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Synchronous Programming in Audio Processing:
A Lookup Table Oscillator Case Study

KARIM BARKATI
IRCAM1, France
and
PIERRE JOUVELOT
CRI, Mathématiques et systèmes, MINES ParisTech, France

The adequacy of a programming language to a given software project or application domain
is often considered a key factor of success in software development and engineering, even though
little theoretical or practical information is readily available to help make an informed decision.
In this paper, we address a particular version of this issue by comparing the adequacy of general-
purpose synchronous programming languages to more domain-specific languages (DSL) in the field
of computer music. More precisely, we implemented and tested the same lookup table oscillator
example program, one of the most classical algorithms for sound synthesis, using a selection of sig-
nificant synchronous programming languages, half of which designed as specific music languages –
Csound, Pure Data, SuperCollider, ChucK, Faust – and the other half being general synchronous
formalisms – Signal, Lustre, Esterel, Lucid Synchrone and C with the OpenMP Stream Extension
(Matlab/Octave is used for the initial specification). The advantages of both approaches are dis-
cussed, providing practical insights to both software developers and language designers regarding
the choice of programming language styles when tackling audio applications.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; C.3
[Computer Systems Organization]: Special-purpose and Application-based Systems—Real-
time and Embedded Systems; Signal Processing Systems; D.1.m [Software]: Programming Tech-
niques—Miscellaneous; D.2.11 [Software]: Software Engineering—Software Architectures; D.3.2
[Software]: Language Classifications—Concurrent, Distributed, and Parallel Languages; Data-
flow Languages; Specialized Application Languages; Very High-Level Languages; D.3.3 [Soft-
ware]: Programming Languages—Language Constructs and Features; E.1 [Data]: Data Struc-
tures—Arrays; J.5 [Computer Applications]: Arts and Humanities—Performing Arts; J.7
[Computer Applications]: Computers in Other Systems—Real Time; K.2 [Computing Mi-
lieux]: History of Computing

General Terms: Design, Languages
Additional Key Words and Phrases: Synchronous programming languages, Music programming
languages, Computer music, Signal processing, Timing

1. INTRODUCTION

The understanding of the existence of a close relationship between music and math-
ematics has been mentioned since the ancient Greeks. This is therefore not surpris-
ing that programming language designers have considered the musical domain as a
venue of choice for their investigations from the early days of the field of computing
[Van Roy 2009]: programming is indeed a constructive approach to mathematical
reasoning. There are of course multiple ways to use programming languages in mu-

1This work was done as part of a postdoctoral stay at MINES ParisTech.
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sic applications, from low-level audio processing to more abstract music notation
manipulation processes to the higher sphere of music composition frameworks.

Most digital audio applications are based on the algorithmic real-time processing
of streams of sound samples; these signals are subject to strong timing requirements
since latencies and delays in music signals are easily detectable even by untrained
human ears. Such stringent constraints call for languages that are able to manage
somewhat significant data throughputs while enforcing strong timing constraints.
A family of programming languages has been developed to specifically deal with
such timing issues: synchronous languages [Benveniste and Berry 1991b; Benveniste
et al. 2003]. This particular programming paradigm is based on the key idea of
synchronizing concurrent computing processes on clocks. The relationship of such
an approach with the temporal structure of music and real-time audio computing
is obviously relevant and justifies the current interest of the music community for
such a framework.

The purpose of this paper is to provide a comparative survey of the current port-
folio of major synchronous programming languages that can be used in the specific
field of audio processing. We believe such an analysis is particularly pertinent to-
day, since this domain has seen a recent significant growth both in the industrial
and research worlds, with the widespread use of gadgets such as MP3 players or the
introduction of new programming paradigms such as Faust [Orlarey et al. 2009]
or ChucK [Wang et al. 2003]. This survey adopts a two-pronged approach: we look
both at key music programming languages, i.e., audio-specific languages designed
in the computer music community, and general signal-processing programming lan-
guages to see how they relate to each other while adopting, with some variations,
the synchronous framework. Our approach is a pragmatic one: we use a running
example throughout this article, namely the implementation of a lookup table os-
cillator. For each implementation, we try to stick to the programming style of each
language in order to highlight its idiosyncratic aspects.

We believe our work can be of help both to anyone who needs to decide which
language is best adapted to a given digital audio project and to language designers.
Indeed, the adequacy of a programming language to a project or application domain
is often considered a key factor of success in software development, even though little
theoretical or practical information is readily available to help make an informed
decision. Our intent here is to provide practical insights to both software developers
and project managers regarding the choice of a programming language style when
tackling audio applications. Language designers might also benefit from our work,
in particular for DSL2 applications, since cross-fertilization between languages via
the borrowing of existing language features is a common way to improve language
designs.

The structure of the paper is the following. Section 2 provides a brief general
overview of the most prominent music and synchronous programming languages.
Section 3 contains a description of our running example, which we consider a typical
use case for most current audio applications; we provide both an informal and a
formal, in Matlab/Octave, specification of our target program, osc, a standard
wave synthesis algorithm. The two following sections, namely Section 4 for music-

2Domain-Specific Language.
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specific languages and Section 5 for synchronous languages, present our attempts
at implementing osc in a few selected languages. For each one of these languages,
we use the same presentation format: (1) a brief overview introduces the language
– using the own words of its author(s) –, (2) the osc example we coded in this
particular formalism and (3) a set of notes, when we felt that some explanations
were needed for what we assumed would be the most difficult programming details
to understand by the reader. Section 6 provides some high-level comments about
the plus and minuses of the various approaches. We conclude in Section 7.

2. SYNCHRONOUS PROGRAMMING FOR MUSIC

From theoretical time-complexity issues to user interaction management, the con-
cept of time has a structuring effect on the way computer technology impacts the
programming world. In languages specifically dedicated to music programing, music
events are expressed along strict timing constraints. Synchronous general-purpose
languages also consider (logical) time, along which control and computation are
scheduled, as a key design ingredient; they adhere to the “synchronous hypothe-
sis”, which emphasizes time constraints and determinism. Even though developed
within a totally different research community, music-specific languages also follow
this synchronous hypothesis. We survey below these two approaches, and end this
section with the list of key representative languages we use in the remaining of this
paper.

2.1 Computer Music Languages

Computer music, a vibrant and dynamic research field, targets one of the oldest
application domains of computers, starting in the late 1950s on mainframes, with
two main branches [Loy and Abbott 1985]: computer-aided composition (CAC)
and digital audio synthesis. For this study, we are interested in the latter.

The CAC branch deals mostly with the note paradigm, using a symbolic ap-
proach, and usually aims at producing scores. It started in 1956 with the Musi-
comp3 language of Lejaren Hiller and Robert Baker (both chemists at that time)
at the University of Illinois using an Illiac I [Baker and Hiller 1963; Hiller and
Baker 1964]. Main CAC languages include PatchWork [Laurson and Duthen 1989],
Common Music [Taube 1991], Haskore [Hudak et al. 1996], Elody [Orlarey et al.
1997], OpenMusic [Assayag et al. 1999] and PWGL [Laurson et al. 2009].

The digital audio synthesis branch is mostly focused on the sound paradigm,
using signal processing and physical modeling approaches; the overall goal here is
to synthesize files or streams of audio samples, while moving in the mid-1980s to a
more “real-time” paradigm better fitted to live performances. This branch started
around 1957 with the Music I language of Max Mathews [Mathews et al. 1969],
then an engineer at the Bell Telephone Laboratories (Murray Hill, New Jersey),
on an IBM 704; at the time, hours of computation were necessary to get a few
seconds of sound. The concept of unit generator, implemented in Mathews’ Music-
N languages, will prove itself a pervasive concept in audio signal processing, both
in computer music languages and hardware synthesizers.

3MUsic Simulator-Interpreter for COMpositional Procedures.
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We classify below several significant audio synthesis languages and systems, hence
providing a global picture of the domain – note though that some boundaries may
be somehow artificial as some languages belong to several categories:

Textual languages. Music-N family languages (I, II, III, IV, V) [Mathews et al.
1969], Csound [Vercoe 1992; Boulanger et al. 2000], SAOL [Scheirer and Vercoe
1999], Faust [Orlarey et al. 2009], Nyquist [Dannenberg 1997], SuperCollider
[McCartney 1996], ChucK [Wang et al. 2003], Impromptu [Sorensen 2005];
Visual programming environments. Max/MSP [Puckette 1991; Zicarelli 1998],

Pure Data [Puckette 1996], jMax [Déchelle et al. 1999], Open Sound World [Chaud-
hary et al. 2000];
Physical modeling systems. Modalys [Eckel et al. 1995], Chant [Rodet et al.

1984], Genesis/Cordis-Anima [Castagné and Cadoz 2002; Cadoz et al. 1993];
Miscellaneous. Kyma [Scaletti 1987] (graphical sound design environment), STK

[Cook and Scavone 1999] (C++ toolkit).

