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Random Projection Depth for Multivariate
Mathematical Morphology

Santiago Velasco-Forero, Student Member, IEEE, and Jesús Angulo

Abstract—The open problem of the generalization of mathemat-
ical morphology to vector images is handled in this paper using the
paradigm of depth functions. Statistical depth functions provide
from the “deepest” point a “center-outward ordering” of a mul-
tidimensional data distribution and they can be therefore used to
construct morphological operators. The fundamental assumption
of this data-driven approach is the existence of “background/fore-
ground” image representation. Examples in real color and hyper-
spectral images illustrate the results.

Index Terms—Hyperspectral images, multivariate morphology,
statistical depth function.

I. INTRODUCTION

M
ATHEMATICAL morphology (MM) operators in

modern image analysis are a set of powerful, robust

and computationally efficient tools with multiple applications

including image filtering, segmentation and visualization [2].

MM is a nonlinear image processing methodology based on the

application of lattice theory to spatial structures [3]. It requires

the definition of a complete lattice structure, i.e., an ordering

among the pixels to be analyzed. However, there is not difficult

to see that the idea of order is entirely absent from multivariate

scene, i.e., there is no unambiguous means of defining the min-

imum and maximum values between two vectors of more than

one dimension. Accordingly, the extension of MM to vector

spaces, for instance, color/multi/hyper/ultraspectral images, is

neither direct nor trivial because the pixels in the images are

vectors. We refer keen readers to [4], [5] for a comprehensive

review of vector morphology. In his seminal paper about multi-

variate ordering, Barnet [6] identified four families of ordering

for vectors.

• The marginal ordering (M-ordering), is a trivial approach

consisting in applying grayscale morphology techniques

to each channel separately, that has been called marginal

morphology in the literature [7]. However, the marginal

approach is often unacceptable in several applications
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because, when morphological techniques are applied in-

dependently to each image channel, analysis techniques

are subject to the well-known problem of false colors [8];

that is, it is very likely that new spectral constituents (not

present in the original image) may be created as a result

of processing the channels separately.

• To strictly preserve input vectors, the conditional ordering

(C-ordering) approach, also known as lexicographic or-

dering, is frequently used. The C-ordering is based on

the ordering of the components selected sequentially ac-

cording to different conditions or priorities. When all the

components are used, the C-ordering is a total ordering

[9].

• The reduced ordering (R-ordering) which performs the

ordering of vectors in some scalar space, computed from

a mapping of the vector onto a different representation

where the ordering is naturally defined, typically dis-

tances or projections onto a dimensionality reduced space

(using for instance the principal component analysis).

For instance, Mahalanobis distance has been employed in

several works on multivariate morphology including the

information from a reference set [10]. Recently, reduced

supervised ordering has shown be useful in the analysis of

high dimensional images [11], [12].

• The P-ordering, is based on the partition of the vectors into

groups, such that the groups can be distinguished with re-

spect to rank or extremeness. Recently, approaches using

combinatorial techniques and median/anti-median filters

have been also used to construct ordering [13], [14]. There

is however a problem of these latter approaches: the or-

dering is locally depending on the values of the spatial

window, consequently it is not a partial ordering for the

set of vectors in an image, i.e., dilation (erosion) obtained

does not commute with the supremum (infimum) and the

distributive property is not valid.

In this paper, a P-ordering for pixels in multivariate images

is presented. To the best of our knowledge, this is the first ap-

proach which uses P-ordering to extend MM to multivariate

image. Fig. 1 gives the intuition behind our approach. The paper

is organized as follows. Restricting ourselves to data in vector

spaces, in Section II the statistical depth functions definition is

reviewed. This is the basic ingredient for the construction of

P-ordering. The case of projection depth function is analyzed

in detail and its convergence to classical Mahalanobis distance

is presented for elliptically contoured distributions. Section III

analyzes the application of ordering based on projected depth

function in the context of vector images and it presents some in-

teresting properties for practical problems in image processing.

1932-4553/$31.00 © 2012 IEEE
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Fig. 1. The proposed ordering for a given multivariate image (a) is based on the information contained in its spectral representation (b). Projection depth function
(c) detects the intrinsic dichotomy background and foreground of the original image. Total ordering for morphological transformations is defined as follows:

.

Section IV shows the effectiveness of the proposed approach

via practical examples and visual comparison in image enhance-

ment, simplification and segmentation. Finally, Section V con-

cludes the paper.

