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Abstract: Firms seeking an original standpoint, in strategy or design, need to break with 
imitation and uniformity. They specifically attempt to understand the cognitive processes by 
which decision-makers manage to work, individually or collectively, through undecidable 
situations generated by equivalent possible choices and design innovatively. The behavioral 
tradition has largely anchored on Simon's early conception of bounded rationality, it is important 
to engage more explicitly cognitive approaches particularly ones that might link to the issue of 
identifying novel competitive positions. The purpose of the study is to better understand the 
regeneration and meta-restructuring processes of knowledge systems triggered by decision 
makers in order to redefine their decidable space by abstraction. The theoretical breakthroughs 
liable to account a dual form of reasoning, deductive to prove (then make) equivalence and 
abstractive to represent (then unmake) it, in subtle mechanisms of decisional symmetry, 
indiscernibility (antisymmetry) and asymmetry, are presented. A development of a core 
analytical/conceptual apparatus is proposed as an extension of the most widespread models of 
rationality based on a real dimension (for preference-making), by adding a visible imaginary one 
(for abstraction-making) and open up vistas capacity in the fields of information systems, 
knowledge and decision. This extension takes complex numbers as generalizable objects. 
 
Key words: decision-making, equality, indiscernibility, undecidability, imaginary, abstraction, 
knowledge, information, symmetry-breaking, identity, relation, 
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Real and Imaginary Parts of Decidability-Making 

  “from similarity between elements it is possible to derive [by abstraction] 
 another concept to which no name has yet been given. Instead of “the 
 triangles are similar” we say that “the two triangles are of identical shape” 
 or “the shape of one is identical with that of the other” (Frege, 1883). 

An original standpoint, in strategy or design, requires breaking imitation and uniformity, that 
is, symmetry1. Some firms2 seeking to distinguish themselves specifically attempt to 
understand the cognitive processes by which decision-makers (consumers, managers, etc.) 
manage to work through undecidable situations generated by equivalent possible choices and 
design innovatively. A theoretical understanding of the processes by which equivalence is 
conceived in turn helps explain how its symmetry gets broken. In this respect, it appears 
relevant to examine the theoretical models liable to account for this dual form of reasoning, 
deductive (to make an equivalence that is a loss of uniqueness3 and discernibility) and 
abstractive (to unmake the equivalence recreating a common unique representation). Human 
thinking and human organizations produce knowledge to design and share representations. To 
prove the equality of objects from a situation where they are not known as such, a production 
of knowledge is required that makes a new common unique identity being constructible by 
abstraction. But from objects already known as equal4, the knowledge produced at the origin 
to prove their equality is not spontaneously accessible and visible. Only the existing common 
identity is then obviously imposed on the mind, no other new one being easily constructible. 
The design of an identity requires a knowledge-based capacity. This is a current problem for 
design or creation activities. But it is also a problem to design an equality that would not have 
to be “bounded” in some known contexts only (a perfect universal equality being in fact 
unachievable and thus at the end undecidable). The behavioral tradition has largely anchored 
on Simon's early conception of bounded rationality (Simon, 1956, 1969, 1976), it is important 
to engage more explicitly cognitive approaches particularly ones that might link to the issue 
of identifying novel competitive positions. The purpose of the study is to better understand 
the regeneration and meta-restructuring processes of knowledge systems. It presents a 
development of a core analytical/conceptual apparatus that may potentially open up vistas in 
the fields of information systems, knowledge and decision. At a methodological level, the 
research was conducted inductively to trace the theoretical foundations of the most 
widespread models of rationality, particularly set theory (Cantor, 1883), and pinpoint their 
limitations (Nagel E. & al; 1989). By tracing those foundations, various fields were explored 
for approaches5 seeking to complement set theory. The research was conducted deductively to 
show that those approaches all aim to explain the discernibility properties between equal 
things, which is inconceivable in set theory and leads to undecidable situations. The 
conclusion of this deductive phase is to propose a non-contradictory axiomatic system that is 
more comprehensive6 than set theory and can describe the abstraction processes triggered by 
decision makers in order to redefine a decidable space by restructuring knowledge spaces. 
This axiomatic system opens up the possibility to generalize the mathematical formalism of 
partly real and partly imaginary numbers – notably utilized to describe variational phenomena 
(spread, etc.) - to the representation of objects. 
 
                                                 
1 « Symmetry » comes from the Greek sun (together, with), meaning commensurability, proportion, harmony (Apollonius De Perge, 2009) 
2 One, in the domain of relief and virtual software computing is a partner since 10 years (in a longitudinal approach) and is looking in 
particular for new generations of images and virtual simulation sensors. Some others and partners of a research chair are focusing on 
innovation in the fields of transportation, automobile, software, (etc), and help address the questions behind this research. 
3 A=B establishes the existence of two copies of a same object named A or B.  
4 Such as ‘These computers are the same…’, ‘It is the same person…’, etc.,   
5 Fuzzy sets, quasi-sets, concept-knowledge, fuzzy logic, object theory, multidimensional coordinate spaces, abstraction principles, etc. 
6 More complete while staying consistent in Gödel’s understanding (Gödel, 1940) 
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If to decide is to choose (note that an intentional non-choice can be considered as a choice7), 
one can start to examine situations in which choice is impossible, albeit desired. This applies 
to an undecidable situation as opposed to a decidable situation (considered as such in 
mathematical logic if there is an algorithm which decides step-by-step between yes or no 
answers). In mathematical logic, a decision problem involves determining whether a 
statement is universally valid (Cori & Lascar, 1993). Thus, undecidability appears as the devil 
of any decision-maker reaching for the heaven of equivalence between possible choices at 
hand, because, ultimately, there would only be one choice left to make. Contrary to 
appearances, equivalence appears to be incompatible with choice, as evidenced by any 
attempt to plan the act of choosing in a box containing equivalent objects. The instruction to 
choose “any” object does not translate into reality. Either the box is considered as a whole or 
the objects are differentiated. In the latter case, one way to go is to designate a specific object 
(for example, the first one if they were ordered beforehand), in other words, introduce 
probabilities (equiprobabilities, to be specific) which will necessarily result in the selection of 
one object over the other after the draw (because a random variable is an application between 
events and distinctive values). In all cases, equivalence will be interrupted so that choice can 
occur, because this choice is supposedly equivalent to any other. Indifference to equivalent 
choices may spring from a consumer as for any other decider (a doctor, a pilot, etc). An 
understanding of the process that leads them to conceive of this equivalence is key as it makes 
it easier, in turn, to understand the breaking of indifference as a seamlessly “symmetric” 
vision of possibilities, both individually discernible in space or in time, nameable (A, B, etc) 
and countable (1, 2, etc) and yet interchangeable and undistinguishable from one another 
(considered as strictly the same).  
 