2.2 Synchronous Languages

Synchronous programming languages appeared in the early 1980s in France, with
Esterel (École des mines de Paris and Inria, Sophia Antipolis), Lustre (Veri-
mag/Cnrs, Grenoble) and Signal (Inria, Rennes), as an academic research field
mixing control theory and computer science [Benveniste and Berry 1991a; Halb-
wachs 1993; 2005], before becoming of high industrial interest for critical systems
[Benveniste et al. 2003] such as those present in avionics, trains and nuclear power
plants. The idea of synchrony was arising also through Milner’s work on commu-
nicating systems [Milner 1980], Afcet4’s Grafcet [Baker et al. 1987] and Harel’s
Statecharts formalism [Harel 1987]. Synchronous languages are high-level, engineer-
friendly, robust, specification formalisms, rooted in the concepts of discrete time and
deterministic concurrency. Time, seen here as a succession of shared logical instants
generated by regular (hence synchronous) support clocks, is usually not explicitly
mentioned in the definition of more traditional programming languages. Such a
notion is however of paramount importance in the design and implementation of
data-flow and control software for reactive systems [Harel and Pnueli 1985; Halb-
wachs 1993] where interactions with external environment processes are subject to
time constraints, memory constraints, security constraints and determinism require-
ments. Due to such stringent objectives, these languages are often equipped with
timing and concurrency mathematical models that are structured around automata
theory and a typical core hypothesis of instantaneous calculus and communication
between logical instants; this paradigm is called the “synchronous hypothesis”. The
execution of a synchronous program amounts then, at least in principle, to the
sequencing of an infinite loop of tightly time-constrained sets of atomic reactions,
thus preserving both concurrency, inherent to reactive systems, and determinism,
highly desirable for critical systems.

To illustrate the richness and diversity of this research field, we provide below
a list of forty synchronous languages of interest. This list is neither intended to
be exhaustive nor limited to a particular paradigm; it is rather a large-spectrum

4Association française pour la cybernétique économique et technique.
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overview, mixing together very different languages toward a taxonomy of a signifi-
cant set of synchronous and synchronous-oriented languages. We loosely categorized
them using the criteria of syntax (textual, graphic), language definition approach
(full-fledged or language extension) and application domain specificities (generic,
hardware, models):

Textual languages. Esterel [Berry and Cosserat 1985], Lustre [Caspi et al. 1987],
Signal [Gautier et al. 1987; Gamatié 2009], ConcurrentML [Reppy 1999], Larissa
[Altisen et al. 2006], Lucid Synchrone [Caspi and Pouzet 1996], Quartz [Schneider
2000], ReactiveML [Mandel and Pouzet 2005], RMPL [Ingham et al. 2001], SL
[Boussinot and De Simone 1996], SOL [Bharadwaj 2002], StreamIt [Thies et al.
2002], 8 1/2 [Giavitto 1991].
Visual languages and environments. Argos [Maraninchi 1991], Statecharts [Harel

1987], SyncCharts [André 1996], Argonaute [Maraninchi 1990], Polis [Balarin 1997],
Polychrony [Le Guernic et al. 2003], Scade [Dormoy 2008], Simulink/Matlab [Caspi
et al. 2003];
Language extensions (original language). ECL (C) [Lavagno and Sentovich 1999],

Jester (Java) [Antonotti et al. 2000], Reactive-C (C) [Boussinot 1991], Realtime
concurrent C (C) [Gehani and Ramamritham 1991], RTC++ (C++) [Ishikawa
et al. 1992], Scoop (Eiffel) [Compton 2000], SugarCubes (Java) [Boussinot and
Susini 1998];
Hardware description languages. Lava [Bjesse et al. 1998], SystemC [Initiative

2006], Verilog [Thomas and Moorby 2002], VHDL [IEEE standard 1988];
Models and intermediate formats. Averest [Schneider and Schuele 2005], DC+

[Pnueli et al. 1998], OC [Girault 2005], SC [Girault 2005], DC [Girault 2005],
CP [Girault 2005], SDL [Ellsberger et al. 1997], ULM [Boudol 2004], UML Marte
[Mallet and André 2009].

2.3 Key Language Representatives

The family of significant synchronous languages dedicated to music is clearly more
limited than the one of general purpose, although music seems an obvious applica-
tion field for the synchronous programming paradigm and its associated languages.
Indeed, many concurrent processes (associated to instruments or artists) are inti-
mately linked to the audio sampling frequency that drives the production of sound
samples. One of our goals with this research work is to illustrate that a bridge
can be made between the synchronous and music programming paradigms we just
surveyed.

Even though the brief presentation, above, of existing music and synchronous
languages is by no means exhaustive, it makes it obvious that these families of
languages offer a very wide variety of possible candidates for our comparison survey.
To make our use case analysis project realistic, we need to make a selection to end up
with a manageable small subset of these languages. We based our selection criteria
on the availability of each language and its associated tools, the import of its design
principles on the history of the synchronous and computer music paradigms and
a rough assessment of the size of its user base. We thus end this section with the
selection of the representative languages that are the basis for our use case study,
listed in Table I.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Csound MIT B. Vercoe
SuperCollider Univ. Texas J. McCartney
Pure Data UCSD M. Puckette
ChucK Princeton Univ. G. Wang, P. Cook
Faust GRAME Y. Orlarey et al.

Signal IRISA/INRIA A. Benveniste, P. LeGuernic
Lustre CNRS/Verimag P. Caspi, N. Halbwachs
Lucid Synchrone Verimag & Paris 11 P. Caspi, G. Hamon, M. Pouzet
Esterel MINES/INRIA G. Berry et al.
Openmp Stream MINES ParisTech Antoniu Pop

Table I. Selection of music and general-purpose synchronous languages

3. THE OSCILLATOR USE CASE

Our survey of significant technological tools for the synchronous programming of
audio applications is grounded on practical terms. We decided to perform for
such an analysis a use case study and picked osc, an implementation of a sound
oscillator, as test case. The osc example is particularly significant for the audio
domain since this simple truncated lookup table oscillator algorithm is one of the
most classical algorithms of the sound synthesis field and is also involved in other
important methods, such as wavetable synthesis, additive synthesis or FM synthesis
(frequency modulation).

3.1 Presentation

The purpose of osc is to output, in a programming language-specific manner, the
successive samples of a sinusoidal waveform; the wave frequency is a parameter of
this process, and can be changed at start-up time. Although there are multiple ways
to implement such a general specification, we tried to stick to the same scheme in the
various programming environments we tested in order to perform an as objective as
possible assessment. The basic idea is to always loop over the same single sinusoidal
vector for all frequencies, but to decide which sound samples to output according
to what the requested frequency freq is; for instance, picking every other sample
will provide a signal with a frequency twice that of the original if the sinusoidal
vector is always looped over at the same rate. In more details (see also Figure 1):

—during the initialization stage, one period of the sin function is sampled and
tablesize samples are stored in the vector sinwaveform;

—the main function osc(freq) loops over this vector indefinitely while outputting
the successive sound samples of appropriate phase, i.e., vector index, phase(freq),
for each time tick, according to the provided frequency freq;

—each phase phase(freq) is the product of tablesize and the index i(n) defined
as i(n) = {i(n−1) + freq/samplingfreq}, where {x} denotes the decimal part
of any number x and samplingfreq is the audio output sampling frequency –
this kind of recursive equation is a typical tenet of both synchronous languages
and digital signal processing (DSP) applications;

ACM Journal Name, Vol. V, No. N, Month 20YY.
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—the audio sample corresponding to each particular phase is provided by the
rdtable function, returning sinwaveform[int(phase(freq))], where int com-
putes the integer floor of its argument;

—each sampled data point is finally output, in a more or less platform-specific
manner.

sinwavetable[tablesize]

int(phase(freq)) int(phase(freq))

Fig. 1. Truncated lookup table oscillator

3.2 Interface

At the highest level, nine general constants and functions have to be provided
to ensure the existence of a working implementation of osc; the corresponding
signature is listed in Table II. Of course, depending on the particular programming
language and its abstraction level, some of these functions will be indeed visible
in the osc program text; for others, they will only be implicitly present in our
implementation.

const tablesize = 65536 // number of sound samples
const sinwaveform[tablesize] // sampled sinusoid (one period)
const samplingfreq = 44100 // audio sampling rate (Hz)
const freq = 440 // ‘A’ diapason frequency (Hz)
const twopi = 6.28318530717958623
void osc(freq) // main function
float rdtable(index) // dynamic table read access
float phase(freq) // phase for each tick
float decimal(float x) // decimal part of x in [0;1]

Table II. Oscillator signature: general constants and functions

Environment. In order for osc to be implemented in a particular language, the
following features need to be available in the programming environment:

—the two mathematical functions sin and floor (used to compute the decimal
part of a number);

—the ability to perform dynamic reads of tables (vectors of samples);
—a looping construct for table initialization and osc.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Usage. The osc process is launched by calling the main function osc with the
chosen frequency as argument, e.g., osc(440). Here we use a constant value for
readability purposes, but ideally the freq argument should be an input signal, i.e,
a stream of frequencies, for example [523.25, 587.33, 659.26, ...] – this particular
succession of frequencies would in fact yield a sequence of notes, here [C, D, E, ...].

