
HAL Id: hal-00744721
https://minesparis-psl.hal.science/hal-00744721

Submitted on 23 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Basic parallel and distributed computing curriculum
Claude Tadonki

To cite this version:
Claude Tadonki. Basic parallel and distributed computing curriculum. Second NSF/TCPP Workshop
on Parallel and Distributed Computing Education (EduPar’12) The 26th IEEE International Parallel
& Distributed Processing Symposium (IPDPS), May 2012, Shanghai, China. �hal-00744721�

https://minesparis-psl.hal.science/hal-00744721
https://hal.archives-ouvertes.fr


Basic parallel and distributed computing curriculum

Claude Tadonki

Mines ParisTech - CRI (Centre de Recherche en Informatique) - Mathématiques et Systèmes

35, rue saint-honoré, 77305 Fontainebleau-Cedex (France)

claude.tadonki@u-psud.fr

Abstract—With the advent of multi-core processors and their
fast expansion, it is quite clear that parallel computing is now
a genuine requirement in Computer Science and Engineering
(and related) curriculum. In addition to the pervasiveness of
parallel computing devices, we should take into account the fact
that there are lot of existing softwares that are implemented in
the sequential mode, and thus need to be adapted for a parallel
execution. Therefore, it is required to the programmer to be
able to design parallel programs and also to have some skills
in moving from a given sequential code to the corresponding
parallel code. In this paper, we present a basic educational
scenario on how to give a consistent and efficient background
in parallel computing to ordinary computer scientists and
engineers.

Keywords-HPC; multi-core; scheduling; SIMD; accelerator;
benchmark; dependence; graph; shared memory; distributed
memory; thread; synchronization;

I. INTRODUCTION

In the past, parallel computing courses were dedicated to

HPC specialists, under appropriate prerequisites. This was

due, on one hand, to the technical context, where stan-

dard processors were single-core, parallel computers being

the corresponding clusters (shared or distributed memory).

In addition, processors speed was increasing significantly

(following the Moore’s law), thus giving an argument to

refrain from moving to parallel computing. Indeed, what one

could achieve using a moderate cluster at a given time could

be done a few years later using next generation processor.

Therefore, as parallel computing could not be reasonably

considered for basic issues, it was quite hard to motivate

bringing it into standard courses. On the other hand, the

basis to understand parallel computing and have hands on it

show a significant gap from ordinary skills. Thus, one could

understand a certain reluctance to such a heavy effort from

both sides (students and teachers). Nowadays, the situation

is no longer the same, and we have to bring parallel and

distributed computing (at least at the basic level) into the

standard. The corresponding courses have to be ready for a

common audience.

Parallel and Distributed Computing (PDC) is a specia-

lized topic, commonly encountered in the general context

of High Performance/Throughput Computing. We mainly

see three kind of material that could be considered when

it comes to teaching PDC.

• First, the literature. There are numerous valuable books

that cover general and/or specific aspects of PDC. Gen-

eral books that provide an overview of the topic with

details on some selected aspects [1], [3], [4], [5], [20].

Some books are more educational (tutorial approach

with exercises and case studies) [2], [12], [13], [14].

Other manuals focus on specific architectures [7], [8]

or libraries (MPI, OpenMP, Pthreads) [9], [10]. There

are books devoted to parallel algorithms design and

fundamental aspects (foundation, models, scheduling,

complexity) [15], [16], [17], [18], [19], [21].

• Second, conferences and assimilated events [25], [26],

[27], [28], [29], [30] are good places to learn about

advances and keep updated with new results. There

are numerous events dedicated to PDC, some of them

being tailored for student exposure and training through

specialized tutorials.

• Third, summer/winter schools (or advanced schools)

[22], [23], [24] are good opportunities for specialized

training, through an intensive few days course. Depen-

ding on the content, purpose, or audience, such schools

are intended to develop a particular skill, or give a short

but consistent PDC introductory course. For instance,

an ordinary student who intends to do a PhD in parallel

computing could use such schools as a starting point.

