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Abstract

PIPS, a state-of-the-art, source-to-source compilation and opti-
mization platform, has been under development at MINES Paris-
Tech since 1988, and its development is still running strong. Ini-
tially designed to perform automatic interprocedural parallelization
of Fortran 77 programs, PIPS has been extended over the years to
compile HPF (High Performance Fortran), C and Fortran 95 pro-
grams. Written in C, the PIPS framework has shown to be sur-
prisingly resilient, and its analysis and transformation phases have
been reused, adapted and extended to new targets, such as gen-
erating code for special purpose hardware accelerators, without
requiring significant re-engineering of its core structure. We sug-
gest that one of the key features that explain this adaptability is the
PIPS internal representation (IR) which stores an abstract syntax
tree. Although fit for source-to-source processing, PIPS IR empha-
sized from its origins the use of maximum abstraction over target
languages’ specificities and generic data structure manipulation
services via the Newgen Domain Specific Language, which pro-
vides key features such as type building, automatic serialization
and powerful iterators. The state of software technology has signif-
icantly advanced over the last 20 years and many of the pioneering
features introduced by Newgen are nowadays present in modern
programming frameworks. However, we believe that the method-
ology used to design PIPS IR, and presented in this paper, remains
relevant today and could be put to good use in future compilation
platform development projects.

1. Introduction

The number of maintained, source-to-source compilers available
to the research community to implement advanced analyses and
code transformations is small: First, the Rose compiler infrastruc-
ture [22] has been under development at Lawrence Livermore Na-
tional Laboratory for about 10 years. The compiler is written in
C++, and handles Fortran 2003 and earlier versions, as well as C
and C++ code, through various front-ends. Its intermediate repre-
sentation [23] emphasizes classes, and a rewriting engine is avail-
able [21]. Second, Cetus [11] is the successor to Polaris at Purdue
University. It is developed in Java and supports C [20], with an em-
phasis on analyses and transformations for multicore targets [9].
Other open-source compilers are available, such as GCC [12],
LLVM [2] and Open64 [8], but they are not designed for source-
to-source.

The PIPS acronym stands for Paralléliseur interprocédural de
programmes scientifiques (in French), that is “Interprocedural Par-
allelizer for Scientific Programs”. Started in 1988 and funded by

DRET1, this project was intended to advance the state of the art in
automatic interprocedural parallelization of legacy Fortran 77 pro-
grams [14]. From a Fortran 77 parallelizer, PIPS has evolved into
an extensive, source-to-source, multi-language analysis and code
transformation compiler framework [18], thanks to the extensibil-
ity and generality provided by its intermediate representation [5, 6]
and modular design [15]. More than 50 people from various uni-
versities and companies have contributed to the project over the
years, including 22 active developers from 5 institutions in Year
2010, who provided code in 4800 commits on PIPS subversion
repositories. Open-source and distributed online under the GNU
GPLv3, this sophisticated platform has been demonstrated in con-
ferences [7]. Interested researchers can find an overview of PIPS
key features in [4]. The PIPS Developer Tutorial [13] provides a
smooth introduction to its key features from a developer perspec-
tive.

Now more than 20-year old, PIPS has for quite some time
proven the soundness of its basic design; indeed, very few original
key features have had, up to now, to be significantly challenged,
despite the expansion of PIPS application domain. We suggest that
one of these main reasons of such an unusual stability lies in the
design of PIPS Intermediate Representation (IR), which promoted
from the very beginning the use of abstraction, both in the defi-
nition and manipulation of core data structures. To support such
a focus on abstraction, PIPS relies on the facilities provided by
Newgen, a Domain Specific Language for data structure definition
and manipulation that was designed specifically for this project.
Of course, new proposals have been introduced, since the incep-
tion of the PIPS project, to ease the design and implemention of
intermediate data structures of the type used in compiler suites (see
for instance [19] or [10]). These new infrastructure tools are quite
logically based on more abstract languages and powerful concepts.
Newgen can be seen as an early, pioneering effort towards the
use of more advanced DSL-based systems such as those offered
in these newer tools. In fact, the success and longevity of a large
project such as PIPS, inspired that this general approach, provides
a useful case study for them.