In theory, this algorithm never terminates, as it is a synchronous program re-
sponding to input frequency data. In practice, depending on the language at hand,
the user will have to interrupt the execution, in many cases by typing ’ctrl-c’,
or a finite vector of outputsize samples will be computed off-line. For the val-
idation of our tests, we computed a reference vector of sound samples; it begins
with the following rounded values, corresponding to the 440Hz diapason at the
44,100Hz sampling rate: [0.0000, 0.0626, 0.1250, 0.1869, 0.2481, 0.3083, 0.3673,
0.4249, 0.4807, 0.5347, 0.5866, 0.6362, 0.6833, 0.7277, ...]. The output of each im-
plementation has been compared to this reference vector, any mismatch being an
indication of something wrong with the corresponding implementation.

3.3 Specification

We provide here an implementation of osc using indifferently Octave5 or Matlab6,
a well-known “high-level technical computing language and interactive environment
for algorithm development, data visualization, data analysis and numeric computa-
tion”. This straightforward imperative implementation should be easily understood
by most readers, and serves here as a more formal specification of our use case.
Here, the standard output is the array waveform.� �
f unc t i on [ waveform ] = osc ( f r e q )
t a b l e s i z e = b i t s h i f t (1 , 16) ;
s amp l i n g f r e q = 44100 ;
o u t p u t s i z e = 200 ;
twop i = 2 ∗ p i ;

i n d e x e s (1 ) = 0 ;
waveform (1) = 0 ;

f o r i = 1 : t a b l e s i z e
s inwave fo rm ( i ) = s i n ( ( i ∗ twop i ) / t a b l e s i z e ) ;

end

fo r i = 2 : o u t p u t s i z e
i n d e x e s ( i ) = dec ima l ( ( f r e q / s amp l i n g f r e q ) + i n d e x e s ( i −1) ) ;
phase = t a b l e s i z e ∗ i n d e x e s ( i ) ;
waveform ( i ) = s inwave fo rm ( u i n t 16 ( phase ) ) ;

end
end

funct i on [ y ] = dec ima l ( x )
y = x − f l o o r ( x ) ;
end� �
5Octave is an open-source variant of Matlab: http://www.gnu.org/software/octave/.
6http://www.mathworks.com.
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Notes

—The bitshift expression shifts here a 1 sixteen times on the left, yielding 216 as
required.

—The keyword function introduces the definition of a function. Here the decimal
function yields in the return value named y the decimal part of its argument x,
and is used to perform a round-robin in the [0; 1[ interval.

—The intrinsic function uint16 returns an unsigned 16-bit integer that approxi-
mates its floating point argument, here phase. This truncation of the floating
point phase values provides the integer indexes needed to access the wave table
in read mode.

4. MUSIC LANGUAGES

In some loose sense, all music-specific programming languages use, in one way or
another, synchronous idioms, since they have to deal with temporal streams of
audio samples. We decided to adopt here a somewhat historical order to present
key music programming languages:

—Csound is, in a way, the father of modern audio synthesis languages [Vercoe 1992;
Boulanger et al. 2000];

—SuperCollider adopts an object-oriented programming approach, inspired by the
SmallTalk language [McCartney 1996];

—Pure Data is, like Max/MSP [Puckette 2002], a typical representative of the
visual programming paradigm often adopted by the computer music community,
thanks to its appeal to the contemporary music composers [Bresson et al. 2009];

—ChucK exemplifies the importance of on-the-fly programming that now can occur
even during music performance through “live coding” practices [Wang et al. 2003];

—finally, Faust promotes the functional paradigm onto a block-diagram algebra,
striving to balance expressivity and run-time performance [Orlarey et al. 2002;
2009].

4.1 Csound

Presentation. The following position statement is extracted from the Csound
official site, http://www.csounds.com.

Csound is a sound design, music synthesis and signal processing system,
providing facilities for composition and performance over a wide range
of platforms. It is not restricted to any style of music, having been
used for many years in the creation of classical, pop, techno, ambient,
experimental, and (of course) computer music, as well as music for film
and television.

Oscillator. The Csound implementation osc.csd of the oscillator can be found
below. We tested Csound version 5.11 (float samples) Sep 24 2009, with the graph-
ical interface QuteCsound version 0.4.4.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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� �
<CsoundSyn the s i z e r>
<Cs In s t r umen t s>
s r = 44100
kr = 441
ksmps = 100
nchn l s = 1

i n s t r 1
aosc o s c i l p4 , p5 , 1

out aosc
endin

</ Cs In s t r umen t s>
<CsScore>
; use GEN10 to compute a s i n e wave
f 1 0 65536 10 1
; i n s s t r t dur amp f r e q
i 1 0 2 20000 440
e
</CsScore>
</ CsoundSyn the s i z e r>� �

Notes

—Csound is the oldest musical language of this study: it is a C-based audio DSL
following Music11, also developed by Barry Vercoe at MIT in the 1970s, and the
MUSIC-N languages initiated by Max Mathews at the Bell Labs in the 1960s.
Several aspects present in the Csound language (possibly inherited from previous
languages) still persist in later musical languages, so we detail here several aspects
of Csound that will be of use for the understanding of most of the sections
dedicated here to musical languages.

—In the header, the two assignments “sr = 44100” and “kr = 441” stand for sam-
ple rate and control rate, which are two fundamental concepts in computer mu-
sic. The first one specifies the discrete audio sampling rate, set according to the
Nyquist frequency, which is twice the 20,000Hz upper human listening bound
needed at sampling time to avoid aliasing. The second one specifies the “control”
rate; to save computing resources, it is usually set to a value smaller than the
audio rate, since it is mostly used to manage music control information, which
do not require the very high temporal resolution requested by sound signals.

—The Csound code of osc.csd presented here gathers into one file both the so-
called orchestra and score parts, using XML-like sections, although Csound code
had originally been stored in two distinct ’.orc’ and ’.sco’ files. “An orchestra
is really a computer program that can produce sound, while a score is a body of
data which that program can react to.” [Vercoe 1992].

—The Csound syntax makes intensive use of one-letter prefixes:
—in an instrument definition, “a” and “k” specify signal rates (so that “aosc” is
an audio-rate oscillator signal);

—in an instrument definition, “p” followed by a number specifies a reference to
the corresponding parameter field in the score part (here p4 corresponds to
20000 and p5 to 440 when used in i1, see below);

ACM Journal Name, Vol. V, No. N, Month 20YY.
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—in the score part, “f” followed by a list of numbers declares a function table
(here, the table f1 will be computed at 0 second, on 65536 points, using the
unit generator 10, with a relative energy of 1 for the fundamental frequency;
see next notes);

—in the score part, “i” followed by a list declares a Csound note that references
an instrument to be played (here i1 requests the computation of instr 1,
from time 0, during 2 seconds, with an amplitude of 20000, at a frequency of
440 Hz);

—finally, e asks for the execution of the score.
—The oscillator is synthesized by instr1 in the orchestra part, using the oscil
generator, which is a simple direct synthesis oscillator without interpolation.
This generator has three arguments: its amplitude p4, its frequency p5 and its
function table number 1, which refers to f1 in the score part; this latter function
table relies on the tenth unit generator called “GEN10”, specified as the fourth
argument of f1.

—As GEN10 is also used in several musical languages in the next sections, we
cite here its extensive description from the Canonical Csound Reference Manual
[Vercoe et al. 2007]:

GEN10 – Generate composite waveforms made up of weighted sums of
simple sinusoids.
Description: These subroutines generate composite waveforms made
up of weighted sums of simple sinusoids. The specification of each con-
tributing partial requires 1 pfield using GEN10.
Syntax: f # time size 10 str1 str2 str3 str4 ...
Initialization: size – number of points in the table. Must be a power
of 2 or power-of-2 plus 1. str1, str2, str3, etc. – relative strengths of the
fixed harmonic partial numbers 1, 2, 3, etc., beginning in p5. Partials
not required should be given a strength of zero.
Note: These subroutines generate stored functions as sums of sinusoids
of different frequencies. The two major restrictions on GEN10, namely
that the partials have to be harmonic and in phase, do not apply to
GEN09 or GEN19. In each case the composite wave, once drawn, is then
rescaled to unity if p4 was positive. A negative p4 will cause rescaling to
be skipped.

4.2 SuperCollider

Presentation. The following position statement is extracted from the SourceForge
http://supercollider.sourceforge.net site, since the SuperCollider official site, http:
//www.audiosynth.com, seems to be less well maintained.

SuperCollider is an environment and programming language for real-
time audio synthesis and algorithmic composition. It provides an inter-
preted object-oriented language which functions as a network client to
a state of the art, real-time sound synthesis server.
SuperCollider was written by James McCartney over a period of many
years, and is now an open source (GPL) project maintained and devel-
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oped by various people. It is used by musicians, scientists, and artists
working with sound.