II. STATISTICAL DEPTH FUNCTIONS

A. Notation

Let us make precise the terms and notation to be used in the

rest of the paper. Let be a subset of the discrete space ,

considered as the support space of the 2D image, and

be a set of pixels values in dimension , corresponding to the

space of values of the multivariate image with channels. A

vector-value image is represented by the mapping,

(1)

i.e., the set of maps from a point at the discrete

spatial coordinates into a vector value .

Let us assume that the pixel is represented by a -dimensional

vector , where

denotes the set of real numbers in which the pixel’s spectral

response at sensor channels . Additionally,

let the data matrix be an matrix representing spectral

bands for each pixels in the vector-value image . In fact,

is a matrix, with a slight abuse of notation we denote it as for

make easier the presentation.

B. Statistical Depth Function

Depth functions for multivariate data have been pursued in

nonparametric data analysis and robust inference [15]. Depth

functions assign to each point its degree of centrality with re-

spect to a data cloud or a probability distribution. A depth func-

tion suitable for a distribution in , denoted by ,

brings out the non-central ranking of the vector in with re-

spect to . A number of depth functions are available in the lit-

erature, for instance halfspace depth [16], simplicial depth [17],

projection depth [18], spatial depth [19], Mahalanobis depth

[15], etc. Roughly speaking, for a distribution , a corre-

sponding depth function provides an -based center-

outward ordering of point . Hence, is a function

. Depth-based methods are completely data-driven and

avoid strong distributional assumption. Moreover, they provide

intuitive visualization of the data set via depth contours for a

low dimensional input space. Analogous to linear order in one

dimension, statistical depth functions provide an ordering of all

points from the center outward in a multivariate data set, where

the median is the “deepest” point in the data set. This leads to

center-outward ordering to points and to a description in terms

of nested contours. Let us start by a formal definition of a depth

function.

Definition 1: [15], [17] A statistical depth function is a

bounded nonnegative mapping satisfying

1) holds for any random

vector in , any nonsingular matrix , and any

. That invariance to affine transformation means,

the depth of a vector should not depend on the

underlying coordinate system or, in particular, on the scales

of the underlying measurements.

2) holds for any having

center . That means, for any distribution having a unique

“center,” the depth function should attain maximum value

at this center.

3) holds for any having a

deepest point and any , i.e., as a point

moves away from the “deepest point” along any fixed ray

through the center, the depth at should decrease mono-

tonically.

4) as , for each , i.e., the depth of

a point should approach to zero as its norm approaches

infinity.

In the sequel, we focus on the empirical version of the projec-

tion depth function [18], and we describe some useful proper-

ties to support it as a convenient option to produce P-ordering in

vector spaces. Other statistical depth functions have considered

in our preliminary work [1] for vector morphology. However,

(random) projection depth function presents the best trade-off

between robustness and computation time. We notice that the

sense of the depth function is inverted, from the “unique center

point” to outliers, in order to be compatible with mathematical

morphology processing as introduced in Section III.
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C. Projection Depth Function

The basic concept of a projection depth function was intro-

duced by D. Donoho [18] and posteriorly developed by Y. Zuo

[15], [20]. It defines the measures of centrality for a vector

with respect to a multivariate distribution or a multivariate data

cloud as the worst case outlyingness with respect to the

one-dimensional scale functional in any one-dimensional pro-

jection, that is,

Definition 2: [18] The projection depth function for a vector

according with a data cloud as follows,

(2)

where MED is the median and MAD is the median absolute de-

viation (MAD) and is the

-dimensional hypersphere. MAD is a robust estimator of vari-

ability attributed to Gauss in 1816 [21]. The pair of robust es-

timators (MED,MAD) is included in (2) because they are not

unduly affected by outliers [20]. Projection depth has been used

to robust multivariate classification [22] and classification of

functional data [23]. Note that is impossible to cal-

culate in practice, because it requires the analysis for an infi-

nite set of random projections. Our approach follows the sug-

gestion of [24]: replacing the supremum in (2) by a maximum

over a finite number of randomly chosen projection, obtaining a

stochastic approximation of the random projection depth. The

same argument have been used in [25] for other type of sta-

tistical depth function. Thus, we can calculate an approximate

value of by using random projections uniformly

distributed in as follow

(3)

where with . Clearly, if

then .

D. Equivalence in Elliptically Symmetric Distribution

The depth function admits an analytical formulation when

elliptically symmetric random variables are considered.