Because of the prerequisites and a certain technical maturity

needed to deal with parallel computing, we think that PDC

courses could be reasonably considered at nearly the end of

the undergraduate curriculum. At his level, the aim could be

to have the students being able to design an intermediate

level parallel program. The courses could be organized

around that objective, taking into account the background

of the student and what is really needed at that point. A

typical scenario could include:

• general introduction

• parallel computation models

• distributed memory paradigm

• shared memory paradigm

• instruction level parallelism

• performance evaluation

• debugging and profiling tools

• virtualization and simulators

• specialized frameworks



In addition to how to connect the selected chapters, it

is important to teach them at the right and appropriate

level. Indeed, as we target an undergraduate curriculum, and

following the aforementioned global objective, we just need

to stay in the necessary scope. In addition, the way each

chapter is introduced and handled is important. We classify

the selected chapters into three main group and develop our

argumentation accordingly. The following section provides

a global overview of the PDC course. Next, section III

describes how to provide introductory PDC elements. In sec-

tion IV, we expose different ways to implement parallelism.

We discuss about parallel programs execution in section V.

Section VI concludes the paper.

II. COURSE OVERVIEW

A basic scenario for a consistent PDC course is displayed

in figure 1.

Figure 1. Integrated overview of the PDC course

The first thing to do is to buy the attention of the

students by providing some illustrative examples and outline

some convincing motivation items. Another purpose with

the examples is to help understanding why it is impor-

tant (sometimes vital) to compute faster. As the need for

speed and the programming model are different from one

application to another, this could be the time to talk about

domain classification. Next, comes the hardware aspect,

means parallel machines and accelerators. For undergradu-

ate students, the topic of the accelerators could be postponed

for postgraduate level or left as an option for particularly

motivated students. This part could be ended by discussing

each of the dissemination media listed in the introduction

section. After this course unit, students are ready to enter

into the subject.

III. BASIC OF PARALLELISM

As parallel computing means simultaneous processing of

several tasks, it is important here to introduce the notion

of dependence. Dependences are the cause of synchroniza-

tion, data communication, and sub-optimal performances.

Students should be able to identify the main dependences

between tasks and appreciate the potential of parallelism

related to a given application. Deriving a (good) parallel

scheduling could be the next point. Scheduling algorithms

and methodologies could be explained together with their

associated formalism (tasks graph, recurrence equations, ...).

Some basic elements of performance prediction could be

presented here, leaving the aspect of pure complexity for

specialized students. Once the students are familial with

the concept of parallelism, it could be time to consider the

implementation aspect.

IV. WAYS TO IMPLEMENT PARALLELISM

What could be done here is to present different level

of parallelism and then focus on the most commonly con-

sidered solutions, namely MPI for the message passing

paradigm, OpenMP and Pthread for thread level parallelism,

and SSE for instruction level parallelism. It is not necessary

here to to into deeper details on each programming model.

It is rather important to have the students being able to

derive effective implementations for some basic examples

and understand that achieving a high speed program could

come from a hybrid implementation. In general, there is

a software gap between the hardware potential and the

performance that can be attained by practical programs.

Thus, it is important to handle the execution correctly and

understand the performance point.

V. RUNNING TIME

Compiling and running a parallel program is the last

point of our PDC course scenario. After having the pro-

gram running, it is important to know how to measure

its performance, and thus appreciate the impact of the

implemented parallelism. As for sequential programs, some

mistake could have been done, either at the design stage or

at the programming stage. Teaching the use of debugging

techniques and tools could be considered, with the aim of

being able to detect and fix programming mistakes or system

issues. Hardware issues could be mentioned but not covered.



VI. DISCUSSIONS AND CONCLUSION

Teaching parallel and distributed programming at any

level is a genuine requirement nowadays. In order to ful-

fill this crucial need, PDC course should be incorporated

into standard scientific and engineer curriculum. There is

certainly a pedagogical effort to bring this topic, previously

reserved for specialists, into the standard. Whenever possi-

ble, the earlier it is done, the better. In this paper, we propose

consistent scenario that could apply at the undergraduate

level. We also thing that using well designed simulators

could be very useful for this training task.