Oscillator. The SuperCollider implementation osc.scd of the oscillator can be
found below. We tested SuperCollider version 3.4, rev 10205.� �
(

var t a b l e s i z e = 1 << 16 ;
b = Buffer . a l l o c ( s , t a b l e s i z e , 1) ; // a l l o c a t e a Bu f f e r
b . s i n e 1 ( 1 . 0 , true , f a l s e , t rue ) ; // f i l l the Bu f f e r
{OscN . a r ( b , 440 , 0 , 1) } . p l a y // N: Non− i n t e r p o l a t i n g

)
b . f r e e ;� �
Notes

—In SuperCollider [McCartney 1996], which has over 250 unit generators (cf. [Valle
et al. 2007]), such an oscillator could have been achieved through at least four
different ways:
(1) the one presented here, using a Buffer filled by a sine1 pattern and played

by a non-interpolating OscN wavetable oscillator;
(2) replacing OscN by an interpolating Osc wavetable oscillator;
(3) using BufRd, BufWr and SinOsc (since BufRd is to be filled by a unit gener-

ator);
(4) using directly SinOsc.

—Since Version 3, SuperCollider is build upon a client/server architecture (commu-
nicating via OSC7), with a synthesis application on the server side and a remote
language application on the client side. So here the free method allows the client
to tell the server to free the memory of the buffer previously used.

—The first level of parenthesis surrounding the main block of code is a syntactic
trick that is used to ensure that the enclosed lines of code will be launched at the
same time by the SuperCollider interpreter; this occurs, in practice, when one
simply double-clicks inside one of the parentheses (cf. [Valle et al. 2007]).

4.3 Pure Data

Presentation. The following statement is extracted from the Pd-FlossManual,
available at http://en.flossmanuals.net/PureData. The Pure Data official site is http:
//puredata.info.

Pure Data (or Pd) is a real-time graphical programming environment
for audio, video, and graphical processing. Pure Data is commonly used
for live music performance, VeeJaying, sound effects, composition, au-
dio analysis, interfacing with sensors, using cameras, controlling robots
or even interacting with websites. Because all of these various media
are handled as digital data within the program, many fascinating op-
portunities for cross-synthesis between them exist. Sound can be used
to manipulate video, which could then be streamed over the internet to

7Berkeley Cnmat’s Open Sound Control protocol [Wright 2005].
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another computer which might analyze that video and use it to control
a motor-driven installation.
Programming with Pure Data is a unique interaction that is much
closer to the experience of manipulating things in the physical world.
The most basic unit of functionality is a box, and the program is formed
by connecting these boxes together into diagrams that both represent
the flow of data while actually performing the operations mapped out in
the diagram. The program itself is always running, there is no separation
between writing the program and running the program, and each action
takes effect the moment it is completed.

Oscillator. The Pd implementation osc.pd of the oscillator can be found in Fig-
ure 2. We tested Pure Data version 0.42.5-extended-20091222.

Fig. 2. The osc.pd implementation in Pure Data.

Notes

—Pure Data is a graphical programming environment [Puckette 1996], where a
graphical window containing Pure Data code (i.e. boxes and connections) is called
a patch. The implementation shown on Figure 2 is a screenshot of the patch
osc.pd.

—This patch is graphically separated into two main parts labelled PLAYER and
INITIALIZATION; the separation is drawn by an idiosyncratic line made up of a
connection between two dummy bang objects. A bang object is used to trigger
the most primitive of all event messages, in which only the information that a
constant bang value has to be sent is encoded.

—Three trigger objects are used in order to enforce the sequential order of message
emission (right-to-left order in Pure Data), which is crucial for such an event-
driven language. The syntax of the trigger object includes a list of types,
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where the number of elements determines the number of outputs and where the
type names (or one-letter type aliases) determine the type for the corresponding
output, allowing type conversion. Here, letters f and b stand respectively for
types float and bang.

—The pack object takes a series of inputs and, when its leftmost input receives
a message (according to the right-to-left order), it outputs a concatenated list.
Here, the tabwrite object receives lists of two elements (value, index ) from pack
to fill the array myarray.

—We use here an expr object to simplify the coding of the coefficient calculation
by gathering several operations in a one-line fashion, but it could also be done
(less clearly) with a traditional Pure Data chain of arithmetic and trigonometric
objects.

—Object names ending with a “∼” (tilde) character denote signal objects, running
at audio rate, and bold connections denote signal connections. “[Tilde objects]
use continuous audio streams to intercommunicate, and also communicate with
other (‘control’) Pd objects using messages.” [Puckette 2007]

—To read arrays, we use a phasor∼ object which outputs a sawtooth signal be-
tween 0. and 1., here multiplied by the table size for table lookup. The dummy
argument 0 allows phasor∼ to receive a non-signal message for the frequency (at
control rate).

—The dac∼ object, for digital-to-analog converter, transfers the real-time audio
outputs of Pure Data patches to the audio driver of the underlying operating
system.

4.4 ChucK

Presentation. The following position statement is a mix of texts from the official
site http://chuck.cs.princeton.edu and the ChucK manual.

ChucK is a new (and developing) audio programming language for real-
time synthesis, composition, performance, and now, analysis. ChucK
presents a new time-based, concurrent programming model that’s highly
precise and expressive (we call this strongly-timed), as well as dynamic
control rates, and the ability to add and modify code on-the-fly. In
addition, ChucK supports MIDI, OSC, HID device, and multi-channel
audio. It’s fun and easy to learn, and offers composers, researchers,
and performers a powerful programming tool for building and experi-
menting with complex audio synthesis/analysis programs, and real-time
interactive control.

Oscillator. The ChucK implementation osc.ck of the oscillator can be found
below. We tested ChucK version 1.2.1.3 (dracula).� �
Phasor d r i v e => Gen10 g10 => dac ; // gen10 s i n u s o i d a l l ookup t a b l e

[ 1 . ] => g10 . c o e f s ; // l oad up the p a r t i a l s amp l i t ude c o e f f s
440 => d r i v e . f r e q ; // s e t f r e qu enc y f o r r e a d i n g through t a b l e

whi le ( t rue ) // i n f i n i t e t ime loop

ACM Journal Name, Vol. V, No. N, Month 20YY.



Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study · 15

{
5 0 0 : :ms => now ; // advance t ime

}� �
Notes

—The ChucK language is specifically designed to allow on-the-fly audio program-
ming [Wang et al. 2003].

—The heart of ChucK’s syntax is based around the massively overloaded ChucK
operator, written as ‘=>’. “[This operator] originates from the slang term ‘chuck’,
meaning to throw an entity into or at another entity. The language uses this no-
tion to help express sequential operations and data flow” [Wang et al. 2003]. The
ChucK operator’s behavior relies on the strong typing system of this imperative
language, depending on the type of both its left and right arguments.

—Several elements of ChucK, such as Gen10 (cf. Csound section), Phasor or dac
(cf. Pure Data section), are inspired by features existing in previous musical
languages.

—Here, the drive phasor is declared and piped to the g10 generator, itself con-
nected to the digital-to-audio converter.

—Like in Csound, Gen10 has to be fed with a list of relative coefficients specifying
the harmonics of the spectra; here a single-element array [1.] yields a single
sinusoid.

—The infinite time loop allows the computing and playing processes declared above
it to run; the loop body merely advances time by the arbitrary duration of
500::ms. Note that the timing model mandates the attachment of a time unit
to each duration, such as milliseconds in “500::ms”.

—Modifying the special variable now has the effect of advancing time, suspending
the current process until the desired time is reached, and providing the other
processes and audio synthesis engine with the computing resources needed to
run in parallel.

—The value of now, which holds the current time, only changes when it is explicitly
modified [Wang and Cook 2007]. “The amount of time advancement is the control
rate in ChucK.” [Wang et al. 2003]

4.5 Faust

Presentation. The following position statement is extracted from the Faust of-
ficial site, http://faust.grame.fr.

FAUST is a compiled language for real-time audio signal processing. The
name FAUST stands for Functional AUdio STream. Its programming
model combines two approaches: functional programming and block di-
agram composition. You can think of FAUST as a structured block
diagram language with a textual syntax.
FAUST is intended for developers who need to develop efficient C/C++
audio plugins for existing systems or full standalone audio applications.
Thanks to some specific compilation techniques and powerful optimiza-
tions, the C++ code generated by the Faust compiler is usually very fast.
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It can generally compete with (and sometimes outperform) hand-written
C code.
Programming with FAUST is somehow like working with electronic
circuits and signals. A FAUST program is a list of definitions that defines
a signal processor block-diagram: a piece of code that produces output
signals according to its input signals (and maybe some user interface
parameters).