Definition 3: [26] A random vector is said to have an

elliptically symmetric distribution with parameters and

if

(4)

where, with . Where ,

, denote a random vector distributed uniformly on the

unit sphere surface in and means equality in distribution.

Proposition 1: [26] The -dimension random vector has a

multivariate elliptical distribution, written as ,

if its characteristic function can be expressed as:

(5)

for some vector , positive-definite matrix , and for some func-

tion , which is called the characteristic generator.

From , it does not generally follow that

has a density , but, if it exists, it has the following form:

(6)

where is the normalization constant and is some non-

negative function with -moment finite. is called

density generator [26]. In this case we shall use the notation

instead of .

Proposition 2: If has a symmetric probability density func-

tion that is continuos and positive on its support then

(7)

The next result is very well known in linear algebra and it will

be used to prove the equivalence of the projection depth function

and the Mahalanobis distance; see, for example [27] p. 65.

Proposition 3: For a positive definite matrix, and a given

vector, and a non zero arbitrary vector,

(8)

Proposition 4: ([26] p.43) Assume that

with , is a matrix and is a vector,

then

(9)

We now state our first proposition for the case of standardized

random projections.

Proposition 5: Let be a i.i.d. random sample of size

, where , then:

(10)

where is the mean and is the variance.

Proof: From Prop. 4, we have and

. Therefore

by Prop. 3 the proof is complete.

Finally, we provide the corresponding particularized result to

the case of projection depth function in elliptically symmetric

random variables.

Proposition 6: Let be a i.i.d. random sample of size

, where is symmetric, then:

(11)

with .
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Proof:

and by using Propositions 2 and 5.

Summarizing our theoretical results, projection depth func-

tion provides an order from the “center” of multidimensional

data to “outlier” values. In the case of elliptically symmetric

random variables, it approximates the Mahalanobis distance

from the “vector mean” without any covariance matrix esti-

mation. Indeed, it is well-known in multivariate statistics that

the computation of the covariance matrix and its inverse is an

ill-posed problem with the dimensionally of the data increases

[28]. This is particularly pertinent in the case of hyperspectral

images. In addition, the covariance matrix is very sensitive to

the presence of noise in the data. Additionally, the formulation

using random projections allows to include robust estimators

by interchanging the couples and (MED, MAD). This

robustness is highly recommended, because the hypothesis of

symmetry in the cloud representation, is too strong for natural

images. We end this section by providing an implementation of

the proposed approach (see Algorithm 1).

Algorithm 1 Calculate based on projections

Require: and the data matrix of rows and
columns.

Ensure:

1:

2: for all to do

3: (Random Gaussian generation).

4: (Random number in ).

5: (Random projection).

6: (Median of the Random
projection).

7:

8: (MAD of the Random projection).

9: if then

10:

11:

12: end if

13: end for

III. MULTIVARIATE VECTOR MORPHOLOGY USING

PROJECTION DEPTH FUNCTIONS

The rationale behind our formulation of MM for multivariate

images is to use projection depth functions in the vector space to

produce a vector ordering. As discussed above, statistical depth

functions provide from the “deepest” point a “center-outward”

ordering of multidimensional data. According to the taxonomy

of Barnet’s orderings [6], it seems natural to say that statistical

depth function involves a P-ordering. However, according to the

result provided in previous section, statistical depth function can

be interpreted as a robust estimate, up to a multiplicative con-

stant, of a distance from the center of the image vector values

and consequently it can be considered also as a R-ordering. In

fact, from our viewpoint, any P-ordering based on extremeness

is essentially a R-ordering according to a particular centrality

measure.

Given a vector image , let be the set of vector

values of the image, which can be viewed as a cloud of points

in . Fig. 1 shows an example of color image , its representa-

tion as points , and the image of the associated depth func-

tion . The ordering for two pixel vectors is given by

. That is an ordering

based on a data-adapted function and in such a way that the in-

terpretation of supremum and infimum operations is known a

priori, because in the discrete setting, max values can be asso-

ciated with “outlier” pixels in the high-dimensional space and

min are “central” pixels in space. Projection depth func-

tion can be computed for any image, but is the order associated

to the statistical depth function appropriate for any image? Or

in other terms, in which cases the notions of “outlier” pixels

and “central” pixels make sense? We consider that for such im-

ages the assumption of existence of a background/foreground

representation is required. Formally we could express the as-

sumption of background/foreground representation in this way.