1 Direction des recherches et études techniques, then the French equivalent
of DARPA.



We believe that, even though current software technology has
significantly evolved since the inception of PIPS, the basic design
approach we used back then is still valid today. This paper provides
an up-to-date description of PIPS IR, some details of which, we
claim, could be put to good use in future compilation platform
development projects.

After this introduction, we present, in Section 2, our data defi-
nition and manipulation system: the Newgen DSL. Section 3 pro-
vides a brief overview of PIPS Internal Representation, initially tar-
geting Fortran but now also supporting HPF and C, where we em-
phasize the abstraction focus used during the initial design phase.
Then Section 4 describes the overall resource management in PIPS
through PIPSmake for handling dependencies between phases and
PIPSdbm (database) for storing computed data. Section 5 shows
how Newgen powerful iterators simplify the implementation of
PIPS analysis and transformation phases. We conclude in Section 6.

2. The Newgen DSL

Newgen [17] is a Domain Specific Language specialized in the
definition of high-level data structure processing APIs. Beside tra-
ditional data creation, modification, access and serialization func-
tions that systems such as IDL [24] or XDR [1] could have also pro-
vided, these APIs introduce multi-language support, dynamic type
checking and higher-order iteration mechanisms. Even though the
original version of Newgen was indeed designed to be used across
different development languages (namely C and CommonLISP),
Newgen nowadays can only be used from within a C application.

external Psysteme;
predicate = system:Psysteme;
tabulated entity = name:string x type x ...;
type = statement:unit + area + variable + ...;
reference = variable:entity x indices:expression*;
controlmap = persistant statement->control;

Figure 1. Examples of Newgen domain declarations

In practice, the developer defines new data structures using a
simple syntax illustrated in Figure 1. Each equation provides the
name and definition of a new user-defined datatype, also called “do-
main”. These types are built up from basic, predefined types such
as booleans, integers, floating point numbers and strings. Operators
are used to build complex data types such as structures, with x as
cross product operator, unions +, lists of anything *, arrays [], sets
{} and functional mappings ->. Thus, for instance, Figure 1 states
that a value r from the reference domain combines an entity,
which could be accessed in C as reference_variable(r), and
a list of indices which are from the expression domain. External
data types, that is data types unknown to Newgen, can also be used
within a Newgen data structure; for such legacy data types such as
Psystem, the developer is required to provide a set of functions to
allocate, copy, free, serialize and deserialize such data.

From Newgen declarations, the Newgen compiler generates C
text; this code includes struct declarations for each user-defined
type and function definitions to create, copy, compare, test, check,
update, destroy. . . data of these types. To limit code size explosion,
these functions are in fact polymorphic, and the generated C struc-
tures include an integer to identify each Newgen data type. There
structures can be walked through in a generic manner.

Once compiled, these data manipulation functions are linked
to the Newgen runtime library, which contains a wide variety of
functions to manipulate strings, string buffers, lists, stacks, inter-
nal hash tables used by sets, functions. . . This library also contains
high-level introspection functions which can be used, for instance,
to check that a structure is well defined or to serialize or deserialize
data in a file while maintaining pointer sharing properties within
structures. Finally, Newgen provides very powerful generic itera-
tors; these innovative utilities are described in Section 5.

3. Intermediate Representation

All the key data structures required to represent user programs, also
called “PIPS Internal Representation” [5], are defined using New-
gen. The domain definitions and their corresponding documenta-
tion are stored in a single LATEX file. When a new version of PIPS
is created, a simple script extracts from this file the Newgen code,
compiles it to generate C code which is then added to PIPS source
code; the whole batch is then compiled with any C compiler such
as gcc.