Undecidability is an essential feature of mathematics. Any property8 that cannot be proved or 
disproved based on a given axiom theory is said to be undecidable, independent from this 
axiom, non trivial or absolute. Such a property is interesting as it helps define subsets of 
objects, for example, the subset of rubber tires which have the property “rain and 
hydroplaning resistant” in the universe of rubber tires. Conversely, “rubber” cannot be used to 
describe tires that lack this property; it is inseparable from the universe of tires and 
consistently applies to all of them (Hatchuel & Weil, 2007). Along the same lines, it is 
established that there is no algorithm that can decide from the source code of a program 
whether its output satisfies a non-trivial property9 (that is not always true or false) such as 
“the program computes an accurate result according to specification” (Rice, 1953). Thus, the 
undecidability of a property in relation to a given axiomatic system10 (Zemerlo, 1908) is 
essential to defining out of a set of objects the subset of those that do not have that property. 
As a matter of fact, the terms independence and undecidability are equally used. This holds 
for a set of objects as well as a set of strategies using properties for their formulation. In fact, 
equivalent things do not belong to the world of sets but that of collections11 from which they 
stem. “A set can be described metaphorically as a “primary” box containing “secondary” 
boxes that never have equivalent contents, elements that in turn contain tertiary boxes 
themselves containing, etc.” (Godement, 2001). Still, the validation of human formal 
constructions and the notion of mathematical truth are grounded on set theory and its meta-
theoretical language. Thus, we fall outside this rationality when manipulating a myriad of 

                                                 
7 Action of choosing something, someone over something or someone else; outcome of this action ; Power, possibility to choose ; set of 
things, etc. among which one can choose ; set of things chosen, selected for their qualities (French dictionary Larousse, 2012). 
8 An affirmation having a sense (meaning without any ambiguity a status of truth, right or wrong): it is the “excluded middle principle” 
9 Any property related to the function calculated by a Turing machine (see p 6) is undecidable. 
10 Zermelo-Frankel (ZFC) was selected here. 
11 The term collection is generally used to mean a set where order is ignored but multiplicity matters.  
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equivalent things that we do not fuse into a unique whole. “ I use the term ‘set’ or ‘system’ to 
generally mean any multiplicity that may be conceived of as a unity, that is, any collection of 
determined elements that, through a law, may be combined into a whole. In that way, I 
believe I am defining something related to eidos or Plato’s Theory of Forms (Cantor, 1883; 
Godin, 2002; Husserl, 1998).” In what world are we when we remain within the original 
collection? Levy (1987) notes: “(…) Identities are undefined and objects are uncompleted.” 
We can only understand and compute different things in the world of sets whereas we can 
duplicate and compute equivalent things in the world of collections. This mapping suggests 
reconsidering decidability in relation to equivalence. 
 
The first section of the study traces set theory, its origins, axiomatic system (ZFC) and 
principles in making subsets out of sets with non-trivial properties (that are, undecidable or 
independent from ZFC), in other words not common to all encapsulated sets. The equivalence 
relation, the choice function and the problem of the undecidability of questions that cannot be 
answered by any algorithm are also explained. The second section addresses decision theory 
and the models of rationality aimed at explaining individual or collective behaviors in choice 
situations. The decision-maker’s vision is outlined as a “quotient” set resulting from a 
conception of equivalence relational schemes (Frege, 1879, 1884; Wright, 1983) based on an 
initial set of possible choices and knowledge standards. The study shows that the issue of 
choice representativeness requires steering clear of ZFC axiomatic theory to translate 
indiscernibility and multiplicity with a non-fusional (non-antisymmetric) equality relation. 
The third section explains through the example of 3D depth perception how the design 
process of a new decidable space functions. It demonstrates the necessity to revert to the 
original collections from which sets stem in order to repartition equivalence relations and 
knowledge frameworks in a subtle mechanism of decisional symmetry, antisymmetry and 
asymmetry. The fourth and last section shows the relevance of fuzzy logic in interpreting the 
design process of a new decidable space as well as its limitations. In contrast, the formalism 
of imaginary numbers can reveal the missing dimension likely to radically change the 
decision-maker’s vision and engage their knowledge by abstraction to find the new relational 
key to reconsidering their new decidable space. Finally, an axiom system complementing 
ZFC and permitting a non-antisymmetric equivalence relation is proposed. 
 

- Theoretical Basis - 
The Choice Function And The Equivalence Relation In Set Theory: 

The Unique And The Multiple 
  
Set theory provides the observer with an overarching concept for describing his/her 
observations in the form of sets with the relational membership structures (algebra12), 
consistent with a language, rules and axioms13 eliminating potential paradoxes (Russel, 1907) 
and helping to interpret the observations-based propositions in order to prove or disprove 
them (Tarski, 1972). This theory is a formal creation that can “rationalize” the real (Bell, 
Raiffa & Tversky, 1988). For example, relational databases operate on that basis. “(…) the 
dominant position of the relational model (…) is based on first-order predicate logic (that) 
took 2,000 years to develop, beginning with the ancient Greeks who discovered that the 
subject of logic could be intelligently discussed separately from the subject to which it might 
be applied, a major step in applying levels of abstraction” (Codd, 1970, 1990).  
 

                                                 
12 Algebra, from the Arabic al-jabr, becomes algebra in Latin and means gathering (of pieces), reconstruction or connection.  
13 Zermelo-Fraenkel (ZF) axioms are widely admitted to axiomatize this set theory: the empty set exists, a gathering of sets is a set, etc.  
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A set is a collection of unrepeated objects. “A set is any collection into a whole of definite 
and distinct objects of our intuition and thought, with the objects referred to as elements of 
that set” (Belna, 2000). A set can exist but as a unique form and sets are constructed from an 
original collection whose identities can be multiple. Levy (1987) writes: “I call such 
multiplicities infinite or inconsistent multiplicities (unconceivable as a unity, a completed 
object) (…). Conversely, if all the elements of a multiplicity can be thought of as existing 
simultaneously, in the sense that it can be conceived as one single object, I call it a consistent 
multiplicity or set” (Levy, 1987)14. Accordingly, the conception of a unique object called set 
appears to be relative to the current knowledge that helps consider a multiplicity in a 
‘consistent’ way. 
 
Set theory operates with an appropriate equivalence relation – equality – based on the 
principle of indiscernibility (Leibnitz, 1714). “Statements in a=b form often have an 
invaluable content for the progress of knowledge and not always an a priori grounding. The 
discovery that every morning the same sun comes up and not a new sun was certainly one of 
the most critical breakthroughs of astronomy (…). I use this term [denotation] in the sense of 
identity and I mean ‘a=b’ in the sense of ‘a’ is the same as b’ or ‘a and b match’ (…).  
Arguably, the statement a=b does not refer to the thing per se but the way we designate it.” 
(Frege, 1994). The equality relation is15 reflexive (a=a), symmetric (a=b if and only if b=a) as 
well as antisymmetric (a=b if and only if a and b merge, that is, if a is included in b and b is 
included in a). When referring to two finite sets that are definable by extension, that is, by 
their content (on which properties depend), content equality makes for set equality (there are 
no distinct sets with identical contents). When referring to infinite sets16, those must be 
defined by comprehension (by intention)17 (fig.A). To do so, one must agree to work inside a 

larger set (which may be called a 
superset) that is itself defined by 
comprehension, and so forth. And to 
make this inclusion process consistent, 
everything must be immersed in a 
universe that does not itself qualify as a 
set, in order to avert paradoxes. Also, 
there must be a characteristic property 
(expressed in the language) of the set 
that one wishes to define, one that is 
common to all its elements. But 

obviously, such a property must not be trivial, meaning not already common to all included 
sets of the universe in which we stand. It is described as independent (or undecidable) from 
the axiomatic theory from which the sets of the universe are constructed. In other words, one 
uses a property that is not the universal brand of sets made by the axiomatic machine. Thus, 
they are elements that verify it, namely those of the set that one wishes to define by 
comprehension, and others that do not as they only exist outside the set, within the superset. 
 
The equality of two sets defined by comprehension is verified when they have the same 
properties and can thus be distinguished from one another. In another words, there cannot be 
differences between sets unless there are differences between their properties. Frege (1884) 
concurs: “(a=b). These cannot be differentiated unless the difference of the signs (a;b) 
                                                 
14 Quoted comments of Georg Cantor  
15 It is also transitive, meaning that if a=b and b=c then a=c 
16 for example, numbers (and they make up the numerical world) 
17 As a parallel to extension (listing contents) 

Fig. A – Design of sets defined in intention 

Subset of elements 
with property P1 

P2  … Pn
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corresponds to a difference in how the designated object is given. (…) Therefore, the 
statement contains actual knowledge”. Leibnitz (1998) notes: “For sets to have the same 
properties, they must be substitutable for one another. (…) are the same things of which one 
can be substituted with the other without compromising the truth.” The criterion of object 
substitutability operates with the identity of the concepts that define them, which involves 
“replacing everywhere the objects by the concepts into which they fall (…) If one designates 
the extension of a concept as the collection of objects that it incorporates, it is possible to say 
that if line a is parallel to line b, then the extension of the concept line parallel to line a is 
identical to the extension of the concept line parallel to line b” (Frege, 1884). “(…) To say 
that a=b if and only if a and b behave similarly in any context (…) is in fact equivalent to the 
general case (Leibniz equality) but structurally more simple (Girard, 2009).” 
 