Given a vector image , the sub-space of vector

values has a decomposition such

that and .

Roughly speaking, the assumption means: (1) the image has

two main components: the background and the foreground; (2)

There are more pixels in the background than in the foreground.

We notice that there is no hypothesis about the multivariate or

spatial distribution of the background and the foreground

.

The theoretical framework of the proposed morphological op-

erators roots in the notions of -ordering and -adjunctions in-

troduced in [29]. So let us start by a reminder of the main results

from [29] useful for our approach.

A. -Ordering and -Adjunctions

Theoretical formulation of mathematical morphology is

nowadays phrased in terms of complete lattices and operators

defined on them. For a detailed exposition on complete lattice

theory in MM, we refer to [2]. A space endowed with a partial

order is called a complete lattice, denoted if every

subset has both supremum (join) and infimum

(meet) . Let R be a nonempty set and assume that a

complete lattice. Furthermore, let be a surjective

mapping. Define an equivalence relation on R as follows:

. As it was defined in [29], we

refer by the -ordering given by the following relation on R

Note that preserves reflexivity and transitivity

( and ). However, is not
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a partial ordering because and implies only that

but not .

An operator is -increasing if im-

plies that . Additionally, since is surjective,

an equivalence class is defined by .

The Axiom of Choice [29] implies that there exist mappings

such that , for . Unless is

injective, there exist more than one such mappings: is

called the semi-inverse of . Note that is not the identity

mapping in general (but ). However, we have that

for any -increasing the result and

hence . Let us introduce the operator associ-

ated to in the lattice . A mapping is -increasing

if and only there exists an increasing mapping such

that . The mapping is uniquely determined by and

can be computed from

We can now define the -erosion and -dilation. Let

be two mappings with the property

then the pair is called an -adjunction. Moreover, let

be -increasing mappings on R, and let , .

Then is an -adjunction on R if and only if is an

adjunction on the lattice . Therefore a mapping (resp. ) on

R is called -dilation (resp. -erosion) if (resp. ) is a dila-

tion (resp. erosion) on . -adjunctions inherit a large number

of properties from ordinary adjunctions between complete lat-

tices. Assume that is an -adjunction then

Hence, is -anti-extensive and is -extensive. The operator

on R is called -opening if the operator on determined by

is an opening. The operator is also -increasing and

satisfies ( -idempotency). The -closing is similarly

defined.

B. Vector Images and Depth -Mapping

The previous theoretical results can be particularized to the

case of vector images using projection depth.

For multivariate images , as color or hyperspectral

ones, pixel values are vectors defined in . Consequently

the main challenge to build complete lattice structures is to de-

fine a mapping

where can be the lattice of the extended real line, i.e.,

, with and as the “less than or

equal to” operation (the natural partial ordering). Furthermore

the composition of and will be denoted by

. According to the previous subsection, once the mapping

has been established, the morphological vector operators can be

defined as -adjunctions.

Given a multivariate vector image , its -depth

mapping is defined as

(12)

Therefore, the ordering generated by the projection depth

function yields morphological operators which can be inter-

preted as follows: low values in induced by correspond

to pixels close to the “background” (median vector) and high

values in coincide with “foreground” (outlier vectors). That

is coherent with binary and gray-level morphology, where high

gray-levels are associated to the objects (foreground) and low

gray-levels to the background.

We have now the ingredients to formulate the corresponding

multivariate vector erosion and dilation We limit here our devel-

opments to the flat operators, i.e., the structuring elements are

planar shapes. The non-planar structuring functions are defined

by weighting values on their support [31]. The -depth erosion

and -depth dilation of an image at pixel

by the structuring element are the two mappings

defined respectively

(13)

and

(14)

where and are the standard numerical flat erosion

and dilation of image :

(15)

(16)

with being the structuring element centered at point and

is the reflected structuring element. If the inverse mapping

is defined, the -depth erosion and dilation can be explicitly

written as:

and

Of course, the inverse only exists if is injective. Theoret-

ically, this is not guaranteed for since two different vectors

and can have the same projection depth; i.e., but

. We can impose in practice the

invertibility of by considering a lexicographic ordering for

equivalence class . In fact, this solution involves a structure

of total ordering which allows to compute directly the -depth

erosion and dilation without using the inverse mapping, i.e.,

(17)
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Fig. 2. Erosions by a disk of size 10 in the family of orders proposed by Barnet [6] and recent approaches from [9] and [30]. C-ordering uses the priority
. Proposed P-ordering is illustrated in (e)–(k)–(q) with random projections. Supervised ordering from [30] is calculated by