REFERENCES

[1] A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to
Parallel Computing (2nd Edition) , 2nd ed. Addison-Wesley,
2003.

[2] P. Pacheco, An Introduction to Parallel Programming , 2nd ed.
Morgan Kaufmann, 2011.

[3] F. T. Leighton, Introduction to Parallel Algorithm and Ar-
chitectures: Arrays, Trees, and Hypercubes, Morgan Kauf-
mann,2nd ed. San Mateo CA, 1991.

[4] T. G. Lewis and H. El-Rewini, Introduction to Parallel Com-
puting,2nd ed. Prentice-Hall, Englewood Cliffs, USA, 1992.

[5] G. Hager and G. Wellein, Introduction to High Performance
Computing for Scientists and Engineers , 1st ed. CRC Press,
July 2, 2010.

[6] M. Herlihy and N. Shavit, The Art of Multiprocessor Program-
ming , 1st ed. Morgan Kaufmann, March 14, 2008.

[7] T. Rauber and G. Rnger, Parallel Programming: for Multicore
and Cluster Systems , 1st ed. Springer, March 10, 2010.

[8] D. B. Kirk and W. W. Hwu , Programming Massively Parallel
Processors: A Hands-on Approach , Morgan Kaufmann,
February 5, 2010.

[9] B. Chapman, G. Jost, R. van van der Pas, Using OpenMP:
Portable Shared Memory Parallel Programming , The MIT
Press, October 12, 2007.

[10] P. Pacheco, Parallel Programming with MPI , 1st ed. Morgan
Kaufmann, October 15, 1996.

[11] M. J. Quinn, Parallel Programming in C with MPI and
OpenMP , McGraw-Hill Education , January 2008.

[12] L. R. Scott, T. Clark, B. Bagheri, Scientific Parallel Comput-
ing , Princeton University Press, March 28, 2005.

[13] G. E. Karniadakis, R. M. Kirby II, Parallel Scientific Com-
puting in C++ and MPI: A Seamless Approach to Parallel
Algorithms and their Implementation , Cambridge University
Press, June 16, 2003.

[14] F. Gebali, Algorithms and Parallel Computing , Wiley, April
19, 2011.

[15] J. JaJa, Introduction to Parallel Algorithms , 1st ed. Addison-
Wesley Professional, April 3, 1992.

[16] S. H. Roosta, Parallel Processing and Parallel Algorithms:
Theory and Computation , 1st ed. Springe, December 10,
1999.

[17] F. T. Leighton, Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes , Morgan Kaufmann
Pub, September 1991.

[18] J. Hromkovic, Communication Complexity and Parallel Com-
puting , Springer, December 1, 2010.

[19] R. Greenlaw, H. J. Hoover, W. L. Ruzzo, Limits to Parallel
Computation: P-Completeness Theory , Oxford University
Press, USA, April 6, 1995.

[20] J. Dongarra, I. Foster, G. C. Fox, W. Gropp, K. Kennedy,
L. Torczon, A. White (Eds), The Sourcebook of Parallel
Computing , 1st ed. Morgan Kaufmann, November 25, 2002.

[21] R. Correa, I. de Castro Dutra, M. Fiallos, L. F. Gomes da
Silva (Eds) , Models for Parallel and Distributed Computation:
Theory, Algorithmic Techniques and Applications , 2nd ed.
Springer, December 10, 2010.

[22] www.cineca.it/page/advanced-school-parallel-computing

[23] http://www.upcrc.illinois.edu/summer/2011

[24] http://cac.kias.re.kr/School/2011winter/

[25] http://pactconf.org/index.php/en/

[26] http://sc12.supercomputing.org/

[27] http://dynopt.org/ppopp-2012/

[28] http://ics-conference.org/

[29] http://www.cs.jhu.edu/ spaa/2012/

[30] http://www.ipdps.org/


