Mehdi Amini

Béatrice Creusillet

Stéphanie Even

Ronan Keryell

Onig Goubier

Serge Guelton

Janice Onanian Mcmahon

François-Xavier Pasquier

Grégoire Péan

Pierre Villalon

Par4All: From Convex Array Regions to Heterogeneous Computing

Keywords: Heterogeneous computing, convex array regions, source-tosource compilation, polyhedral model, gpu, cuda, OpenCL

ABSTRACT

Recent compilers comprise an incremental way for converting software toward accelerators. For instance, the pgi Accelerator [START_REF] Wolfe | Implementing the PGI accelerator model[END_REF] or hmpp [START_REF] Bodin | Heterogeneous multicore parallel programming for graphics processing units[END_REF] require the use of directives. The programmer must select the pieces of source that are to be executed on the accelerator, providing optional directives that act as hints for data allocations and transfers. The compiler generates all code automatically. Jcuda [START_REF] Yan | JCUDA: A programmer-friendly interface for accelerating Java programs with CUDA[END_REF] offers a simpler interface to target cuda from Java. Data transfers are automatically generated for each call. Arguments can be declared as IN, OUT, or INOUT to avoid useless transfers, but no piece of data can be kept in the gpu memory between two kernel launches. There have also been several initiatives to automate transformations for OpenMP annotated source code to cuda [START_REF] Lee | OpenMP to GPGPU: a compiler framework for automatic translation and optimization[END_REF][START_REF] Ohshima | OMPCUDA : OpenMP execution framework for CUDA based on omni OpenMP compiler[END_REF]. The gpu programming model and the host accelerator paradigm greatly restrict the potential of this approach, since OpenMP is designed for shared memory computer. Recent work [START_REF] Tianyi | hiCUDA: a high-level directive-based language for GPU programming[END_REF][START_REF] Lee | OpenMPC: Extended OpenMP programming and tuning for GPUs[END_REF] adds extensions to OpenMP that account for cuda specificity. These make programs easier to write, but the developer is still responsible for designing and writing communications code, and usually the programmer have to specialize his source code for a particular architecture. Unlike these approaches, Par4All [START_REF]HPC Project. Par4All initiative for automatic parallelization[END_REF] is an automatic parallelizing and optimizing compiler for C and Fortran sequential programs funded by the hpc Project startup. The purpose of this source-to-source compiler is to integrate several compilation tools into an easy-to-use yet powerful compiler that automatically transforms existing programs to target various hardware platforms. Heterogeneity is everywhere nowadays, from the supercomputers to the mobile world, and the future seems to be promised to more and more heterogeneity. Thus adapting automatically programs on targets such as multicore systems, embedded systems, high performance computers and gpus is a critical challenge.

Par4All is mainly based on the pips [7, 1] source-to-source compiler infrastructure and benefits from its interprocedural capabilities like memory effects, reduction detection, parallelism detection, but also polyhedral-based analyses such as convex array regions [START_REF] Creusillet | Interprocedural array region analyses[END_REF] and preconditions.

The source-to-source nature of Par4All makes it easy to integrate third-party tools into the compilation flow. For instance, we are using pips to identify parts that are of interest in a whole program, and we rely on the pocc [START_REF] Pouchet | PoCC: the Polyhedral Compiler Collection[END_REF] polyhedral loop optimizer to perform memory accesses optimizations on these parts, in order to exhibit locality for instance.

The combination of pips' analyses together and the insertion of other optimiser in the middle of the compilation flow is automated by Par4All using a programmable pass manager [START_REF] Guelton | Building Source-to-Source compilers for Heterogenous targets[END_REF] to perform whole program analysis, spot parallel loops and generate mostly OpenMP, cuda or OpenCL code.

To that end, we mainly face two challenges: parallelism detection and data transfer generation. The OpenMP directives generation relies on coarse grain parallelization and semantic-based reduction detection [START_REF] Jouvelot | A unified semantic approach for the vectorization and parallelization of generalized reductions[END_REF]. The cuda and OpenCL targets add the difficulty of data transfer management. We tackle it using convex array regions that are translated into optimized, interprocedural data transfers between host and accelerator as described in [START_REF] Amini | Static compilation analysis for host-accelerator communication optimization[END_REF].

The demonstration will provide the assistance with a global understanding of Par4All internals compilation flow, going through the interprocedural results of pips analyses, parallelism detection, data transfer generation and resulting code execution. Several benchmark examples and some real-world scientific applications will be used as a showcase.

 on Polyhedral Compilation Techniques Jan 23, 2012, Paris, France In conjunction with HiPEAC 2012. http://impact.gforge.inria.fr/impact2012

Figure 1 :

 1 Figure 1: Speedup relative to naive sequential version for an OpenMP version, a version with basic pgi and hmpp directives, a naive cuda version, and an optimized cuda version, all automatically generated from the naive sequential code.