Even though PIPS was initially designed for optimizing For-
tran 77 source code, a great deal of abstraction was applied from the
very beginning in order to make it extensible. As time has shown,
this was a prescient decision; since then, PIPS has evolved to be-
come a much more general platform, able to deal not only with
Fortran but also HPF and C source code. To illustrate the focus on
high-level concepts that was sought during the initial design phase,
this section addresses three points of the IR that exhibit in a clear
way such a concern: (1) the symbol table; (2) code and expressions;
(3) analysis results and code decorations.

3.1 Symbol Table

tabulated entity = name:string x type x
storage x initial:value;

type = statement:unit + area + variable +
functional + varargs:type + unknown:unit +
void:qualifier* + struct:entity* +
union:entity* + enum:entity*;

variable = basic x dimensions:dimension* x
qualifiers:qualifier*;

basic = int:int + float:int + logical:int +
overloaded:unit + complex:int + string:value +
bit:symbolic + pointer:type + derived:entity +
typedef:entity;

dimension = lower:expression x upper:expression;
qualifier = const:unit + restrict:unit +

volatile:unit + register:unit + auto:unit;
functional = parameters:parameter* x result:type;

storage = return:entity + ram + formal + rom:unit;

value = code + symbolic + constant +
intrinsic:unit + unknown:unit + expression;

Figure 2. Definition of entity, for PIPS symbol table elements

All symbols in user programs are represented in PIPS IR as val-
ues of the entity domain (see an extract in Figure 2). The Newgen
keyword tabulated specifies that all such symbols are kept in a
table, which is global. It also implicitely create an indexing struc-
ture using a hash table, so that all entities can be retrieved quickly
based on their name. This fact may seem to be, and sometimes is,
a significant constraint when performing analyses, but it is at least
partly mandatory to have a global table. Indeed, interprocedural
analyses need to store information about symbols not necessarily
visible from within the scope of a routine; this is the case, for in-
stance, when having to represent the side effect on a static variable
mutated in a function call. Another approach could be to manage
global symbols only for those objects that need to be treated as
such, but this would add a lot of complexity to the compiler to
choose which symbols need to be global and to manage both local
and global symbols.

The symbol table stores anything in user source code that has
a name feature, represented by a string; this name is also used
by the Newgen API as a key to retrieve the information (e.g., a
type) associated to the corresponding entity. Abstraction led to
the inclusion in the symbol table of not only user local or global
variables, but also of functions, intrinsics, operators, even constant



values (integer or strings for instance) which are seen as 0-ary
functions.

In order to have a unique name for all these symbols, a notion
of name space is used when constructing the string name. For
instance FOO:I would be Variable I within Fortran Subroutine FOO.
Additional character prefixes are used to distinguish name spaces
in Fortran for labels, commons, program declarations or block data
objects. Special names are also introduced for particular objects
manipulated by various analysis phases, for instance to identify
different kinds of memory classes such as stack, heap, static and
dynamic segments.

More prefixes were added when the IR needed to be extended to
handle C and Fortran 95. First, as Fortran is case insensitive, names
needed to be normalized by switching them to upper case, but as C
is not this cannot be done across the board. Second, four scope lev-
els are used in C to deal with possibly homonymous but distinct
objects: a function definition scope, similar to Fortran above; a file
scope (two static functions of the same name can be defined in dif-
ferent files); a block scope to deal with homonymous variables in
different blocks of the same function; a function prototype scope to
handle argument names in a prototype declaration. Figure 3 illus-
trates some of these scopes with a homonymous function, structure,
field and argument which are all legal in C. Moreover, more special
characters are also used as magic numbers to distinguish between
different kinds of objects, for instance a struct from a union from
an enum from a typedef, some of which may all have the same
name.

The global symbol table associates a type, a storage and an
initial value to a each symbol name (see Figure 2):

Type. The type of a symbol may be used to differentiate between a
variable, a function or operator, an area (for Fortran commons),
a label in the code or a data construct such as C structs, unions
or enums. A set of basic type allows to use the target language
types such as logicals, ints of differing size and pointers. But
complex types may also reference other types; for instance a
variable has a type, while a function type includes its return type
and the types of its arguments. The return type of a function
result in functional can be either determined dynamically,
when needed, by a typechecking phase or precomputed by a
phase that inserts the necessary casts to explicit type conver-
sions in the return expressions. Overloaded operators or func-
tions (for instance + in Fortran and C or COS in Fortran, which
must be able to deal with scalar, complex, float or double argu-
ments) use the special overloaded type.