In set theory, the equivalence relation translates to a reflexive, symmetric, antisymmetric and 
transitive relation of equality that must be verified in all contexts to become established.  
Equivalence thus holds in absolute terms. If not, two objects can be identical in some contexts 
(those known, for example) but distinct in other contexts (those yet unknown), meaning they 
are not always and everywhere the same. Equivalence thus holds in relative terms (Engel, 
1989; Geach, 1980; Longeart-Roth, 1981; Wiggins, 2002; Monnoyer & al; 2006; Giacomoni 
& Sardas, 2010). The equivalence (named equality) of two sets can be established by 
verifying that one is included in the other and vice versa. In other words, they can mutually 
serve as context for one another (content, respectively).  
 
The identity of objects as conceived by set theory is not natural to the decision-maker, if one 
only looks at our usual conception of numbers, which exist as both unique entities and 
individually as an indeterminate and arbitrary group of units18. The result of the operation 
1+1+1 fits into the same space as 2+1 and 3. “If we designate each element of a set as A, then 
we attribute the same sign to different things, but if we give 1 distinctive indices, then 1 
becomes unsuitable to arithmetic. It seems that we need to ascribe two contradictory 
properties to units: identities and discernibility” (Frege, 1884). For arithmetic, ‘one’ is (for 
collections)19 not of the same nature as ‘unity’ (for sets)20. This is a reason why Frege defined 
cardinal numbers with equivalence relations [classes of] as an ‘abstraction’21 (Frege, 1893, 
1903) with respect to some principles22 and to set-theoretic foundations aiming both to 
provide how mathematicians are able to create or to discover this way (Chihara, 1963; Hale, 
2000; Shapiro, 2000; Fine, 2002; Tennant, 2004; Cook & Ebert, 2005; Cook, 2007). “The 
prevalent view is that abstracts should just be treated as equivalence classes (…) The theory 
of abstraction thereby becomes a part of the much more comprehensive theory of sets or 
classes” (Fine, 2002). 
  
Now, equivalence brings us to choice. Choice is incorporated into set theory as an axiom. It 
states that it is legitimate to construct mathematical objects by endlessly repeating the 
operation of choosing an element out of a non-empty set. But “because it states the existence 
of objects about which intuition is uncertain, its usage is not as consistently acknowledged as 
that of other axioms (ZF), and it is common to use it as little as possible and keep track of it” 
(Dehornoy, 2006).  The axiomatic machine is seemingly unable – without this axiom - to 
                                                 
18 A repetition of 1 is a collection, the result of 1+1+1 is the unique result 3. 
19 for example: to have same bicycles (same model of bicycle) means a collection of countable and distinct (discernible in space or time) one. 
20 for example: to have same father means a unique father. 
21 In the sense that, “from similarity [equivalence] between elements it is possible to derive another concept to which no name has yet been 
given. Instead of “the triangles are similar” we say that “the two triangles are of identical shape” or “the shape of one is identical with that of 
the other” (Frege, 1883). 
22 Hume’s principle, Basic Law V, New V, etc. (Shapiro & Weir, 2007) 
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make certain constructions involving an infinite number of simultaneous choices. It was thus 
decided to incorporate it and name it ZFC axiomatic set theory. The axiom of choice states 
that any set of sets has a choice function that selects an element from each nonempty set. This 
axiom cannot be disproved by the other axioms (Gödel, 1940) or proven (Cohen, 1966).  
 
The issue of the existence of a choice function (meaning axiomatic set theory) is paramount. 
If to decide is to choose, this question ties in to undecidable problems, which – at least in 
mathematics – illuminate unpredictabilities established as being caused not by a situation 
phenomenon or a practical impossibility but by an impossibility in principle: for this 
particular problem, not only is there no known resolution but there will never be. For 
example, the problem of program equivalence (do two given computer programs calculate the 
same thing?) or the problem of the utility of part of a program (Given that a computer 
program consists of a set of codes, does it contain a useless subset of codes, meaning that it is 
never used no matter what use of the program is made)? Undecidable questions do not have 
any algorithm that can decide yes or no through a finite number of steps (it is impossible to 
come up with a method that systematically processes all cases). This identification and 
formulation work on the notion of algorithm relates to a constructivist approach to 
mathematics (Troelstra, 1973). Any function (no matter if it is choice, utility, indifference, 
etc.) is computable if there exists a finite way to describe it that effectively calculates all its 
values. A precise definition of the notion of computable function lays down that of algorithm 
in the process. “Every effectively calculable function is a computable function” (Gandy, 
1980). What is feasible by algorithm is feasible by a Turing machine23 (Turing, 1936; 1948).  

 
- Boundaries and Limits - 

Axiomatic Approach To Undecidability And Indiscernibility 
Between Sets And Collections 

 
Since the early 20th century the axiomatic method has taken hold and any mathematical 
question can be articulated as: does this property result from this set of axioms? The model of 
rationality offered by the ZFC axiomatic set theory was outlined above; it is formal in its 
language and abstract in its independence from the application domain. Early studies and 
experiments in decision24 theory are historically characterized by the search for formal 
structures underlying concrete problems and the use of mathematics and logic as a modeling 
language (Tsoukiàs, 2004; 2007). “Decision support is an activity performed by an individual 
drawing on explicit but not necessarily fully-formalized models to help answer some of the 
questions of a player in a decision process. Those insights help illuminate the decision and 
make recommendations, or simply facilitate behavior conducive to greater consistency 
between the evolution of the process and the objectives and value system that this player is 
working with”25 (Bernard Roy, 1993). Decision theory models the behavior of a decision-
maker (named agent) when coping with choice situations (Raiffa, 1969; Simon, 1979; Cyert 
& March, 1963). It describes the choices of an agent and links them to a question of 
preference (Hansson, 1966; von Wright, 1963; Roubens & Vincke, 1985). It shows how 
preference relationships can be represented by a utility function (Quiggin, 1993; Jaffray, 
1989; Fishburn, 1970) and when they imply the existence of beliefs of the agent on the 

                                                 
23 A Turing machine is an idealized mechanism (program, algorithm) intended for computation. It uses an endless tape divided into cells and 
a head that can read, erase and write on the tape. This read-write head can move over the tape and the machine itself operates the movements. 
A program must not be ambiguous, that is, never have any elementary instructions simultaneously applicable. When a Turing machine is 
specified and supplied with a tape, its computation unfolds in a rigorously determined and unique manner.  
24 An act by which a person settles on a solution, decides something; resolution, choice (French dictionary Larousse, 2012). 
25 Translation by the author 
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various states of the world, which can be represented by probabilities (Ramsey, 1931; Savage, 
1972: Schmeidler, 1982; Machina, 1982). As far back as the 18th century (Marquis de 
Condorcet, 1795), preferences have implicitly displayed rational behavior (or more aptly put, 
driven by a model of rationality) of an individual or collective making decisions, although it is 
not always possible to aggregate individual preferences into collective preferences (Arrow, 
1951; Granger, 1956). The profusion of choices is thus related to the issue of preferences 
among possible (decidable) choices that are not always equivalent, rather than to the question 
of indifference breeding undecidability. “Indifference, by nature, does not translate into 
choice” (Mongin, 2011).  
 