SVM with background/foreground sets given by green/red triangles in (e)(k)(q) respectively. Erosion in the ordering induced by the proposed P-ordering follows
the physical meaning of the transformation, i.e., diminution in the size of the objects is produced. The ordering does not require a training set as supervised or-
dering (f)–(l)–(r). However, this intrinsic ordering is based on dichotomy background and foreground (See text for more details). (a) Original; (b) M-ordering;
(c) C-ordering [9]; (d) P-ordering; (e) Training set; (f) supervised ordering [30]; (g) original; (h) M-ordering; (i) C-ordering [9]; (j) P-ordering; (k) Training set;
(l) supervised ordering [30]; (m) original; (n) M-ordering; (o) C-ordering [9]; (p) P-ordering; (q) Training set; (r) supervised ordering [30].

and

(18)

where and are respectively the infimum and supremum

according to the ordering , induced for the projection

depth function and completed with a lexico-

graphic ordering in . Starting from the -depth adjunction

, all the morphological filters such as the

opening and closing have their -depth counterpart, e.g., the

-depth opening and closing are defined as

(19)

Similarly, geodesic operators as opening by reconstruction [7],

, can be also naturally extended to multivariate images.

C. Properties

-depth vector erosion and dilation inherit the standard alge-

braic properties of morphological operators [2], [31] since they

fit into the theory of -adjunctions. Nevertheless, some remarks

about their particular behavior are useful for practical applica-

tions.

Filtering effects. Multivariate morphological operators de-

fined using -depth adjunction have the classical filtering prop-

erties [7]. Namely, the erosion shrinks the structures which pixel

values distant to the center in the vector dimensional space;

“spatial peaks” thinner than the structuring element disappear

by taking the value of neighboring pixels with a vector value

close to the “background.” As well, it expands the structures

which have a vector value close to “foreground.” Fig. 2 illus-

trates these effects in comparison with marginal, conditional,

reduced order by saturation [32] and supervised ordering [30].

Dilation produces the dual effects, enlarging the regions having

values close to the outliers and contracting the background. The

other morphological operators are naturally interpreted as prod-

ucts of dilations and erosions. Concerning the product operators,

opening (closing) is an idempotent and anti-extensive (exten-

sive) operator, which removes foreground (background) objects

that are smaller than the structuring element, leaving intact the

structures invariant to the structuring element.

From the image analysis viewpoint, we can consider that the

-depth erosion/dilation, and all the associated operators, are

unsupervised transformations, in the sense that ordering is in-

trinsically adapted to the image without giving any training set

of vectors for the background and foreground. We refer to our

recent study [30] for the formulation of a supervised framework.

Duality. The notion of duality by complement in gray level

images allows to compute the dilation using the

erosion operator, i.e., , where .

The ordering function for all and some

, and equivalently, for all

and some . Hence, the smallest element of the vector

space belongs to the “background” and the largest to the “fore-

ground,” i.e., and . We have there-

fore a qualitative dual role played by the background and fore-

ground of the image. However, the quantitative duality does

not involved an involution on : projection depth is invariant

to the complement of the vector coordinates. The duality by
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Fig. 3. Projection depth function is invariant to affine transformation in .
(a)–(c) are obtained by affine transformations in of Fig. 1(a). (d)–(f) show
approximated , with random projections.

complement appears in the -depth mapping which involves,

and consequently

(20)

Invariance. From its original formulation MM is contrast in-

variant due to its basic operators are based on rank filters [7].

The representation of the image as a topographic map is a key

point of the contrast invariance properties of MM in gray scale

images [33]. Contrast invariant is an interesting property linked

to the fact that image gray level is not an absolute data, since

in many cases the pixel values depend of the acquisition cir-

cumstances. For instance, the contrast depends on the type of

the camera and illuminations conditions of the scene. Math-

ematically, we say that the -ordering is contrast invariant if

for every continuos contrast change ,

, for all and ,

where denotes the -mapping calculated from . From

definition (2), it is easy to see

, and its approximated version (3) is contrast

invariance when the number of random projections is large

enough, i.e., , when

tend to . Thus, the contrast invariance property is not auto-

matic guaranteed, but it depends on the number of projections

in the expression (3).