Storage. The second information associated to a symbol is its
storage. It is used to distinguish a parameter (formal storage)
from a constant (rom storage) or a standard variable (ram stor-
age).

Value. The third and last information is a value. This may be an
initialization expression for a variable, while, for a function,
this field contains its internal declarations.

The PIPS symbol table is thus the single global reference for
anything with a name in the compiler, including intrinsics, opera-
tors, labels or constants. Note that the definition of a symbol can
be partial when encountering a partial declaration (say int foo()

which, in C, does not declare the function argument’s type), so spe-
cial unknown values may be used and fixed later on when the infor-
mation is eventually available. A set of utility functions is provided
to search for the relevant description from a local name found in a
file at parse time, depending on the context.

struct X { int X; };
extern void X(int X);

Figure 3. Homonymous symbols in C

statement = label:entity x number:int x
ordering:int x comments:string x instruction x
declarations:entity* x decls_text:string x
extensions;

instruction = sequence + test + loop +
whileloop + goto:statement + call +
unstructured + multitest + forloop +
expression;

sequence = statements:statement* ;

test = condition:expression x true:statement x
false:statement;

loop = index:entity x range x body:statement x
label:entity x execution x locals:entity*;

whileloop = condition:expression x
body:statement x label:entity x evaluation;

call = function:entity x arguments:expression*;

unstructured = entry:control x exit:control;
control = statement x predecessors:control* x

successors:control*;

forloop = initialization:expression x
condition:expression x increment:expression x
body:statement;

expression = syntax x normalized;
syntax = reference + range + call + cast +

sizeofexpression + subscript + application +
va_arg:sizeofexpression*;

reference = variable:entity x
indices:expression*;

Figure 4. Partial Newgen definition of PIPS abstract syntax tree

3.2 Code and Expressions

The second key Newgen domain in PIPS IR is statement, which

deals with the representation of the source code; this is a recursive2

domain, which includes a sub-domain dedicated to expressions (an
extract of the Newgen definition for PIPS statement is presented
in Figure 4). Newgen domains are available for all traditional syn-
tactic statements such as sequences, tests, function calls, loops and
unstructured code. The goto field in instruction is temporarily
used by the parser, but does not appear anymore once the code
controlizer phase has changed non-structured code fragments into
unstructured graphs (see below). Interestingly, notice that, again
for abstraction purposes, there are no assignments per se; they are
seen as predefined function calls, where the left-hand side expres-
sion is supposed to be passed by reference (this is indicated in the
function type of the assignment =).

PIPS manages the source as an abstract syntax tree, so as to
be able to regenerate source code as close as possible to what the
user had input. Thus, for instance, great care is taken to keep track
of user comments so that they can be regenerated where needed.

Also, PIPS supports three3 kinds of loops: one for the Fortran DO
loop, one for the C while loop, with the condition evaluated before
the loop body (standard) or after (do...while), and one for the
C for loop; although sugarized equivalents of a while loop, these
variants are kept as such for regeneration purposes. However, since

2 Elements of the statement domain reappear in sequences, test branches,
loop bodies...
3 Some special looping constructs, for instance Fortran “implied DO” loops
used in I/O statements, are represented by special function calls.



do i=1, n
100 continue

do j=1, m
t(j) = t(j) + x

enddo
if (t(i).lt.x) goto 100

enddo

r do i=1, n

r

if
r 100 continue

r do j=1, m

r t(j) = t(j) + x
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Figure 5. Hierarchical Control Flow Graph

semantical analyses are developed on top of these representations,
the specific loop variant used must be trustworthy in the semantical
sense: if a fixed range loop is provided in a DO loop, it must really
be such a loop and there should be no other exit points.