Indifference may come from a consumer, in which case how to model the choice process and 
the process by which he/she achieves an equivalence relation between the possible choices? 
To seek to model those processes is therefore to seek a model for the breaking of indifference 
to a collection of possible choices, in other words the breaking of a perfectly “symmetric” 
vision of the (collection of) possibilities, individually discernible in space or in time, or even 
nameable (A, B, ...) and countable (1, 2, ...) as well as interchangeable and undistinguishable 
from one another. In fact, the symmetry of a system, in modern language, refers to all the 
transformations26 that sustain its invariance (more informally put, shifting things around 
always lets one see them the same way) and thus help define equivalence classes: “the 
invariance under a specified group of transformations” (Brading & Castellani, 2008). 
Indifference applies as well to the maintenance officer having to choose among 
interchangeable spares and meeting his availability request in a database management system 
as to the software designer coping with program equivalence or the chemist with molecule 
equivalence, etc.  
 
In set theory, equivalence is typically a relation defined on a set, specifically in the realm of 
choices if it is a set of possible or decidable choices [fig.B]. It is conceivable to group 

together all the entities of the set considered in all possible 
ways, even when the set is infinite. This is premised27 by a 
ZFC axiom (axiom of power set). All possible groupings are 
not always subsets of the original set considered. For example, 
in a given set of spare equipments, some subsets or 
intermediary parts are not listed (they can’t be changed in the 
event of breakdown, the full subset must be changed). 
Similarly, all combination options are not always catalogued, 
and so forth. Thus, there is the set from which groupings are 
made and the set of conceivable sets into which those 

groupings fall. The latter is always larger (in terms of cardinality) than the former (in fact, it 
contains it) and not always countable when it is infinite (Cantor, 1883)28. As to the 
equivalence relation, it relates to the decision-maker and those that are involved in it (his/her 
competing or partner counterparts, etc.), or more broadly, it relates to a common system of 
knowledge and standards (formal, value systems, etc.). When the entities of a set are 
connected by equivalence and grouped into subsets called equivalence classes, these are 
necessarily disjoint as they must otherwise merge. What’s more, there is no empty subset 
because there is at least one entity in an equivalence relation with itself. As a result, if no 
entity from the original set is left out, the outcome is a set of nonempty and disjoint subsets 
                                                 
26 Those transformations have a specific algebraic structure designated as « symmetry group » 
27 To make pairs of elements that are in relation, the primitive set has to be replicated (Cartesian product). This operation is done between 
sets (unicity) and collections (multiplicity). 
28 Also, see « continuum hypothesis » (Cohen, 1966) 

Fig. B – Decision‐maker indifference 
vs choice equivalence 
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that reflects the decision-maker’s vision of the original set from the perspective of the 
equivalence relation. This set of subsets is called “quotient” in mathematics. It is a particular 
subset of the set of all conceivable sets possible defined above. “For every equivalence 
relation there is a natural way to divide the set on which it is defined into mutually exclusive 
(disjoint) subsets which are called equivalence classes.” (Borschev & Partee, 2001). 
 
If all entities are deemed equivalent by the decision-maker, it is always possible to consider 
the set encompassing those entities and the decision-maker himself/herself (this set is 
nonempty) in order to construct the ‘quotient’ set with at least two mutually exclusive 
classes29 and then move on to a self-reflexive R equivalence relation: “equivalent to itself”. 
This is a self-inclusion process30 (and, in fact, an involvement31 process). The decision-
maker’s vision, which here translates into a ‘quotient’ set, results from a conception of 
potentially new subsets, each of which are relational schemes between choices deemed 
equivalent and having common properties, based on an original set of possible choices. In the 
process, the decision-maker operates in a relational set larger than the original one. The 
equivalence relations are specific relations that make sense with respect to the knowledge and 
models of rationality engaged, because each translates to a “quotient” set. Once the set of 
possible choices is “quotiented” with an equivalence relation, how does the decision-maker 
choose from each equivalence class to represent it? What really happens when initially the 
decision-maker only sees entities as all equivalent? 
 
When indifference reflects the equivalence of possible choices [see fig.B], the term collection 
should be used instead of sets as in ZFC axiomatic set theory. The choice of a unique entity, 
individuated and discernible by its property, is easily constructible. By contrast, the choice 
among multiple individuated, discernible (not commingled) and interchangeable entities but 
undifferentiated by their property, seemingly requires a self-inclusion process [an 
abstraction]32 in the sense that the chosen entity must represent all its counterparts including 
itself. Granted, the axiom of choice can prove the existence of a choice function when no 
finite reasoning seems capable of doing it. “To choose one sock from each of infinitely many 
pairs of socks requires the Axiom of Choice, but for shoes the Axiom is not needed” (Darling, 
2004)33. But this axiom does not provide any modus operandi. Besides, even when the 
collection of equivalent objects is finite, how can the choice function fulfil its role without 
building in a mechanism of distinction as a random variable, an order or a designation? How 
to choose a ‘representative’ of an equivalence class without such a mechanism? 
 
For example, given a wheel partitioned into 10 equivalent sections that can have four different 
colors, there are necessarily sections of the same color and the term collection is in order here. 
Conversely, each color is unique, and thus it is a set. The random variable matches an element 
from the set of values “colors” with any outcome of the random experience of spinning the 
wheel until it stops on a section. The choice spans the set of possible distinctive values34, 

                                                 
29 An equivalence relation groups together the elements of a set by mutually exclusive properties 
30 Through a similar infinitely repeatable process of ‘abstraction’ based on definition and logic, Frege constructed all natural numbers: “what 
falls under the concept ‘non identical to itself’? If the answer is nothing, then the cardinal that falls into this concept is 0. Now, on to the 
concept ‘identical to 0’: because there is only one object identical to 0, namely 0 itself, the cardinal that falls into this concept is 1. From the 
definitions of 0 and 1 (0≠1), it is possible to use the concept ‘identical to 0 or 1’ with 2 as the cardinal.  
31 Which may explain dissonance cognition and subversion of rationality phenomenon (Festinger, 1957; Elster, 1983) 
32 “The class [Object] provides an abstraction. An object [obj] of the class [Object] can represent an arbitrary class. The only operations it 
provides is to make copies and assignments, so that you can put them in lists and arrays. (…) Therefore, there is no automatic conversion 
from these classes to [Object]. This encapsulation mechanism requires the use of [assign] or [object cast] to access the encapsulated class” 
(Brönnimann et Al., 2009). 
33 Citation from B. Russell. 
34 The designation of entities is not warranted by a collection being infinite and uncountable.  
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colors, numbers or designations (A, B, C, etc.) and is supposed to represent all equivalent 
choices that might be made instead. The process in which the choice occurs hinges on an 
equality relation between the designations reflecting the equivalence relation between the 
entities. Two designations are equal (A=B) if and only if the two designated entities are 
members of the equivalence class. “Until predicates have been assigned, the two substances 
remain indiscernible; but they cannot have predicates by which they cease to be indiscernible, 
unless they are first distinguished as numerically different” (Russel, 1900). Therefore, the 
entity chosen among the elements of the equivalence class is designated as a representative of 
this equivalence class. No function can attribute two different designations to one same entity. 
Hence, it is impossible to describe this self-inclusion process when remaining in ZFC. 
 
The choice on equivalence moves back and forth between collections and sets [fig.C], 

respectively outside of and within 
ZFC axiomatization, that is, in and 
out of a particular model of 
rationality. Looking at decision, not 
when it signals the end of a 
deliberation process in the 
intentional act of doing or not doing 
something (for example, after much 
dithering), but when it signals a 
process by which a space of 
decidable choices is designed, 
requires pondering on the transition 
points between the collection and 
the set. Conceptual dualisms such as 

equivalence and choice, the discernible and the indiscernible, the multiple and the unique, can 
translate into antisymmetric or non-antisymmetric equality relations. 
 