Oscillator. The Faust implementation osc.dsp of the oscillator can be found
below. We tested Faust version 0.9.13.� �
impor t ("math . l i b ") ; // f o r SR and PI

t a b l e s i z e = 1 << 16 ;
s amp l i n g f r e q = SR ;
twop i = 2 .0 ∗ PI ;

t ime = (+(1) ~ _) , 1 : −; // 0 , 1 , 2 , 3 , . . .
s inwave fo rm = twop i ∗ f l o a t ( t ime ) / f l o a t ( t a b l e s i z e ) : s i n ;

d e c ima l ( x ) = x − f l o o r ( x ) ;
phase ( f r e q ) = f r e q / f l o a t ( s amp l i n g f r e q ) :

(+ : dec ima l ) ~ _ : ∗( f l o a t ( t a b l e s i z e ) ) ;
osc ( f r e q ) = r d tab l e ( t a b l e s i z e , s inwaveform , i n t ( phase ( f r e q ) ) ) ;

p r o c e s s = osc (440) ;� �
Notes

—The Faust language combines a block-diagram algebra [Orlarey et al. 2002] with
a functional paradigm [Orlarey et al. 2004].

—The keyword process is analogous to main in C and has to be defined [Orlarey
et al. 2004].

—The sample rate constant SR is defined in the imported library file math.lib as a
foreign constant, which is linked to the actual sampling rate of the host applica-
tion through the architecture compilation mechanism of Faust and determined
at initialization time [Smith III 2010]. This typical DSL feature protects against
incompatibilities.

—Faust uses five block-diagram composition operators [Orlarey et al. 2004]: se-
quential composition A:B, parallel composition A,B, recursive composition A∼B,
split composition A<:B and merge composition A:>B (the last two are not used
here).

—The time processor definition “time = (+(1) ~ _) , 1 : -;” uses the three
essential block-diagram composition operators plus two more key elements. From
right to left, there are:
—the sequential composition operator “:”, to connect the two inputs of the “-”
processor with the output signals of the preceding processors to compute dif-
ferences;

—the parallel composition operator “,”, to combine the two parallel processors
that feed the “-” processor (note that order matters for the subtraction);
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—the recursive composition operator “∼”, to specify a one-sample feedback incre-
ment that generates a series of natural numbers, starting at 1 (Figure 3 shows
the block-diagram schema of the time processor, where the small square on
the output denotes the implicit sample delaying operation);

—the identity block “_”, used here in the one-sample recursive loop to directly
connect the output to the input of the increment processor, with no other
processor than the identity one;

—the partial application “+(1)”, using the curried form of the processor “+” to
fix one of its arguments with the “1” value.

1 +

1

-

time

Fig. 3. Block-diagram schema of the time processor

—Integer operations are defined modulo the (implementation-dependent) machine
integer size, so the increment operation above never overflows, but simply per-
forms a round-robin on its domain.

—Infix notation is allowed in Faust as syntactic sugar, as in the decimal definition
where “x - floor(x)” is equivalent to “x, floor(x) : -”.

—The read-only table rdtable stores values from a stream at initialization time.
The data will then be accessed during execution. Its three parameters are the
size of the table, the initialization stream, and the read-index signal [Gaudrain
and Orlarey 2003].

—Faust default output is the audio system within which a Faust process is run.

5. SYNCHRONOUS LANGUAGES

There are various ways to introduce synchronicity in general-purpose programming
languages. We focus, in this section, on our oscillator use case example to survey
the usual approaches described in the literature:

—The direct approach, taken by Signal, Lustre and Esterel, is to make the notion
of synchronous computation at the core of the language design per se;

—A more indirect route is to add the notion of streams to an existing language, and
among the multiple existing proposals we decided to present two such integrations
as illustration: Lucid Synchrone, for the functional paradigm, over OCaml, and
OpenMP Stream Extension, for the imperative one, over C and OpenMP.
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5.1 Signal

Presentation. The following position statement is extracted from the Signal offi-
cial site, http://www.irisa.fr/espresso/Polychrony.

Signal is based on synchronized data-flow (flows + synchronization): a
process is a set of equations on elementary flows describing both data
and control.
The Signal formal model provides the capability to describe systems
with several clocks (polychronous systems) as relational specifications.
Relations are useful as partial specifications and as specifications of non-
deterministic devices (for instance a non-deterministic bus) or external
processes (for instance an unsafe car driver).
Using Signal allows to specify an application, to design an architecture,
to refine detailed components down to RTOS8 or hardware description.
The Signal model supports a design methodology which goes from spec-
ification to implementation, from abstraction to concretization, from
synchrony to asynchrony.

Oscillator. The Signal implementation OSC.SIG of the oscillator can be found
below. We tested Signal version V4.16.� �
process osc =

( ? even t i n pu tC l o c k ;
! d r e a l output ;

)
( | output ^= inpu tC l o ck
| output := r d t a b l e ( i n t e g e r ( phase ( f r e q ) ) )
| )

where
con s t an t d r e a l f r e q = 440 . 0 ;
con s t an t i n t e g e r s amp l i n g f r e q = 44100 ;
con s t an t i n t e g e r t a b l e s i z e = 2∗∗16 ;
con s t an t d r e a l twop i = 6.28318530717958623 ;
process r d t a b l e =

( ? i n t e g e r t a b l e i n d e x ;
! d r e a l sample ;

)
( | sample := s inwave fo rm [ t a b l e i n d e x ]
| )

where
con s t an t [ t a b l e s i z e ] d r e a l s inwave fo rm =

[{ i to ( t a b l e s i z e −1) } : s i n ( ( d r e a l ( i ) ∗ twop i ) / d r e a l ( t a b l e s i z e ) ) ] ;
end ;

f unc t i on phase =
( ? d r e a l f r e q ;

! d r e a l ph i ;
)

( | i nd e x := dec ima l ( ( f r e q / d r e a l ( s amp l i n g f r e q ) )+index$ )
| ph i := d r e a l ( t a b l e s i z e ) ∗ i n d e x
| )

where

8Real-Time Operating System.
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d r e a l i n d e x i n i t 0 . 0 ;
end ;

f unc t i on dec ima l =
( ? d r e a l d e c ima l I n ;

! d r e a l dec imalOut ;
)

( | dec imalOut := dec ima l I n−f l o o r ( d e c ima l I n ) | ) ;
end ;� �

Notes

—Signal processes manipulate signals, i.e., named streams of typed data, either as
input “?” or output “!”, here of floating point numbers in double precision dreal.
Local subprocesses are defined similarly.

—Process behavior is defined via sets of functional equations on signals between
the (| and |) enclosing symbols; these equations constrain either the values in a
given signal, via the := connector, or clocks, via the ^= connector, used here to
impose that signals output and inputClock share the same timing information.

—Arrays, such as sinwaveform of tablesize elements, are defined by intension,
at initialisation time, using implicit quantification over indices such as i here.

—Data equations are functional, and the $ postfix is used to reference the previous
item in a stream, while init is used to specify the initial value.

5.2 Lustre

Presentation. The site http://www-verimag.imag.fr/The-Lustre-Toolbox.html is Lus-
tre official repository and the following position statement is extracted fromWikipedia9.

Lustre is a formally defined, declarative, and synchronous dataflow pro-
gramming language, for programming reactive systems. It began as a
research project in the early 1980s. In 1993, it progressed to practical,
industrial use, in a commercial product, as the core language of the in-
dustrial environment SCADE, developed by Esterel Technologies. It is
now used for critical control software in aircraft, helicopters, and nuclear
power plants.

Oscillator. The Lustre implementation osc.lus of the oscillator can be found
below. We tested Lustre version V4.� �
−− WARNING : Does ∗ not ∗ work , because o f ∗dynamic∗ a r r a y a c c e s s e s !

i n c l ude "math . l u s "

con s t s amp l i n g f r e q = 44100 ;
con s t t a b l e s i z e = 65536 ;
con s t timeTab = t ime ( t a b l e s i z e , 0) ;
con s t s inwave fo rm = s i n t a b l e ( timeTab ) ;
con s t twop i = 6.28318530717958623 ;

node t ime ( con s t n : i n t ; s t a r t : i n t ) r e tu rn s ( t : i n t^n ) ;

9http://en.wikipedia.org/wiki/Lustre_\%28programming_language\%29.
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l e t
t [ 0 ] = s t a r t ;
t [ 1 . . n−1] = t [ 0 . . n−2] + 1^(n−1) ;

t e l

node s i n t a b l e ( x : i n t ) r e tu rn s ( y : r e a l ) ;
l e t

y = s i n ( ( ( r e a l x ) ∗ twop i ) / ( r e a l t a b l e s i z e ) ) ;
t e l

node dec ima l ( X : r e a l ) r e tu rn s ( Y : r e a l ) ;
l e t

Y = X − f l o o r (X) ;
t e l

node phase ( f r e q : r e a l ) r e tu rn s ( Y : r e a l ) ;
va r i n d e x : r e a l ;
l e t

i n d e x = 0 .0 −> dec ima l ( ( f r e q /( r e a l s amp l i n g f r e q ) ) + pre ( i nd e x ) ) ;
Y = ( r e a l t a b l e s i z e ) ∗ i n d e x ;

t e l

node r d t a b l e ( t a b l e i n d e x : i n t ) r e tu rn s ( Y : r e a l ) ;
l e t

Y = s inwave fo rm [ t a b l e i n d e x ] ; −− Dynamic a r r a y a c c e s s .
t e l

node osc ( f r e q : r e a l ) r e tu rn s ( Y : r e a l ) ;
l e t

Y = r d t a b l e ( i n t phase ( f r e q ) ) ;
t e l� �
Notes

—Lustre sees computation as the processing of data exchanged between nodes.
Within each node, functional definitions of data streams are expressed as possibly
recursive equations.

