
HAL Id: hal-00744733
https://minesparis-psl.hal.science/hal-00744733

Submitted on 2 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Par4All: From Convex Array Regions to Heterogeneous
Computing

Mehdi Amini, Béatrice Creusillet, Stéphanie Even, Ronan Keryell, Onig
Goubier, Serge Guelton, Janice Onanian Mcmahon, François-Xavier Pasquier,

Grégoire Péan, Pierre Villalon

To cite this version:
Mehdi Amini, Béatrice Creusillet, Stéphanie Even, Ronan Keryell, Onig Goubier, et al.. Par4All: From
Convex Array Regions to Heterogeneous Computing. IMPACT 2012 : Second International Workshop
on Polyhedral Compilation Techniques HiPEAC 2012, Jan 2012, Paris, France. �hal-00744733�

https://minesparis-psl.hal.science/hal-00744733
https://hal.archives-ouvertes.fr


Par4All: From Convex Array Regions to Heterogeneous
Computing

Mehdi Amini1,2 Béatrice Creusillet2 Stéphanie Even2 Ronan Keryell2

Onig Goubier2 Serge Guelton2 Janice Onanian McMahon2

François-Xavier Pasquier2 Grégoire Péan2

Pierre Villalon2

1MINES ParisTech firstname.lastname@mines-paristech.fr
2HPC Project firstname.lastname@hpc-project.com

Keywords
Heterogeneous computing, convex array regions, source-to-
source compilation, polyhedral model, gpu, cuda, OpenCL.

ABSTRACT
Recent compilers comprise an incremental way for convert-
ing software toward accelerators. For instance, the pgi Ac-
celerator [14] or hmpp [3] require the use of directives. The
programmer must select the pieces of source that are to be
executed on the accelerator, providing optional directives
that act as hints for data allocations and transfers. The
compiler generates all code automatically.

Jcuda [15] offers a simpler interface to target cuda from
Java. Data transfers are automatically generated for each
call. Arguments can be declared as IN, OUT, or INOUT

to avoid useless transfers, but no piece of data can be kept
in the gpu memory between two kernel launches. There
have also been several initiatives to automate transforma-
tions for OpenMP annotated source code to cuda [10,
11]. The gpu programming model and the host accelera-
tor paradigm greatly restrict the potential of this approach,
since OpenMP is designed for shared memory computer.
Recent work [6, 9] adds extensions to OpenMP that account
for cuda specificity. These make programs easier to write,
but the developer is still responsible for designing and writ-
ing communications code, and usually the programmer have
to specialize his source code for a particular architecture.

Unlike these approaches, Par4All [13] is an automatic par-
allelizing and optimizing compiler for C and Fortran sequen-
tial programs funded by the hpc Project startup. The pur-
pose of this source-to-source compiler is to integrate several
compilation tools into an easy-to-use yet powerful compiler
that automatically transforms existing programs to target
various hardware platforms. Heterogeneity is everywhere

IMPACT 2012
Second International Workshop on Polyhedral Compilation Techniques
Jan 23, 2012, Paris, France
In conjunction with HiPEAC 2012.

http://impact.gforge.inria.fr/impact2012

nowadays, from the supercomputers to the mobile world,
and the future seems to be promised to more and more
heterogeneity. Thus adapting automatically programs on
targets such as multicore systems, embedded systems, high
performance computers and gpus is a critical challenge.

Par4All is mainly based on the pips [7, 1] source-to-source
compiler infrastructure and benefits from its interprocedural
capabilities like memory effects, reduction detection, paral-
lelism detection, but also polyhedral-based analyses such as
convex array regions [4] and preconditions.

The source-to-source nature of Par4All makes it easy to
integrate third-party tools into the compilation flow. For in-
stance, we are using pips to identify parts that are of interest
in a whole program, and we rely on the pocc [12] polyhedral
loop optimizer to perform memory accesses optimizations on
these parts, in order to exhibit locality for instance.

The combination of pips’ analyses together and the inser-
tion of other optimiser in the middle of the compilation
flow is automated by Par4All using a programmable pass
manager [5] to perform whole program analysis, spot paral-
lel loops and generate mostly OpenMP, cuda or OpenCL

code.

To that end, we mainly face two challenges: parallelism de-
tection and data transfer generation. The OpenMP direc-
tives generation relies on coarse grain parallelization and
semantic-based reduction detection [8]. The cuda and
OpenCL targets add the difficulty of data transfer man-
agement. We tackle it using convex array regions that are
translated into optimized, interprocedural data transfers be-
tween host and accelerator as described in [2].

The demonstration will provide the assistance with a global
understanding of Par4All internals compilation flow, go-
ing through the interprocedural results of pips analyses,
parallelism detection, data transfer generation and result-
ing code execution. Several benchmark examples and some
real-world scientific applications will be used as a showcase.

1. REFERENCES
[1] Mehdi Amini, Corinne Ancourt, Fabien Coelho,

Béatrice Creusillet, Serge Guelton, François Irigoin,
Pierre Jouvelot, Ronan Keryell, and Pierre Villalon.