The conception process of a decidable space (described as innovative)35 is modeled by the 
Concept-Knowledge (C-K) (Hatchuel & Weil, 2007; Hatchuel & Al; 2010) theory on an 
interaction principle between spaces respectively structured around ZF axiomatic set theory 
without and with the axiom of choice (AC); the space of concepts36 (comprehensible but 
undecidable as an ‘imaginary number’ or a “flying boat’ can be at a given point) and the 
space of knowledge (decidable, for example complex numbers, lift on an airfoil and 
continuous equilibrium, or the principle of buoyancy). More simply put, without the axiom of 
choice, it would be impossible, according to this theory, to assert that an object exists like an 
unfinished object in the making. These two spaces mutually expand during the design process 
so that the development of the knowledge map can ultimately and “in conjunction” highlight 
initial paradoxes. Arguably, then, the axiom of choice does not function in the imaginary 
world (that of concepts) yet axiomatized by ZF. Outside of ZFC (which corresponds to the 
space of knowledge), thus in collections, it is unclear whether ZF axiomatic set theory still 
holds as is. ZF axiomatic set theory entails the indiscernibility of equivalent entities, which 
does not seem appropriate to the collections of equivalent and discernible elements. However, 
the disappearance of the choice axiom allows the construction of nonmeasurable sets and 

                                                 
35 As is any creative abstraction process, potentially.  
36 This concept seems to have been differently designated in the literature: symbolic form, abductive hypothesis (Santanella, 2005), 
imagination, dreams, etc. 
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produces the Banach-Tarski paradox37 (Su, 1990) which pictures the isomorphic collections. 
However, it is not possible to affirm that others axioms of ZF are preserved, in particular 
those of foundation and of infinity. The axiom of foundation can be stated as "every 
nonempty set is disjoint from one of its elements" (Mendelson, 1997) and also as “A set 
contains no infinitely descending (membership) sequence" (Ciesielski, 1997). Mendelson 
(1958) proved that the equivalence of these two statements necessarily relies on the axiom of 
choice. “One of the earliest paradoxes arose out of grappling with the notion of infinity. 
However, when we restrict the number of pieces to be finite and the allowable 
transformations to be isometries of the ambient space, any paradox that persists is hightly 
counterintuitive. Notice that the previous paradoxes [Banach-Tarski] depended on the set of 
allowable transformations. Hence we shall demand that our definition of paradoxical be 
dependent on a group whose action on the set produces the transformations” (Su, 1990). 
 
The design of sets from collections has been studied through some concepts like extension, 
“extending knowledge and fruitful concepts” (Frege, 1873; Tappenden, 1995), pre-sets 
(Bishop, 1967): “Constructive mathematics does not postulate a pre-existent universe, with 
objects lying around waiting to be collected and grouped into sets, like shells on the beach” 
(Bishop, 1983) and quasi-sets (Krause, 1992; da Costa & Krause, 1994). “It seems reasonable 
(...) to search for a mathematical theory which considers, without dodges, collections of truly 
indistinguishable objects. In characterizing such collections (...) we have (...) developed the 
theory by posing that the expression x=y is not generally a well-formed formula (and, as a 
consequence, its negation x≠y is also not a formula). This enables us to consider logico-
mathematical systems in which identity and indistinguishability are separated concepts; that 
is, these concepts do not reduce to one another as in standard set theories” (da Costa, Krause, 
2006). 
 

- The Experiment - 
The Design Process Of A Space Of Decidable Objects: 

Symmetry, Antisymmetry And Asymmetry In Decision-Making  
  

Structuring and formulating a decision problem is a critical issue (Rosenhead, 2001; Stamelos 
& Al; 2003), one whose addressing hinges on axiomatic set theory. The space of decidable 
objects results from a design process between collections and sets in order to repartition 
broken equivalence relations as new knowledge and standards emerge. We now explain – 
through the example of visual perception that many of our decisions are driven by – how the 
design process of new quotient sets operates, that is, how a decision-maker substitutes one 
equivalence relation for a new one. The ultimate purpose is to propose an axiomatic system 
that complements (in the sense of Gödel) that of ZFC, which only allows an antisymmetric 
(fusional) equivalence relation. The extraction of invariant aspects from the constantly 
variable flow of information provided by sense organs, for example, can define structures 
with properties anticipatable by action as well as discernible shapes out of a tangle of lines.  
Hence, our perception mechanisms seem to “hunger for invariance” (Paillard, 1974) in order 
to contain the uncertainty about the state of the environment. Any adaptation activity would 
be compromised if we didn’t have a fairly consistent and coherent representation of the 
environment. By essence, axiomatic set theory maintains through the identity of objects – by 
their discernibility or uniqueness – consistency in the perceptual construction of objects or 
beings to anticipate situations. An object that disappears out of view does not stop existing. 
                                                 
37 A decomposition of the sphere into a finite number of non-overlapping pieces which can then be put back together in a different way to 
yield two identical copies of the original sphere without consideration for the size but only for their shape. 
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The perception of invariance is a form of learning (Bower, 1966) and invariance is a 
classification of observations with equivalence relations (Reuchlin, 1966). “The collected data 
on the perceptual behaviors of congenital blind people regaining vision through a surgical 
operation performed at adulthood and having long been able to distinguish between a circle 
and a square through tactile-kinesthetic exploration, do not recognize them upon seeing them. 
The two figures seem different to them but they cannot single them out as “circles” or 
“squares”. If they are taught to do it, the learning is compromised as soon as the figures are 
shifted or replaced by slightly different others. (…). 
That goes to prove that normal visual perception is 
the outcome of a long period of learning.” (Reuchlin, 
1982). If we look up close at figure D (fig.D) the two 
images superimpose on one another. If we try to 
place sideways our forefingers on the end of a pencil 
standing on a table, with our eyes closed, the distance is difficult to gauge. 
 

Finally, if we place a postcard on the line that 
separates the two images of figure E (fig.E) 
and put our foreheads or noses on the edge of 
the card, the two images merge and the 
frustum of the pyramid appears in three 
dimensions (as figure F simulates). The two 
representations of the pyramid frustum are 
views from two points (6 cm) inches apart, 

which corresponds to the average distance between the centers of the two corneas. Thus, 
depth vision (3D space) is generated by two 
reverse flat images.38  Each point of the 
pyramid frustum on the left side of figure E 
has a counterpart on the right side of that 
figure. The mismatch along the horizontal 
axis in 2D space39 is transformed into depth 
along a new axis in 3D space. To track down 
the position of a point in space consists in 
intersecting the two directions matching each eye with the point considered. By applying this 

method to all the points, it is possible to 
position an object. The two directions can 
focus inside or outside the plane of images (A 
and B), thus bringing the 3-D object into 
focus (by squinting or looking into the 
background). The depth of the 3D object 
varies according to the AB distance. Each eye 
solely perceives the image that is intended for 

it (two options of figure G). 
 
Let’s replicate this pair of chiral images40: (A ; Sym.A) where ‘Sym. A’ is the abbreviation of 
“Symmetric to A”. We obtain (fig.H) two strictly identical and perfectly superimposable pairs 
(property known as achirality): ((A ; Sym.A) ; (A ; Sym.A)). 
                                                 
38 The images are symmetric but not superimposable (chirality). The image pair is said to be enantiomorph (from the Greek opposite form).  
39 The creation of a hologram is based on a similar principle, from the interference between two beams reflecting and building distance.  
40 In physics, such situations can be observed. The electric field generated by a « mirror » electron » is the mirror image of the field generated 
by the electron, and the magnetic field generated by the movement of the « mirror electron » is reversed.  