—In a stream definition, pre is used to denote the previous value in the argument
stream, while the arrow -> operator (“followed-by”) is used to distinguish the
initial value from the recursive expression when defining a stream by induction.

—Streams are typed, and ^ is used to introduce aggregate vector types (its second
argument is the vector size).

—The definition of the array t in time is by induction over array slices: t[0] is 0,
while, for all i in [1..n-1], t[i] is t[i− 1]+1, since 1^(n-1) is an array of n-1
elements, all initialized to 1.

—Array timeTab is initialized via time; its elements are integers from 0 to tablesize-
1, numbering all samples in one sine period.

—Interestingly, the Lustre version we used is in fact unable to manage dynamic
accesses to arrays, a feature clearly required to implement variable frequencies in
osc. Newer, non open-source versions of Lustre, such as Lustre V6, do provide
dynamic arrays.
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5.3 Esterel

Presentation. The following position statement is taken from the original Esterel
site, http://www-sop.inria.fr/meije/esterel/esterel-eng.html.

Esterel is both a programming language, dedicated to programming re-
active systems, and a compiler which translates Esterel programs into
finite-state machines. It is one of a family of synchronous languages, like
SyncCharts, Lustre, Argos or Signal, which are particularly well-suited
to programming reactive systems, including real-time systems and con-
trol automata.
The Esterel v5 compiler can be used to generate a software or hardware
implementation of a reactive program. It can generate C-code to be
embedded as a reactive kernel in a larger program that handles the
interface and data manipulations. It can also generate hardware in the
form of netlists of gates, which can then be embedded in a larger system.
Extensive optimization is available. We provide a graphical symbolic
debugger for Esterel. We also provide support for explicit or BDD-
based verification tools that perform either bisimulation reduction or
safety property checking.
Esterel is now experimentally used by several companies and taught in
several universities.

Oscillator. The Esterel implementation Osc.strl of the oscillator can be found
below (see Notes also). We tested version V5 (and GCC 4.2.1 for the C files handling
array accesses).� �
module Osc :

f u n c t i o n f l o o r_ i n t ( doub l e ) : i n t e g e r ;
con s t an t t a b l e S i z e_c t e = 65536 : i n t e g e r ;
i n pu t I : doub l e ;
output O : doub l e ;

s i g n a l i n d e x : i n t e g e r , phase : double , sample : doub l e i n
every I do

run Phase [ s i g n a l I / f r eq , phase / ph i ] ;
| |
loop

emit i n d e x ( f l o o r_ i n t (? phase ) ) ;
run RdTable [ s i g n a l i n d e x / t a b l e i n d e x ] ;
emit O(? sample ) ;

each t i c k
end every

end s i g n a l
end module

module RdTable :
f u n c t i o n s inwave fo rm ( i n t e g e r ) : doub l e ;
i n pu t t a b l e i n d e x : i n t e g e r ;
output sample : doub l e ;
emit sample ( s inwave fo rm (? t a b l e i n d e x ) ) ;

end module
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module Decimal :
f u n c t i o n f l oo r_db ( doub l e ) : doub l e ;
i n pu t I : doub l e ;
output O : doub l e ;
emit O(? I−f l oo r_db (? I ) )

end module

module Phase :
con s t an t s amp l i ng f r eq_c t e = 44100.0 : doub l e ;
con s t an t tab l eS i ze_cte_db = 65536.0 : doub l e ;
i n pu t f r e q : doub l e ;
output ph i : doub l e ;

s i g n a l s t e p : doub l e i n
emit s t e p (? f r e q / samp l i ng f r eq_c t e ) ;
var i n d e x := 0 .0 : double , p r e i n d e x := 0 .0 : doub l e i n

s i g n a l decpa r t := 0 .0 : doub l e i n
every immediate t i c k do

run Decimal [ s i g n a l s t e p / I , d e cpa r t / O ] ;
i nd e x := ? decpa r t + p r e i n d e x ;
p r e i n d e x := index ;
emit ph i ( tab l eS i ze_cte_db ∗ i n d e x )

end every
end s i g n a l

end var
end s i g n a l

end module� �
Notes

—The Esterel implementation of the oscillator relies on the Esterel Osc.strl mod-
ule file provided above and C helper functions, not presented here, that handle
arrays, a data structuring mechanism not provided by the public-domain version
of Esterel we used. We wrote the following functions, declared as external C
functions in Esterel modules via the function keyword:
—void init_sinwaveform(), that initializes a local C array with the double-
formatted 65536 samples of a one-period sine function;

—double sinwaveform(int i), that returns the i-th value in this local sampled
sine C array;

—double floor_db(double d) and int floor_int(double b), that return the
floor value of d in either double or int format;

—and, finally, int main(), that calls init_sinwaveform(), provides the initial
frequency value of 440 Hz to the Esterel input I in the Osc module via a call
to Osc_I_I(440.0) and then calls Osc() to initiate Esterel processing. These
last two functions are generated by the Esterel compiler.

—Esterel modules specify signals and signal computations that operate on the
occurrence of events, including ticks issued by a logical clock.

—Esterel supports both internal or external signals. For instance, Osc defines inter-
nal signals index, phase (via Module Phase) and sample (via Module RdTable).
As for external signals, frequency values appear on I while audio samples are
output on O.
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—Esterel signal computations emit values of interest on outputs from values read
on inputs, using the ?I notation. All computations are assumed to be performed
at each tick in zero time.

—The keyword every is syntactic sugar for an event-controlled looping statement.
For instance, each time a new frequency value appears on I in Osc, Module Phase
is run in a separate thread, with appropriate bindings for input freq and output
phi, to get the proper sequences of array indices in the phase signal while an
infinite loop thread emits on O the samples obtained via the RdTable module,
using the index and phase signals.

—Phase uses the internal step signal, which relies itself on the internal signal
decpart, initialized at 0.0 and that emits the successive indices of the samples
in the sine wavetable appropriate for yielding a sine of the given frequency freq.

—The immediate keyword indicates that the corresponding code is evaluated im-
mediately, even when the tick is already present, as is the case when the program
starts.

5.4 Lucid Synchrone

Presentation . The following position statement is taken from the official Lucid
Synchrone site, http://www.di.ens.fr/~pouzet/lucid-synchrone.

Lucid Synchrone is an experimental language for the implementation
of reactive systems. It is based on the synchronous model of time as
provided by Lustre combined with some features from ML languages.
The main characteristics of the language are the following:
—It is a strongly typed, higher-order functional language managing infi-
nite sequences or streams as primitive values. These streams are used
for representing input and output signals of reactive systems and are
combined through the use of synchronous data-flow primitives à la
Lustre.

—The language is founded on several type systems (e.g., type and clock
inference, causality and initialization analysis) which statically guar-
antee safety properties on the generated code...

—The language is built above Objective Caml used as the host lan-
guage. Combinatorial values are imported from Objective Caml and
programs are compiled into Objective Caml code. A simple module
system is provided for importing values from the host language or
from other synchronous modules.

—It allows to combine data-flow equations with complex state machines
(Mealy and Moore machines with various forms of transitions). This
allows to describe mixed systems or Mode-automata as originally in-
troduced by Maraninchi & Rémond.

—Data-types (product types, record types and sum types) can be de-
fined and accessed through pattern matching constructions.

Oscillator. The Lucid Synchrone implementation osc.ls of the oscillator can be
found below. We tested Version 3.0b.
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� �
l e t s t a t i c t a b l e s i z e = 65536
l e t s t a t i c s amp l i n g f r e q = 44100
l e t s t a t i c twop i = 6.28318530717958623
l e t f t a b l e s i z e = f l o a t_o f_ i n t t a b l e s i z e

l e t s t a t i c s inwave fo rm = Array . make t a b l e s i z e 0 .0
l e t s t a t i c gen_sin ( ) =

l e t rec f e ed i =
match i with

| 0 −> ()
| i −>

( Array . s e t s inwave fo rm ( i −1)
( s i n ( ( f l o a t_o f_ i n t ( i −1) ) ∗ . twop i / . f t a b l e s i z e ) ) ;

f e ed ( i −1) )
end

in f e ed t a b l e s i z e
l e t s t a t i c s i d e f e e d i n g = gen_sin ( )

l e t dec ima l x = x −. f l o o r ( x )

l e t node phase f r e q =
l e t rec i n d e x = 0 .0 −>

dec ima l ( ( f r e q / . ( f l o a t_o f_ i n t s amp l i n g f r e q ) ) +. pre ( i nd e x ) ) i n
i n t_o f_ f l o a t ( f t a b l e s i z e ∗ . i n d e x )

l e t r d t a b l e t a b l e i n d e x = Array . ge t s inwave fo rm t a b l e i n d e x

l e t node osc f r e q = r d t a b l e ( phase ( f r e q ) )� �
Notes

—Lucid Synchrone imports most of its value and typing constructs from OCaml,
a mostly-functional object-oriented language in which (possibly recursive) func-
tions are first-class values [Leroy et al. 2010]. It is also inspired by Lustre signal
processing concepts.