0.25x

0.5x

1x

2x

4x

8x

16x

32x

64x

128x

256x

2mm 3mm adi bicg correlationcovariance doitgen fdtd-2d gauss-filter gemm gemver gesummv

Polybench-2.0

OpenMP
4

.1

4
.0

2
.9

1
.2

6
.1

6
.1

6
.1

1
.6 2

.6

4
.5 6

.6

2
.6

HMPP-2.5.1
1

2
7

1
3

1

.3

1
3

.5

1
3

.5

1
.1

9
.8

.9

1
1

5

2
.6

PGI-11.81
8

8

1
9

6

2
.4

1
3

.9

1
4

.1

3
6

.5

6
.3

1
5

6

2
.7

par4all-naive
1

5
0

1
5

0

1
8

6

1
8

5

3
.0

.5

1
4

4

1
.9

.4

par4all-opt
2

1
4

2
1

6

2
.4

.5

3
1

0

3
1

4

4
8

.2

9
.5

4
.7

2
1

1

6
.5

.7

0.25x

0.5x

1x

2x

4x

8x

16x

32x

64x

128x

gramschmidtjacobi-1d jacobi-2d lu mvt symm-exp syrk syr2k hotspot99 lud99 srad99 Stars-PM Geo.Mean

Polybench-2.0 Rodinia

4
.2 5

.9

1
.4 2

.1

8
.9

5
.5

1
.8

3
.6

8
.4 9
.6

8
.5

2
.4

3
.8

5

2
1

.1

1
.0

1
0

.0

1
1

.3

3
.5

2
6

.7

5
.1

3
1

.6

3
.0

0

4
.0

6
.7

3
.7

3
2

.9

.3

1
.0

2
.1

5

.6

.3

6
.4

.7

6
.2

4
.9

1
.5

.5

1
.4

3
.6

2
.2

2

2
.7

4
.9

1
0

.7

1
2

.5

6
.6

5
1

.3

6
.6

5
.2

3
0

.5

7
.3

1
9

.5

5
2

.0

1
4

.4
3

Figure 1: Speedup relative to naive sequential version for an OpenMP version, a version with basic pgi and hmpp directives,
a naive cuda version, and an optimized cuda version, all automatically generated from the naive sequential code.

PIPS Is not (only) Polyhedral Software. In First

International Workshop on Polyhedral Compilation

Techniques, IMPACT, April 2011.

[2] Mehdi Amini, Fabien Coelho, François Irigoin, and
Ronan Keryell. Static compilation analysis for
host-accelerator communication optimization. In
Workshops on Languages and Compilers for Parallel

Computing, LCPC, 2010.

[3] Francois Bodin and Stephane Bihan. Heterogeneous
multicore parallel programming for graphics processing
units. Sci. Program., 17:325–336, December 2009.

[4] Béatrice Creusillet and Francois Irigoin.
Interprocedural array region analyses. International
Journal of Parallel Programming, 24(6):513–546, 1996.

[5] Serge Guelton. Building Source-to-Source compilers

for Heterogenous targets. PhD thesis, Télécom
Bretagne, 2011.

[6] Tianyi David Han and Tarek S. Abdelrahman.
hiCUDA: a high-level directive-based language for
GPU programming. In Proceedings of 2nd Workshop

on General Purpose Processing on Graphics Processing

Units, pages 52–61, New York, NY, USA, 2009. ACM.

[7] François Irigoin, Pierre Jouvelot, and Rémi Triolet.
Semantical interprocedural parallelization: an
overview of the PIPS project. In International

Conference on Supercomputing, ICS, pages 244–251,
1991.

[8] Pierre Jouvelot and Babak Dehbonei. A unified
semantic approach for the vectorization and
parallelization of generalized reductions. In
International Conference on Supercomputing, ICS,

pages 186–194, 1989.

[9] Seyong Lee and Rudolf Eigenmann. OpenMPC:
Extended OpenMP programming and tuning for
GPUs. In SC ’10, pages 1–11, 2010.

[10] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann.
OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. In PPoPP,
2009.

[11] Satoshi Ohshima, Shoichi Hirasawa, and Hiroki
Honda. OMPCUDA : OpenMP execution framework
for CUDA based on omni OpenMP compiler. In
Beyond Loop Level Parallelism in OpenMP:

Accelerators, Tasking and More, volume 6132 of
Lecture Notes in Computer Science, pages 161–173.
Springer Verlag, 2010.

[12] Louis-Noel Pouchet, Cédric Bastoul, and Uday
Bondhugula. PoCC: the Polyhedral Compiler
Collection, 2010. http://pocc.sf.net.

[13] HPC Project. Par4All initiative for automatic
parallelization. http://www.par4all.org, 2010.

[14] Michael Wolfe. Implementing the PGI accelerator
model. In Proceedings of the 3rd Workshop on

General-Purpose Computation on Graphics Processing

Units, GPGPU, pages 43–50, New York, NY, USA,
2010. ACM.

[15] Yonghong Yan, Max Grossman, and Vivek Sarkar.
JCUDA: A programmer-friendly interface for
accelerating Java programs with CUDA. In
Proceedings of the 15th International Euro-Par

Conference on Parallel Processing, 2009.