Fig.F – superimposing and 3D perception 

Fig.G – Depth design 
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or upside down. Conversely, the system ((A ; Sym.A) ; (A ; Sym.A)) presents structural 
‘symmetry’ because the element (A ; Sym.A) can be exchanged with itself without impacting 
the order of the pair. Does the depth perception generated by this pair ‘break’ this structural 
symmetry? It is tempting to say it does by arguing that depth perception is generated (fig.I), 
and that it brings knowledge that alters our vision of the world” (Reix, 2000; Reix & al; 
2011). But some may also note that depth perception is already generated (fig.F) in the initial 
pair (A ; Sym.A). Ultimately, this may all depend on the difference between the depth 
perception generated in the pair ((A ; Sym.A) ; (A ; Sym.A)) and the one generated in the pair 
(A ; Sym.A), namely the upside down pyramid.  But then, whether or not the right-side-up or 
upside-down pyramids are perceived equivalently is yet to be demonstrated. If the answer is 
yes, there is no breaking of symmetry attributable to the pair ((A ; Sym.A); (A ; Sym.A)). In 
other words, symmetry would preserve the informational equivalence “right side up / upside 
down”. Then, A and Sym.A images should also be considered as equivalent (as they are 
obtained by building symmetry). The 3D outcome from these two equivalent images is 
undoubtedly more informational (2D versus 3D), therefore the symmetry is effectively 
broken. Of course it could be hypothetically objected that 2D and 3D symmetry operations 
are not comparable and equivalent operations. In other words, A and Sym.A may not be 
equivalent through 2D symmetry, hence the depth perception; conversely, the upside-down 
and right-side-up pyramids may be equivalent through 3D symmetry with no additional 
information. But this assumption implies that what holds in 2D geometry no longer does in 
3D geometry. Mathematically, though, we know that it is not the case because 3D geometry 
includes 2D geometry (e.g. 3D geometry is an extension of 2D geometry). We only know this 
because 3D geometry is now known. If it wasn’t, it should be designed by abstraction by 
including 2D geometry to prevent undecidable43 situations from occurring (Brönnimann & al, 
2009; Lee & al; 1992; Brunet, 1991).  
 
All things considered, it can be said that axiomatic set theory and, by extension, its underlying 
model of rationality, can prevent depth perception as it merges any collection of equivalent 
images and, in particular, the pair that is yet likely to generate new information by “symmetry 
breaking” (fig.H). The equivalence relation is relevant to a viewer or group of viewers with 
similar knowledge standards. The grouping of equivalent entities into a given context can be 
repartitioned into a new context including and redefining the previous one. This holds true for 
3D space, which includes 2D space by redefining all geometric objects more broadly. New 
equivalence relations preserving existing ones and generalizing them are generated by 
creating a new dimension44 independent from those that already serve to spawn the initial 
space and describe its elements. “This means that any dimension needs to be studied using the 
ideas of spaces/sets or sub-spaces/sub-sets or partitions/cuts. The idea of dimension is 
complex and rather deep for the human mind to penetrate. This is because we need to often 
perform abstractions and parameterizations of time and space of any geometrical object that 
cannot be visualized in the real world (Inselberg & Dimsdale,1994) (…) According to this 
book, the term “dimension” can be defined “as the unique mega-space that is built by infinite 
general-spaces, subspaces and micro-spaces that are systematically interconnected” (Estrada, 
2011). This process reflects a meta-restructuring in knowledge standards. The solution to a 
problem appears as a construction rather than the outcome of research in a given space 
(Bateson, 1972), highlighting the fundamental distinction between classic and new 

                                                 
43 Such an indecidibility seems to be formulated so: “(…) For many properties undecided by the ZFC system (…) it is possible to construct 
an extension in which the considered property is true and (…) construct another extension in which the property is false (…). At this point it 
seems extremely difficult to distinguish the property from its negation and break the symmetry by focusing on one over the other” 
(Dehornoy, 2003). 
44 A dimension is defined as the number of independent variables that help define a state, an event or a system.   
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approaches to decision theory (Tsoukiàs, 2004). From this standpoint, depending on whether 
the axiom system permits an antisymmetric equivalence alone or is also open to an 
antisymmetry-free equivalence, the possible conceptions of the decidable space are just as 
varied as 2D and 3D geometry. Tversky shows that intuitive ideas about the properties of 
preference relations are not so much a behavior of real decision-makers as a theoretical 
requirement (Tversky, 1967). He also shows that the indifference relation can be not 
symmetric (Tversky, 1977).  

 
- DISCUSSION - 

Decisional Conception, Abstraction And Imaginary: 
Complementing The ZFC Axiomatic Of Set Theory 

 
Depth perception arises from a mechanism that: 
[1]. “symmetrizes” to create “non antisymmetric” (unmerged) pairs of entities connected by 
an equivalence relation with respect to a knowledge standard. 
[2]. Repeats this “symmetrizing” to obtain a structurally symmetric system (pair of pairs)45, 
that is, indifferent to the permutations of its elements. 
[3]. “asymmetrizes” (breaks the symmetry of the previous system) from the differences that 
show through and bring new knowledge (or engage implicit or even tacit knowledge) to 
repartition. 
 
This mechanism brings to mind46 von Neumann’s The Self-Replicating Machines which have 
spawned recent developments in the field of artificial life and genetic algorithms (Lipson and 
Pollack, 2000; Nakhla & Moisdon, 2010). The machine is described as follows:  “Machine 
replication works in three steps: 
[1]. Machine P (parent) reads the blueprint and makes a copy of itself, machine C (child); 
[2]. Machine P now puts its blueprint in the photocopier [the machine contains a 
photocopier], making a copy of the blueprint; 
[3]. Machine P hands the copy of the blueprint to machine C. Note the blueprint is used in 
two ways, as active instructions and as passive data” (von Neumann, 1966).  
 
Of all the pairs of pyramids constructed with symmetry (fig.E; fig.H), only the pair with a 6 
centimeter distance (between corneas), in both figures E and H, gives a sense of perspective 
and depth in space. The other pairs (fig.E) or pairs of pairs (fig.H) look partly or totally fuzzy 
and the “breaking of symmetry” does not occur. A “fuzzy” logic developed with set theory to 
address uncertainty, ambiguity and linguistic variables was introduced in the early 60s 
(Bellman & Zadeh, 1970). A “measurement” of the membership of an element in a set has 
helped increase the expressiveness and flexibility of formal languages and thus decision-
support models.47 Accordingly, each pair of 2D pyramids (discernible unlike the pair of pairs 
in figure H and thus making it possible to use set theory reasoning) can always be related to a 
value that graduates “fuzziness” from 0 to 1 (fig.J). 
 