In order to ensure this trustworthiness property, one of the first
transformations performed by PIPS after parsing user code is to
desugarize loops with internal exit points and translate them as
unstructured code, represented by a hierarchical control flow graph
(CFG). However, PIPS strives to keep the control flow as structured
as possible, since unstructured flow graphs usually induce drastic
approximations in subsequent analysis phases. This is illustrated in
Figure 5, where the two Fortran DO loops will be kept as DO loops
even though there is a goto in between them, since both external
and internal loops do not have other exit points. The end result will
be a DO loop that contains an unstructured graph that contains a
DO loop.

Although PIPS symbol table is global, pieces of code can be
stored independently, one function definition at a time, without any
need to keep them in memory but for special transformations such
as function inlining.

As PIPS internal representation is very generic, and as most of
Fortran semantics is included in C, we developed a prettyprinter
phase which generates C code from a Fortran program based in
PIPS intermediate representation. The phase was developed in very
little time to achieve quite reasonnable results on simple codes.

3.3 Decorations

An important data requirement for a compiler-analyzer is to be able
to associate information, typically the result of analysis phases, to
points in source code. In PIPS, some relevant semantical informa-
tion is stored directly within the data structures of the intermedi-
ate representation: for instance, whether a DO loop is parallel and
which scalar variables are private to the loop. This direct IR em-
bedding is an historical reminder of the initial goal of PIPS, which
was to parallelize loops.

Nowadays, such on-the-side information, also called “decora-
tion”, is based on additional data structures and links to the code
segment they correspond to. For instance, the reduction detection
phase builds a structure that holds the expression being reduced
with which operator stored in which variable. . . Whenever possi-
ble, these data structures are expressed with Newgen, so as to ben-
efit directly from its serialization engine to ensure their persistence.

However, most of PIPS semantical analyses (transformers, pre-
conditions, array regions) rely on a polyhedron representation of
constraints on the integer variables of the program, mostly used as
array indices. These data structures were developed independently
of Newgen, and are imported as external data types by providing
their specific manipulation functions for serialization, copying, and
so on. A set of hooks in the linear library used by PIPS allows the

Newgen runtime

PIPSmake

PIPS User Interfaces...

PIPSdbm
PIPS phases

Newgen gen. code

Figure 6. PIPS data management overview

use of PIPS symbols, defined with Newgen, as variable names in
the mathematical library, so that any cyclic dependence is resolved.

Finally, the decoration must be associated with some points
of the analyzed program. From a programming perspective, these
are functional mappings, which are available in Newgen. In prac-
tice, such mappings can be implemented as hash tables linking
the source of the information, for instance a particular statement
in the code, to a descriptor that holds the result of the analysis.
The biggest challenge raised by such decorations is their serializa-
tion. Indeed, if one decided to store these maps as such, the New-
gen serialization engine would recursively traverse the whole data
structure, which includes the code fragments to which decorations
are associated. If these decorations have to be stored on file, the
code does not: one does not want a new entire copy of the program
source code for each kind of decoration stored on file. Not only
would this be a waste of disk space, this would not do the job: when
reading such data back into memory, it would be quite difficult to
link together the various decorations that correspond to the same
code fragment. To alleviate such a difficulty, Newgen provides the
persistant keyword, which indicates to the serialization engine to
stop there its recursive traversal. PIPS then relies on the additional
notion of “statement number” to provide a unique reference to each
source code point.

4. PIPS Data Management

The management of data structures in PIPS is performed by a
generic make-like engine (PIPSmake), which decides when to gen-
erate or regenerate a resource, for instance the decorations com-
puted by a specific analysis phase, based on declared dependen-
cies [15] between resources, and a file storage engine, which is
a specialized database (PIPSdbm). The management of persis-
tence by the database relies on Newgen serialization features. The
database keeps track of all the computed resources associated to an
analyzed code, whether present in memory or saved in files.