—Following Lustre, Lucid Synchrone adds to OCaml the notion of a node, defined
via let node declarations. These nodes are used to manipulate streams, which
are infinite sequences of values linked to a particular clock.

—In a stream definition i -> s, i denotes the default, first value of the stream while
s is the inductive definition of a stream element. A reference to the previous
stream value is allowed using the pre operator.

—Array is an OCaml module, used here within Lucid Synchrone, that provides
standard operations to define (make) or manipulate (set and get) array elements.

—In OCaml, integer operators use the traditional syntax (such as * for multiplica-
tion), while floating-point constructs use a different notation, via the addition of
a dot (".") suffix to the integer notation.

5.5 OpenMP Stream Extension

Presentation. The OpenMP Stream Extension comes as a GCC CVS branch, at
http://gcc.gnu.org/viewcvs/branches/omp-stream. Below follows its position state-
ment.
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The stream-computing extension to OpenMP enables the expression of
flow dependences between OpenMP tasks. This allows to statically
specify the program’s dynamic task graph, where tasks are connected
through streams that transparently privatize the data. The program-
ming model is conducive to making relevant data-flow explicit and to
structuring programs in ways that allow simultaneously exploiting pipe-
line, data and task parallelism. Stream computations help reduce the
severity of the memory wall in two complementary ways: (1) decoupled
producer/consumer pipelines naturally hide memory latency; and (2)
they favor local, on-chip communications, bypassing global memory.
This extension provides dataflow semantics close to Kahn process net-
works and guarantees functional determinism, a major asset in the pro-
ductivity race. In contrast with common streaming frameworks, the
communication patterns can be dynamic, while preserving the determin-
ism of arbitrarily merging and splitting data streams. The GCC proto-
type implementation of the OpenMP extension for stream-computing
has been shown to be efficient to exploit mixed pipeline- and data-
parallelism, even in dynamic task graphs [Pop and Cohen 2011]. It
relies on compiler and runtime optimizations to improve cache local-
ity and relies on a highly efficient lock-free and atomic operation-free
synchronization algorithm for streams.

We need to emphasize here that the OpenMP Stream Extension is particularly
interesting for our survey since, built on top of an imperative language (C) extended
with asynchronous parallel constructs (OpenMP), this language extension is not
strictly synchronous. Yet it offers to programmers the ability to perform parallel
signal processing operations that loosely adhere to the synchronous hypothesis.
Indeed, all stream operations are specified to be deterministic and to not require
explicit synchronization actions. This illustrates how synchronous-like operations
could be added to other existing traditional languages.

Oscillator. The OpenMP Stream Extension [Pop 2011] implementation osc.c of
the oscillator can be found below. We tested a prototype directly with its author,
Antoniu Pop (from MINES ParisTech’s Computer Science Research Center).� �
#inc lude <s t d l i b . h>
#inc lude <s t d i o . h>
#inc lude <math . h>

#def ine f r e q 440
#def ine o u t p u t s i z e 200
#def ine twop i 6.28318530717958623

s t a t i c i n l i n e f l o a t dec ima l ( f l o a t x ) { re tu rn x − f l o o r ( x ) ; }

i n t main ( i n t argc , char ∗∗ a rgv ) {
i n t i ;
i n t t a b l e s i z e = 1 << 16 ;
i n t s amp l i n g f r e q = 44100 ;
f l o a t ∗ s inwave fo rm = ( f l o a t ∗) malloc ( t a b l e s i z e ∗ s i z e o f ( f l o a t ) ) ;
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f o r ( i = 0 ; i < t a b l e s i z e ; ++i )
s inwave fo rm [ i ] = s i n ( ( ( f l o a t ) i ) ∗ twop i / ( ( f l o a t ) t a b l e s i z e ) ) ;

#pragma omp p a r a l l e l num_threads (2 ) de f au l t ( none )
sha r ed ( t a b l e s i z e , s inwaveform , s amp l i n g f r e q ) {

#pragma omp s i n g l e {
f l o a t f_s f_ra t i o , index , phase ;
f l o a t dec_add = 0 . 0 ; i n t i = 0 ;
whi le ( i++ < ou t p u t s i z e ) {

#pragma omp task sha r ed ( s amp l i n g f r e q ) output ( f_s f_ ra t i o )
num_threads (2 ) {

f_s f_ ra t i o = ( ( f l o a t ) f r e q ) / ( ( f l o a t ) s amp l i n g f r e q ) ;
}
#pragma omp task i n pu t ( f_s f_ ra t i o ) output ( i nde x )

sha r ed ( dec_add ) {
dec_add = dec ima l ( dec_add + f_s f_ra t i o ) ;
i nd e x = dec_add ;

}
#pragma omp task sha r ed ( t a b l e s i z e ) i n pu t ( i nde x )

output ( phase ) {
phase = index ∗ t a b l e s i z e ;

}
#pragma omp task sha r ed ( s inwave fo rm ) i n pu t ( phase )

sha r ed ( s t dou t ) {
f p r i n t f ( s tdout , "%f \ t %f \n" ,

s i nwave fo rm [ ( i n t ) phase ] , phase ) ;
}}}}

re tu rn 0 ;
}� �
Notes

—OpenMP Stream Extension is an upward-compatible extension of the OpenMP
standard [Dagum and Menon 1998], which extends sequential languages with
options for parallel execution. OpenMP has multiple language bindings, and its
C variant uses #pragma omp C preprocessor-like directives to describe thread-
parallel tasking.

—The parallel pragma is an OpenMP-specific directive used to open a parallel
section in which multiple tasks may be used on up to num_threads parallel
threads. A separate task is launched when a task pragma is encountered, running
the statement following it on one of these threads. The single pragma enforces
its following sequence of code to be run by only one thread (which runs here the
while loop that starts all required tasks).

—All variables declared within a parallel block are local to each task by default;
global variables accessed by a particular parallel construct have to be listed in
the shared parameter.

—OpenMP Stream Extension extends the task pragma, used to specify an OpenMP
parallel task, with the input and output parameters that introduce stream pro-
cessing into OpenMP. A stream parallel task processes its input signals to yield
output data accordingly.
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6. DISCUSSION

We look, in this section, at some of the issues raised by our implementations of
osc, in particular related to the differences between DSL and general-purpose lan-
guages, the subtle differences in the notions of time and signals these formalisms
introduce, the way they handle aggregate data structures such as arrays, and finally
the integration of asynchrony.

6.1 The DSL vs. General-Purpose Languages Debate

In this work, we surveyed 10 languages, 5 specific to computer music applications
and 5 general synchronous languages. Each of these languages provides in one way
or another answers to the same design questions, such as how to manage time or
what are signals supposed to represent for the problems at hand. Yet, the final
language design decisions, summarized in Table IV, vary widely, mostly along the
line of whether the corresponding language is intended to be used in a somewhat
limited application domain, i.e., strives to be a music-specific DSL, or able to tackle
a wide range of time-constrained problems, i.e., is a general-purpose synchronous
language.

Music programming languages Synchronous languages
Code size much shorter longer
Time mostly a hardware notion mostly a logical notion
Signals simple tick mappings abstract and complex clocks
Layers low-level + interactive high-level synchronous layer + GALS

Table IV. Design concepts comparison summary (see Section 6.4 for GALS)

Of course, the DSL vs. General-Purpose separation line is not enough to auto-
matically imply which particular programming traits a given language should adopt.
To get a feel for the spectrum of notions spanned by this survey, we summarize in
Table V the main features of these programming tools, from their core computing
paradigm to the way they deal with recursion to their handling of parallelism.

Paradigm Delay Initialization Parallelism
Csound orch. + score delay 2nd arg. orchestra
SuperCollider object oriented DelayN 3rd arg. instances
Pure Data visual delread∼ 2nd arg. diagram
ChucK on-the-fly Delay .delay orchestra
Faust functional ∼ fixed to 0 , or par
Signal relational signal$ init implicit
Lustre equational pre -> implicit
Esterel imperative pre(?signal) init ||
Lucid Sync. functional pre -> implicit
OMP Stream imperative window explicit implicit

Table V. Salient design points of surveyed languages
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One obvious result of our work is that using a single simple yet significant ap-
plication to illustrate the expressiveness power of various programming languages
provides an interesting and practical point of view for software development tool
selection. In particular, choosing an audio application as our main running test case
yields a specific example of the intrinsic value of Domain Specific Languages as a
general and practical approach to the software productivity wall [Mernik et al.
2005; Van Deursen et al. 2000]. Indeed and not surprisingly, we were able to
use all these tools to get the work done, except for a technical limitation of the
open-source version of Lustre we used. Yet all our programs are much shorter,
and thus quite probably correct, using music-specific DSLs than general-purpose
synchronous languages. Even though the idea that the number of bugs introduced
in a particular program is mainly a function of the number of lines of code and is
rather independent of the programming language used may be mostly folklore, we
feel that our analysis illustrates in a very concrete manner that conciseness, and
hopefully then lack of software defects, clearly lies within the field of DSLs.