                                                 
45 A pair of pairs is a relation of order 2 (connections between connections). An ordered pair is a relation of order 1. 
46 This mechanism also brings to mind an ancient symbolic formulation: a symmetric and imaginary world through the mirror, from which 
one comes back with a form of asymmetry in all mythologies (limp of Jason, Oedipus, Hephaestus, etc.)  
47  “More often than not, the classes of objects encountered in the real physical world do not have precisely defined criteria of membership 
(...) however, such objects as starfish, bacteria, etc. have an ambiguous status with respect to the class of animals. (...) The notion of a fuzzy 
set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework 
used in the case of ordinary sets, but is more general than the latter and potentially, may prove to have a much wider scope of applicability, 
particularly in the fields of pattern classification and information processing.” (Zadeh,1965). 
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The 3D pyramid is a member of 3D space but each of 
its points splits into two corresponding points in 2D 
space (it has two corresponding points, one on each 
pyramid of the 2D pair). And yet, “A function is a 
binary relation, which is one-one or many-one, not 
one-many” (Codd, 1970). It is easy to functionally 
match many points of the 3D pyramid with one single 
point of the 2D pyramid, for example when projecting 
3D space onto a 2D space plane. By contrast, it is not 
possible to build a split correspondence of 3D space in 
2D space using a function. It is thus relevant to 
represent each pair of points in 2D space by a value 
ranging from 0 to 1. The pairs of points in 2D space 
formed from a point and its counterpart on a 2D 

pyramid and its 2D symmetric respectively, are assigned a 1 value as they relate to a point of 
the 3D pyramid in 3D space. But this relation (creation of a third dimension) is not a 
geometric membership relation. None of these pairs of points of the plane (xOy) (fig.J) is 
geometrically a member of the 3D pyramid. And the translation into “fuzzy set (class)” 
requires ranking the degree of membership of the sets: 0 (no membership) or 1 (membership). 
Therefore, the depth conception relation should be interpreted as a “hyper n-ary relation” of 
gradual membership of 2D space within 3D space (fig.K). The translation into “fuzzy sets” 

must attribute a value ranging from 0 to 1 to the pairs of 
2D space during the depth construction process. This 
“many-one” correspondence stems from the inability of 
a function to translate the “one-many” correspondence” 
(Codd, 1970) in set theory. Using figure H rather than 
figure E, translating into “fuzzy sets” would be 
theoretically impossible as both pairs of 2D pyramids of 
that figure are strictly identical and cannot coexist in set 
theory. Evidently, there is a lack of a formal construction 
(see §. 2) in collections that permits an antisymmetry-
free equivalence (discernibility). It would then be 
possible to define very simply a “one-many” and ‘n-ary’ 
relation with a type of ‘hyper’-function between a set 
and a collection. However, if we keep to set theory as a 
reasoning constraint, only one pair of pyramids must be 
considered. But how should the other pair be 
considered? “A fine and wonderful recourse to the 

human spirit, almost an amphibian between being and non being” (Leibnitz, 1989). The 
second pair can be represented in an imaginary dimension as imaginary numbers usually are: 
“Just as one can think of the realm of all real quantities as (represented by) an infinite straight 
line, so one can make sense of the realm of all quantities, real and imaginary, as an infinite 
plane in which each point, determines by abscissa a and ordinate b, represents the quantity a 
+ i b (…)” (Gauss, 1811). With one point of the pyramid (fig.E) acting as the real number “a” 
on a real dimension and the point counterpart on the symmetric pyramid (fig.E) acting as the 
imaginary number “i.b”, just as the two numbers “a” and “i.b” combine under the addition a + 
i.b, the points and their counterparts (fig.E) combine by the law of depth construction.48 It is 
possible through this translation of the imaginary to define the 3D object just as a complex 
                                                 
48 Which converts distance into depth to create perspective. 
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The ‘imaginary’ may thus permit the existence of an infinite collection of equivalent copies 
(the ‘plural’ description) being each generated by isomorphism Ψi operating from sets to 
collections and preserving the relational structure52 of the original set. ƒ: set e → collection c 
{Ψi (e); Ψj (e); etc.}. The ‘imaginary’ representation is already known when it comes to 
numbers under the symbol i and is also well adapted to formalize variational phenomena. The 
isomorphism plays a key role in mathematics as in management. Mathematical objects are 
considered to be essentially the same, from the point of view of their algebraic properties, 
when they are isomorphic, the usual expression being ‘up to isomorphism’ (Manalo, 2001). 
Hawley (1968) defined isomorphism as a constraining process that forces one unit in a 
population to resemble other units that face the same set of environmental conditions. More 
recently, Thornton (2011) recounted that “Clearer evidence of isomorphism is found within 
the world system literature, where the unit of analysis is better defined and highly aggregated, 
prompting the question of how observer distance and level of abstraction contribute to 
findings”.  
 
The new axiomatic system expanding ZFC, in the same way as mathematicians agree with the 
existence of models53 of ZFC, should permit antisymmetric equality (merging to make the 
unity from indiscernibles) in the universe of sets governed with ZFC and non-antisymmetric 
equality (no merging to preserve the discernibility) in the universe of collections. Such new 
axiomatic system is potentially more powerful than ZFC. For example, it can account for the 
design process of a space of decidable objects such as depth, as well as describe 
polymorphous situations (several equivalent and discernible forms) such as the equivalence of 
contextual choice in a highly changing environment, including algorithmic geometry54 
(Brönnimann & al, 2009; Mitchell, 2003), relational databases (Codd, 1970, 1990), 
aeronautics or software engineering (Giacomoni & Sardas, 2010). 
 
In this view, when the decision-maker performs a representation of a real situation without 
perfect knowledge of the states of the world (Simon, 1956, 1969, 1976), she/he ought to 
consider the possible construction of a space of decidable objects supplemented with a ‘Ψ-
imaginary’ dimension (§-4), one that may radically change her/his vision of the world just 
like depth creation in 3D space from 2D space. Decidable objects in such a dual space, partly 
real and partly imaginary, would be formalized with two dimensions [linked by Ψ], a real one 
for possible preference-making and an imaginary one for possible abstraction-making (thus 
undecidability-unmaking). Most concepts and relations, valid in the usual real space, would 
be extendable in the new one, according to Hankel’s principle (Crowe, 1990): “definition of 
an operation should be extended from a restricted domain to a wider one in such a way as to 
conserve the crucial algebraic properties of the operation”. 
 
Principle of ‘Real | Ψ-Imaginary’ spaces based formalism: 
 
Decidable space |Quotiented with R  ⊕ i • Undecidable space |Generated with Ψ and quotiented with R* by abstraction-making 

 
[R and R* being relations of equivalence] 

 

                                                 
52 More precisely, the group-theoretic structure: “The importance of group theory is relevant to every branch of Mathematics where 
symmetry is studied. Every symmetrical object is associated with a group. It is in this association why groups arise in many different areas 
like in Quantum Mechanics, in Crystallography, in Biology, and even in Computer Science. There is no such easy definition of symmetry 
among mathematical objects without leading its way to the theory of groups” (Manolo, 2001). 
53 Model means a collection M of sets with the property that the axioms of ZFC are satisfied under the interpretation that “sets” are only the 
sets belonging to M (Jech, 2008). 
54 Computational Geometry Algorithms Library 
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Zimmer (2003) recounted a story (Solso, 1996) concerning the abstraction applied in forming 
our perception of the world and in manipulating concepts to achieve goals: “The soldier took 
Picasso to task for not producing realistic pictures and, to illustrate the ideal from which 
Picasso has fallen so far short, he pulled out a photograph of his fiancee back home saying: 
'This is what a picture should look like’. Picasso looked carefully at the photograph and said: 
'Your girlfriend is rather small, isn't she?' This story reminds us that all artworks, all pictorial 
representations, are abstractions. Picasso makes the point about size, but similar points can be 
made about the soldier's fiancee's stillness, lack of a third dimension, and so on; (…) The 
story may be a critique of science as a way of describing the world or it could be read as 
saying that exact sciences must be built on inexact representations. In either case, there is a 
sure insistence on the need to abstract away from exactitude if we are to arrive at meaningful 
representations”.  
 
Now comes the question of how to get the relational key R* to designing a new decidable 
quotient set (like depth with flat views 6 centimeters apart). This is finally the strategic 
question of the origin of the ‘eureka’55 (Rivkin & Gavetti, 2007; Bilton & al., 2003). But the 
answer is usually sophisticated: “The multidimensional coordinate spaces can open the 
possibility to offer an alternative graphical modeling to visualize unknown dimensions in the 
same graphical space and time” (Estrada, 2011). “We establish the correspondence between 
C-K theory and Forcing, a method of Set theory developed by Paul Cohen in 1963 for the 
‘invention’ of new sets” (Hatchuel & Weil, 2007). The theories of abstraction operators 
(Tennant, 2004) and also the standard modern formula based on equivalence classes, that is: 
∀α∀β (§α = §β ↔ α ≈ β) where α and β are expressions, § is an operator forming singular 
terms, and ≈ is equivalence (Dummett, 1992; Fine, 2002; Wright, 1983). A relation between 
the referents of two separate expressions has resulted in a single abstract object, defined by an 
identity between the referents of the singular terms. 
 
