Hermite computations are used to regenerate simply new loop bounds� While the
aim is di�erent� the transformations are very similar to those presented here�

� Conclusion

The generation of e�cient SPMD code from an HPF program is not a simple task and�
up to now� many attempts have provided partial solutions and many techniques� A
translation of HPF directives in a�ne constraints� avoiding integer division and mod�
ulo� was presented in Section � to provide a unique and powerful framework for HPF
optimizations� Homogeneous notations are used to succinctly represent user speci�ca�
tions and a normalization step is then applied to reduce the number of objects used
in the compilation scheme overviewed in Section �� New algorithms are presented to
	�
 enumerate local iterations� to 	�
 allocate local parts of distributed arrays� to 	�

generate send and receive blocks and to 	�
 allocate temporaries implied by rhs ref�
erences� They are based on changes of basis and enumeration schemes� It is shown
in Section � that problem 	�
 can be casted as special case of problem 	�
 by using
an identity subscript function but that constraints on array bounds are more di�cult
to e�ciently satisfy than loop bounds� Problem 	�
 is an extension of problem 	�
� a
unique reference to an array is replaced by a set of references and the equation used to
express the reference is replaced by a set of inequalities� Problem 	�
 is an extension of
problem 	�
� The set of elements to allocate is no longer the image of a rectangle but
the image of an iteration set which can have any polyhedral shape� This shows that
all these problems are closely linked�

Although the usual a�ne assumptions are made for loop bounds and subscript
expressions� our compilation scheme simultaneously lifts several restrictions� Array
references are not restricted to array sections� General Hpf alignments and distribu�
tions are supported� and the same algorithms also generate e�cient codes for classical
block distributions� similar to the ones produced by classical techniques� Memory allo�
cation is almost ��� ! e�cient on large blocks and performs quite well on small ones
when strange alignments are used� We believe that this slight memory waste is more
than compensated by the stride�� vector load� store� send and receive which can be
performed on the copies and which are necessary for machines including vector units�
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These contiguous accesses also perform well with a cache� The overlap analysis and
allocation is integrated to the basic allocation scheme� Finally� most computations are
performed at compile�time and no auxiliary data structures are used�

Our scheme can also be extended to cope with processor virtualization if the virtu�
alization scheme is expressed with a�ne constraints� Such a scheme could reuse HPF
distribution to map HPF processors on physical processors�

Many partial optimization techniques are integrated in our direct synthesis ap�
proach� message vectorization� and aggregation ����� overlap analysis ��
�� A new stor�
age management scheme is also proposed� Moreover other optimizations techniques
may be applied to the generated code such as vectorization �
��� loop invariant code
motion ��� and software pipelining ���� 
���

This technique uses algorithms� directly or indirectly� that may be costly� such as
Fourier elimination or the simplex algorithm� which have exponential worst�case be�
haviors� They are used for array region analysis� in the set manipulations and in the
code generation for polyhedron scanning� However our experience with such algorithms
is that they remain practical for our purpose� Polyhedron�based techniques are widely
implemented in the PIPS framework ���� where hpfc� our prototype Hpf compiler� is
developped� Firstly� for a given loop nest� the number of equalities and inequalities is
quite low� typically a dozen or less� Moreover these systems tend to be composed of in�
dependent subsystems on a dimension per dimension basis� resulting in a more e�cient
practical behavior� Secondly e�cient and highly tuned versions of such algorithms are
available� for instance in the Omega library� Thirdly� potentially less precise but faster
program analysis ���� ��� ��� can also be used in place of the region analysis�

Polyhedron�based techniques are already implemented in hpfc� our prototype Hpf
compiler ���� to deal with I�O communications in a host�nodes model ��
� and also
to deal with dynamic remappings ���� 	realign and redistribute directives
� For
instance� the code generation times for arbitrary remappings are in ���"�s range� Future
work includes the implementation of our scheme in hpfc� experiments� extensions to
optimize sequential loops� to overlap communication and computation� and to handle
indirections�
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