6.2 Time and Signals

Although time is, as we mentioned in Section 2, the core concept that structures
the definition of all the languages used in this use case study, it is obvious that
music-oriented and reactive systems have a somewhat different view of what this
notion means. In the traditional synchronous programming world, time is mostly
a logical notion, around which computations are scheduled; indeed, multiple clocks
can even be defined, e.g., via the ^= symbol in Signal. For music aficionados, time
is a hardware notion deeply linked to the speed at which sound is sampled by input
and output converters; the key notion here is the “sampling rate”, e.g., via the SR
predefined identifier in Faust. In some sense, music languages, as DSLs, are more
closely linked to the practical matters at hand than the more abstract, hence more
general, traditional synchronous programming languages.

Consequently, the notion of what a signal is varies also in the two communities,
even though both use the same foundation, i.e., the concept of time. Following a
more pragmatic approach, music synchronous languages view signals as mappings
from regularly-spaced, sampling rate-sequenced time ticks to values. Traditional
languages have to deal with more complex clocks, for instance where time events
might even be absent, which leads to more abstract notions of signals. In music
applications, all values of a sampled signal are defined (barring computing errors
such as a 1/0 division), while general signals may yield undefined values for some
time events, and such undefined values are first-class in these languages [Benveniste
et al. 2003].

The apparently limited approach of what time and signals must be in music
applications is mitigated by the fact that there is a strong tendency in this com-
munity to address timing issues as a two-tiered problem: a low-level synchronous
layer, that deals with concrete and predictive sampled signals, and a higher-level
interactive, and in fact mostly asynchronous, level, that schedules these activities
in response to the user. These two strata are often embedded in the same language
or environment, using one scheduler at audio rate (typically 44,100Hz, with high
priority and low latency based on buffering techniques) and another one at a much
lower “control rate”, usually managing Midi events (medium priority and latency)
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and Gui objects (low priority and high latency). On the other hand, traditional
synchronous languages tend to address only the issues relevant to the first class of
problems, using either a sample-driven execution scheme as in Lustre or an event-
driven one as in Signal, and rely on a different programming paradigm to link the
synchronous modules together, possibly using a Gals10 approach [Teehan et al.
2007]. Thus, they usually require more general and flexible notions for time and
signals than the ones found in audio languages, since they do not have to follow the
fundamental rhythm of the otherwise primary audio sampling rate.

These two approaches regarding this core notion of time in the synchronous layer
lead to different approaches to the compilation process. Traditional synchronous
languages are more specification-oriented than audio languages; the programmer
provides equations defining clock and signal values, relying on the compiler to im-
plement them in efficient sequences of computations. Audio/music frameworks
have to deal less with the issue of reifying relationships between logically synchro-
nized computations than with the efficient implementation of explicitly synchro-
nized processes (see for instance Pure Data connected graphs or Faust functional
expressions).

Synchronous languages, because of their more abstract and logical view of time
and signals, are formally defined through complex mathematical semantic models
[Manna and Pnueli 1995; Schneider 2004]. These formal specifications are moreover
of key importance given the domains these languages target, i.e., within strongly
reactive and very often mission-critical environments. Music, on the other hand,
can, and has to, deal with more “soft” constraints: the notion of truth is more in the
ear of the listener/composer than in the strict structure of a mathematical proof.
Of course, the human ear is quite a subtle device, and professional listeners have
been shown to be quite sensitive to even very small differences in two audio signals.
Moreover, even for music applications, a trend is appearing, which calls for more
assurance in the fidelity of the audio processing methods, in particular when one
wishes to address the issue of long-term and exact preservation of the world musical
heritage [Guercio et al. 2007; Bachimont et al. 2003; Barkati et al. 2011].

6.3 Dynamic Array Access

Table lookup is about performance: computer music makes an intensive use of
wavetables to avoid the expensive computation of trigonometric functions like sine
functions for each sample at given audio rates, typically 44,100 times by second, for
audio synthesis (wavetable synthesis, waveshaping, etc.). It is noticeable that most
of the music programming languages studied here, except Pure Data and Faust,
borrow the idea of the GEN routines introduced in Csound; they are used as data
generators to fill so-called function tables [Boulanger et al. 2000]. For instance, our
oscillator uses the GEN10 routine to fill the oscillator sample table at initialization
time with a sum of sinusoids (only one here); this table is then read using a wrap-
around lookup process. Pure Data handles an explicit array data structure and an
explicit phasor to generate the reading indexes, while Faust provides implicit table
initialization and reading operation via the (not quite functional) rdtable ternary
function.

10Gals stands for “Globally Asynchronous, Locally Synchronous”.
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Initialization Dynamic Access
Csound f1 0 65536 10 1 ; GEN10 oscil p4, p5, 1
SuperCollider b.sine1 {OscN.ar(b,440,0,1)}.play
Pure Data tabwrite myarray tabread∼ myarray
ChucK [1.] => g10.coefs Gen10 g10 => dac
Faust rdtable 1st and 2nd arg. rdtable 3rd arg.
Signal [i to (size-1):sin(...)] sinwaveform[tableindex]
Lustre v4 external C code imported function
Lucid Sync. OCaml Array.make and .set OCaml Array.get
Esterel v5 external C code imported function
OMP Stream C code C code

Table VI. Table support

Our study reveals that general-purpose synchronous languages are often poorly
equipped to support tables. Of course, they cannot be expected to provide music-
specific GEN-like routines, but, more surprisingly at first sight, most of them simply
do not handle array data structures, as is the case with the Esterel and Lucid Syn-
chrone languages in the versions we used. Furthermore, the Lustre version we
tested do provide an array syntax, but only as syntactic sugar for variables num-
bering, not for dynamic array access. Of course, it is generally possible to handle
array initialization and dynamic access by importing foreign functions, C functions
in most languages, as we did in our Esterel implementation of the oscillator, or
OCaml functions in Lucid Synchrone, as we shown. The underlying reason for not
handling arrays in the languages themselves is often the difficulty of ensuring that
the synchronous time and memory constraints are still enforced, which is crucial
for critical synchronous applications.

Commercial and more recent versions of Lustre and Esterel do handle arrays.
Nevertheless, our survey suggests that the designers of synchronous languages could
look at the GEN-like mechanism inspired by music programming languages as a safe
strategy for the introduction of array data structures in these formalisms. Another
possible approach to ensure a mathematically-correct integration of arrays and
synchronous constraints is to couple in a single analysis the rates of signals with
the size of the elements they convey (see for instance [Jouvelot and Orlarey 2011]).

6.4 Event Management

Our survey focused on the audio signal processing part of the computer music
domain, since audio DSP shares obvious features with synchronous applications,
among which time and signal concepts – even though these are subtly different in
both fields, as we have shown. The DSP part corresponds to the sampled scheme
of evaluation of synchronous languages, where the main loop handles each sample,
as opposed to their control scheme, where the main loop manages each interaction
event. Synchronous languages often rely on a two-tier strategy to handle the in-
tegration of asynchrony, for instance via a GALS (globally asynchronous, locally
synchronous) approach; most computer music languages are, them, inherently hy-
brid along the synchronous/asynchronous separation line.
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Indeed, in addition to the DSP part, most music programming languages also
embed event management for musical note entities and interactive remote con-
trol of parameters; this is typically done using message passing standards such
as Midi11 or Osc12. At the implementation level, musical languages handle this
event part in various ways, either asynchronously, using non-deterministic FIFOs,
or synchronously, via a dedicated scheduler running at control rate, typically in a
dedicated thread than runs at a lower priority than the DSP one.

A challenging idea suggested by our survey would be to study if and how musical
programming languages could improve their event management processes by bor-
rowing from the mathematically-well founded control handling of the sophisticated
synchrony traits introduced by synchronous languages, and thus benefit from their
formal consistency.

7. CONCLUSION

We performed a practical, use case-oriented survey of 10 key music-specific and
general-purpose synchronous programming languages, implementing in each of them
a simple yet significant audio processing algorithm, namely a frequency-param-
eterized oscillator. We believe this survey provides the first bridge between two
mature and widely successful computing fields, the more than 50-year old computer
music domain and the 40-year old niche of synchronous programming languages.
Our work showed that the wide variety of existing music and synchronous languages
leads to a large spectrum of program sizes and styles. We believe this application-
oriented comparison work, and the discussion points it led to, can be of use to both
programmers and language designers interested in synchronous solutions for their
problems.

Our present work has focused primarily on programming language design issues.
It would be interesting to see whether our findings regarding DSLs’ benefits can
be leveraged to more complex use case applications. Future work needs also to
address the implementation, performance and event management aspects of such a
comparison, since these factors are also key in the decisions leading to the choice
of a particular language or language paradigm in software projects.
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