Another more general suitable property is the invariance to

affine transformation. An -ordering is said to be invariant to

affine transformation if, for every definite positive

matrix and a vector, -ordering is invariant to the trans-

formation defined by , i.e.,

, for all . Affine transformations in-

cludes rotation and scaling, but also shearing. From [15], (2) is

affine invariant for in the family of symmetric distributions,

i.e., for a definite pos-

itive matrix. Nevertheless, there is not guarantee of a image

with background/foreground representation has symmetric dis-

tribution. However, experimental results shows that proposed

ordering is robust to affine transformation in the vector space

. This situation is illustrated in Fig. 3.

Local knowledge. Given an image parameterized for its

spatial support, , and a subset in its spatial sup-

Fig. 4. Edge enhancement of using toggle mapping in the proposed
ordering. Source: http://www.cellimagelibrary.org/

port, , the depth functions associated of both images are

not equivalent, i.e, . However, the local knowledge

property [31] is preserved if and only if the depth function is

calculated using the whole available image in .

IV. APPLICATIONS

This section presents three application examples that utilize

MM operators in the induced ordering by random projection

depth. The aim is to demonstrate the impact of this unsupervised

ordering in standard morphological operators for object filtering

and segmentation in vector images. The definition -depth or-

dering can be applied to multivariate images, allowing to use

“any” morphological operator for color, multispectral and hy-

perspectral images. Theoretically, convergence of iterative al-

gorithms is guarantied if the -depth ordering induced a total

order, once completed with lexicographic order. In these exper-

iments, the number of random projections in (3) have been fixed

to . An optimal parameter selection can be done over

, however that is beyond the scope of this paper. The first appli-

cation concerns edge enhancement in multivariate images and is

based on shock filters [7], [31].

A. Image Enhancement

Given an image , an two transformation

the shock filter is defined as follows

(21)

where is the mor-

phological Laplacian of the original image, based on and

in the domain of -depth function. For gray scale images, in the

particular case of as the identity function, ,

, and as the unitary ball, we have the clas-

sical shock filter introduced by Kramer [34]. It is based on the

idea of using a dilation process near a local maximum and an

erosion process around a local minimum. The toggle mapping

enhances images edges detected by differences in the pro-

jection depth function, i.e., background/foreground transitions.

The enhanced image tends to be piecewise constant due to mor-

phological operators and preserves the original information in

pixels where the edge detector is ambiguous (otherwise case
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Fig. 5. Original , marker and simplification by -depth vector leveling . The marker is the product of a -depth closing followed by an
-depth opening with the is a disk of size 10. (a) ; (b) ; (c) .

Fig. 6. -depth gradient and segmentation by using watershed transformation (in red), where markers are calculated by selecting the minima of strong dynamics
in -depth gradient, with . (a) ; (b) ; (c) ; (d) ; (e) ; (f) .

in (21)). Additionally, the vector formulation allows to perform

edge enhancement without include false colors during the pro-

cedure. Fig. 4 presents an illustrative example to show how the

toggle mapping works for a vector image.

B. Image Simplification

The task of image simplification is the subject of various ap-

proaches and applications [35], [36]. The aim is to produce from

an initial image, an approximated version with is simpler in

some sense. In the list of MM operators, the morphological lev-

eling attempts to produce flat zones for an original image from

a given marker image , consequently, simpler according to the

norm of the gradient, but preserving the main object according

to the marker . The idea of such a filter goes back to Math-

eron [37] and Meyer [38]. In the induced order produced by a

-depth function, an image is a leveling of the image , de-

noted by , iff neighbors:

The criterion also gives the clue to the algorithm for constructing

a leveling. The function is modified until the criterion is sat-

isfied, on , is replaced by

and on , , by

until the criterion is satisfied everywhere. The

leveling can be obtained by the following iterative

algorithm:
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Fig. 7. Original multispectral images is the size . Segmentation for watershed transformation with different parameters of dynamics minima of
-depth gradient. (a) False color image. (b) ; (c) ; (d) .

such that (convergence until idempo-

tency), where the geodesic dilation (erosion) of size denotes

. Fig. 5 gives a real example of our method.

