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ABSTRACT
Recent compilers comprise an incremental way for convert-
ing software toward accelerators. For instance, the pgi Ac-
celerator [14] or hmpp [3] require the use of directives. The
programmer must select the pieces of source that are to be
executed on the accelerator, providing optional directives
that act as hints for data allocations and transfers. The
compiler generates all code automatically.

Jcuda [15] offers a simpler interface to target cuda from
Java. Data transfers are automatically generated for each
call. Arguments can be declared as IN, OUT, or INOUT

to avoid useless transfers, but no piece of data can be kept
in the gpu memory between two kernel launches. There
have also been several initiatives to automate transforma-
tions for OpenMP annotated source code to cuda [10,
11]. The gpu programming model and the host accelera-
tor paradigm greatly restrict the potential of this approach,
since OpenMP is designed for shared memory computer.
Recent work [6, 9] adds extensions to OpenMP that account
for cuda specificity. These make programs easier to write,
but the developer is still responsible for designing and writ-
ing communications code, and usually the programmer have
to specialize his source code for a particular architecture.

Unlike these approaches, Par4All [13] is an automatic par-
allelizing and optimizing compiler for C and Fortran sequen-
tial programs funded by the hpc Project startup. The pur-
pose of this source-to-source compiler is to integrate several
compilation tools into an easy-to-use yet powerful compiler
that automatically transforms existing programs to target
various hardware platforms. Heterogeneity is everywhere
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nowadays, from the supercomputers to the mobile world,
and the future seems to be promised to more and more
heterogeneity. Thus adapting automatically programs on
targets such as multicore systems, embedded systems, high
performance computers and gpus is a critical challenge.

Par4All is mainly based on the pips [7, 1] source-to-source
compiler infrastructure and benefits from its interprocedural
capabilities like memory effects, reduction detection, paral-
lelism detection, but also polyhedral-based analyses such as
convex array regions [4] and preconditions.

The source-to-source nature of Par4All makes it easy to
integrate third-party tools into the compilation flow. For in-
stance, we are using pips to identify parts that are of interest
in a whole program, and we rely on the pocc [12] polyhedral
loop optimizer to perform memory accesses optimizations on
these parts, in order to exhibit locality for instance.

The combination of pips’ analyses together and the inser-
tion of other optimiser in the middle of the compilation
flow is automated by Par4All using a programmable pass
manager [5] to perform whole program analysis, spot paral-
lel loops and generate mostly OpenMP, cuda or OpenCL

code.

To that end, we mainly face two challenges: parallelism de-
tection and data transfer generation. The OpenMP direc-
tives generation relies on coarse grain parallelization and
semantic-based reduction detection [8]. The cuda and
OpenCL targets add the difficulty of data transfer man-
agement. We tackle it using convex array regions that are
translated into optimized, interprocedural data transfers be-
tween host and accelerator as described in [2].

The demonstration will provide the assistance with a global
understanding of Par4All internals compilation flow, go-
ing through the interprocedural results of pips analyses,
parallelism detection, data transfer generation and result-
ing code execution. Several benchmark examples and some
real-world scientific applications will be used as a showcase.
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Figure 1: Speedup relative to naive sequential version for an OpenMP version, a version with basic pgi and hmpp directives,
a naive cuda version, and an optimized cuda version, all automatically generated from the naive sequential code.
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