We argue that the process to design R* from R is based on a meta-restructuring knowledge 
which is possible by abstraction-making, precisely by enclosing a representation of the 
‘missing’ knowledge56 which was at the origin considered as irrelevant when designing the 
relation R. Lewis said “incomplete descriptions” of concrete entities (Lewis, 1986). This 
‘missing’ knowledge has the high value of being obviously independent of R and thus works 
for generating a new independent dimension (with attached degrees of freedom). The 
perpetual selective search of new invariances when exploring the unknown requires a relevant 
well-timed understanding of the environment to anticipate the future. This is the role of 
consistent theories to accounting past and present experiments. But it is well known that « To 
obtain the coherence of a system T, we need “more than T” » (Girard, 2006, 2007). Indeed, 
Gödel’s theorem (Cori & Lascar, 1993; Nagel & Al, 1989) states that for any (proof) formal 
system powerful enough, it is possible algorithmically, to find an undecidable statement in the 
system based on its precise definition. Hence, no formalizing method can succeed completely. 
But an undecidable Gödel system is undecidable in relation to a given proof system. No 
Gödel undecidable statement is absolute (meaning undecidable in any proof system). 
Therefore, if we take an undecidable Gödel statement from a proof system and add it to the 
axioms of that system, we obtain a new proof system in which the undecidable becomes 
provable because it is an axiom. This method “slots together” (Delahaye, 1995, 2002) ever 
more powerful systems (consisting of fewer and fewer undecidable statements). 
 
                                                 
55 Archimedes (287 BC – c. 212 BC) 
56 e.g. missing information according to Reix’s understanding 
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Using set theory as a proof system, the decision maker knows that there is a more powerful 
system based on Gödel’s theorem. We previously modeled the passage to this powerful 
system through the design of an imaginary dimension with isomorphic collections. The 
relation R works between real elements (deemed so) and also but separately, between 
imaginary ones according to isomorphism57 Ψi. The relation R* works between a real element 
‘e’ of the original structured set and an imaginary element ‘i e’ of an isomorphic structure, 
such that R* is to be similar to R. This similarity is obviously significant for an outside 
observer (the decider) only. Indeed, none element ‘e’ of the original structure can co-exist 
with its isomorphic double ‘i e’ in an imaginary structure according to the unicity principle of 
set theory (and according to the exclusive middle)58. ‘R* similar to R’ means that a common 
representation is possible which is an abstraction according to Frege’s understanding and 
which encapsulates the ‘missing knowledge’. It also means that an isomorphism can be 
defined between R and R*, such isomorphism being applied between relations (order 2) 
applied themselves between elements (order 1). Real elements ‘e’ and imaginary ones ‘i e’ 
become commutable when R* is similar to R. Thus, R becomes independent from the status 
of elements, indifferently ‘real’ or ‘imaginary’. The relation R* then appears as an extension 
of the relation R in a new space populated with elements e* partly real and partly imaginary, 
describable by the expression: 
 

e* = e ⊕ i Ψ(R*=R) (e) 
 
Applied to the universe of numbers it gives complex numbers formula z = a + i.b. For 
numbers, “i” is generally confused with the corresponding isomorphism Ψ (rotations angle of 
π/2 applied to the straight line representing real numbers). But in fact, among all “imaginary” 
isomorphic straight lines generated from the original one representing reals, that 
corresponding in particular to a rotation angle of π/2 answers the question of finding the 
unknown imaginary number i such that i² = -1. 
 
An easy way to interpret the isomorphism Ψ(R*=R) [working from sets to collections and 
preserving the relation R between all elements, while making it independent from their real or 
imaginary state] is the definition of a digital image, by formats (set of pixels59) or by 
vectorization (structure). The latter allows infinity of sizes preserving details and 
superimposing formats coming together without affecting the velocity (and the capacity of the 
memory) in a substantial way because all information resides in the structure. But to be 
rendered (displayed or printed) a conversion into a format is required. This interpretation 
gives a possible explanation for the dual form of human reasoning ‘deductive – abstractive’ as 
an adaptation of the mental capacity to ‘structuring – designing’ processes. 
 
We suggest the proposed formalism to be now applied to the so called Thinking Outside the 
Box problem [known first as the continuous drawn line problem (Loyd, 1919)] which consists 
in linking points (nine) with lines (four) without raising the pencil. Thinking Outside the Box 
means an original and creative way of thinking. This problem60 is supposed to be quite 
impossible to solve (difficulty to get out from the mental square of thinking). Points can be 
understood as elements (representing properties, objects, knowledge pockets, etc.). Links 

                                                 
57 Ψ preserves the theoretic-group structure: two elements of the original structure that are together in relation with R have corresponding 
elements in the isomorphic structure that are also in relation with R. 
58 A proposition is true or false (no third option). So is it for an element being real or imaginary.  
59 Smallest controllable subdivision of a digital image 
60 It is taken from the “shapes” Theory (Gestalt – perceptive and structural field) in psychoanalysis (Reuchlin, 1986). This discipline is 
interested in shapes containing an ambiguity, a paradoxical, and generating an insight through a new square of thinking. 
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between points can be then considered as interactions (dependences, relations, etc.) and links 
between links as possible interactions between N elements of a set (constraints, network, 
graphs…). 
 
 
 Step 1 (formalization) 

 
 
 
 
 
 
 

 
 Step 2 (Standard problem solving) 

 
If E means the set of all possible decisions to link 4 lines (e.g. E is the ‘decidable space’), E 
contains no satisfying decision to solve the problem. 
 
 Step 3 (Set [real status E] | Collections [imaginary status i • E]) 

 
 

 
 
 
 
 
 
 
 Step 4 (Abstraction & symmetry-breaking of R]) 

 
 
 
 
 
 
 
 
 
 Step 5 (New ‘decidable space’ E*) 
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Conclusion 
 
ZFC axiomatic set theory was founded on the set concept of unity that makes parts 
indiscernible. It provides real or thought-based objects with a kind of identity form along with 
a model of rationality for validating human formal constructions. The undecidability of this 
axiomatic system may be simply stated as A=B in the sense that A and B are both equal and 
indiscernible and yet differently designated. Thus any equality relation is an abstraction 
process as it requires, according to Frege (1883), the design of a new and unnamed 
equivalence class.  The study aimed to find a more powerful axiomatic system that can 
provide unequivocally a dual identity form in the universe of collections with the concept of 
discernible multiplicity of equivalent parts (such meaning an equality relation up to 
isomorphism). A concept of ‘hyper’ function is introduced to deal with a ‘n-ary’ relation of 
the type “one-many” between a set and the corresponding isomorphic collection. Choice as 
axiomatized by ZFC is not possible in the dual identity form until a return in the decidable 
space. It is intentionally proposed to resort to the ‘real (for preference-making) | Ψ-imaginary 
(for abstraction-making)’ formalism, that has been widely used in the theory of numbers 
(complex and hypercomplex, etc) to translate this duality. This formalism extends most 
concepts and relations valid in the usual real space according to Hankel’s principle. With the 
imaginary space and a concept of ‘hyper’ function (n-ary relation of the type “one-many”), 
the abstraction process can manage through self-inclusion under visible terms and meta-
restructure knowledge to find a new relational key and to design the new decidable while 
extended space where real and imaginary entities have become commutable. 
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