The leveling is a simplified version of the original image, and

it contains less transitions. Naturally, the simplification level is

controlled by the marker image . In the example illustrated

in Fig. 5, is an opening followed by a closing with a disk

of radius 10 pixels as structuring element . Clearly, objects

smaller that have been eliminated in (Fig. 5(b)) and they

are not recovered by . Thus, Fig. 5(c) is a simplified

version of Fig. 5(a) where small structures have been removed

but contours of larger components are preserved.

C. Image Segmentation

Multivariate image segmentation has been widely considered

from different approaches [39]–[41]. Although theoretically

feasible to extend many univariate segmentation techniques

to their multivariate analogs, practical behavior is influenced

by the multivariate nature of the image. Intraclass variation

increases at the same time that the dimension in vector images,

reducing class distinguishability and degrading segmentation

performance. Multivariate imagery is specially sensitive to

large intraclass variation since every component image is a

variation contributor. Additionally, computational cost of seg-

mentation algorithms increases while algorithmic robustness

tends to decrease with increasing feature space sparseness and

solution space complexity. We proposed to use the proposed

random projection depth in combination with classical water-

shed transform [42] to yield a segmentation in multivariate

images. The same idea can be applied to a larger family of opti-

mization segmentation techniques [43]. A watershed transform,

denoted by associate a catch basin to each minimum

of the image [42]. We note in passing that in practice one

often does not apply the watershed transform to the original

image, but to its (morphological) gradient [7]. Basically, we

apply the watershed transformation in the gradient induced by

the -ordering calculated by the projection depth function (3),

i.e., , where is typically a

unitary structuring element. We notice that the gradient image,

is scalar function and consequently standard watershed

algorithm can be applied on it. However, even in the case of

gray scale images, the watershed transformation without any

preprocessing leads to a over-segmentation. There are two

possibilities to throw out the over-segmentation. The first one

involves hierarchical approaches based on merging of catch-

ment basins or based on the selection of the most significant

minima according to different criteria [44]. The second one

consists in determine markers for each interest region, for in-

stance, the dynamics or contrast based transform applied to the

minima of the gradient [7]. In the framework of -adjunction

morphology, the dynamics-based selection of minima is able

to suppress minima whose -adjunction is smaller than a given

threshold [7]. The dynamics-based minima transform is im-

plemented by computing a contrast closing on the scalar image
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Fig. 8. Original hyperspectral image is . Segmentation by -depth watershed transformation with different parameters of dynamics minima of
-depth gradient. (a) False color image. (b) ; (c) ; (d)

, that is a closing by reconstruction where the marker is the

image after addition of the threshold , i.e.,

[7]. We denote the watershed transform on the -ad-

junction gradient of the image , where the seeds are the local

minima calculated from a dynamics-based minima transform

of parameter (This dynamic is normalize between 0 and 1

in the experiments). Experimental results of the segmentation

strategy are shown in Figs. 6, 7 and 8. The first set of examples

are color images, where the watershed segmentation produces

sharp borders. An advantage of the formulation is it is directly

applicable to multivariate images. Thus, we perform exper-

iment in multispectral images from [45]. An example is the

hyperspectral images Fig. 7(a), which were captured with a

31-channel camera [45]. We can observe that, our approach

performs well and produce shrewd segmentation in the sense

that only spectral anomalous regions are priority, for instance,

fruits in Fig. 7. Fig. 8 also shows an example on a well-known

hyperspectral image from the remote sensing community ac-

quired by the ROSIS-03 optical sensor. The original image is a

610 by 340 pixels on 103-bands. Our approach can produce a

very selective foreground segmentation guided by the value of

the projection depth function, i.e., buildings and some isolated

pixels in the image.

V. CONCLUSIONS

The paper proposed the statistical depth function as a data

adaptive approach to induce a vector ordering for multivariate

images and consequently a framework for unsupervised mul-

tivariate mathematical morphology. Indeed, it reaches a good

compromise between simplicity and effectiveness in cases

where no prior information is available for a supervised ap-

proach. Multivariate segmentation based on projection depth
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function is a sort of anomaly segmentation algorithm. That

is understandable because proposed method is a measure of

eccentricity from a cloud point representation, where the spatial

representation is not considered. The main drawback in the

proposed approach is the difficulty to select the parameter .

It was fixed to 1000, because in this value because we can

empirically see a stability in the value of -ordering for a given

image. However, a theoretical study of the optimal value of

will be considered in ongoing work. In the future, we are plan-

ning to further speed up the proposed ordering and sharpness

enhancement algorithm, then extend the proposed method to

video segmentation and enhancement.
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