Figure 6 illustrates the whole demand-driven process. When a
resource is required from a user interface, such as tpips scripting
shell, pyps PIPS-python bindings, or paws PIPS As a Web Service,
PIPSmake checks with PIPSdbm whether the resource is already
available. If not, PIPSmake recursively checks for the resources
that are needed to compute this target resource, thanks to declared
dependencies, and then calls the PIPS phase that produces the ex-
pected result. This phase will get the resources it needs from PIPS-
dbm, build the new resource with the help of Newgen generated
functions and Newgen runtime, and put the result into PIPSdbm.
When closing PIPS, PIPSdbm serializes resources into files in a
dedicated directory, thanks to Newgen serialization capabilities.

A slightly simplified extract of the rules used by PIPSmake to
generate resources is shown in Figure 7. Starting from the last rule,
if the user requires the prettyprinted (PRINTED_FILE) version of a
module (a function), the print_code phase will be launched by
PIPSmake. This requires the program’s ENTITIES and the mod-
ule’s CODE produced by the controlizer. This in turn is a trans-
formation of the PARSED_CODE (raw AST) output by the parser
phase. And so on up to the initializer and bootstrap phases,
which imports the source files given by the user and generate the



initial symbol table. All these resources expressed in the require-
ments (<) and productions (>) of the derivation rules. They are com-
puted on demand and the actual resources are stored in PIPSdbm.

PIPSdbm uses data structures managed with Newgen, as shown
in Figure 8. A db symbol can be either a “module” name, such as
the name of a function for which analysis results are stored, or a
special name denoting the results of a particular global analysis,
say the initial preconditions of a full program. To each such symbol
is associated, via db resources, the resources linked to it, which
are again a mapping, the db symbol describing now the kind of
resource, for instance parsed code or preconditions, and its status.
A resource is represented by a generic pointer, of type db void,
since any type of resource may be stored and we do not want to
have to change the PIPSdbm metadata definition each time a new
kind of resource is added. Its logical status can be specified as: only
in memory (loaded), only in file (stored) or available in both, once
loaded and when not modified. The last status (required) is used
internally when computing phase dependencies, with the help of
logical timestamps (time) and possibly actual file times.

After saving all the program’s data computed by PIPS, the
database serializes its metadata in a file as its last operation and,
on reopening the database, its status is automatically imported
back in memory. Such a “Save World” capability is a key asset
of the PIPS platform when performing expensive analyses on very
large programs, as this allow to checkpoint the current state of the
analysis process so that a later failure, even a “core dump” of a
subsequent analysis phase, can be rolled back where it started.

One special feature of the Newgen serialization technique is that
the correspondance between domain names and type numbers is
explicitely stored. Minor changes to a data structure definition, for
instance adding a new possible field at the end of an union (+) or
new independent types for a specific phase, can be performed with-
out compromising the ability to deserialize successfully a structure
saved before such a design change.

5. Newgen Iterators

The Newgen runtime library provides several innovative tools, in-
cluding a powerful recursion engine [16] which is very convenient
when gathering information and performing syntax-directed trans-
formations on a Newgen data structure. The recursion engine was
initially designed for internal use within Newgen to implement the
functions that had to recursively walk through data, such as serial-
ization or recursive copies. It has rapidly been extended and opti-
mized to be usable directly by the developer on its own data struc-
tures.

The most generic version of the engine is the contextual multi
domain recursion gen_context_multi_recurse function, which

initializer > MODULE.user_file
> MODULE.initial_file

filter_file > MODULE.source_file
< MODULE.initial_file
< MODULE.user_file

bootstrap > PROGRAM.entities

parser > MODULE.parsed_code
> MODULE.callees

< PROGRAM.entities
< MODULE.source_file

controlizer > MODULE.code
< PROGRAM.entities
< MODULE.parsed_code

print_code > MODULE.printed_file
< PROGRAM.entities
< MODULE.code

Figure 7. PIPSmake rules for building the symbol table and code

tabulated db_symbol = name:string;
db_resources = db_symbol -> db_owned_resources;
db_owned_resources = db_symbol -> db_resource;
external db_void;
db_resource = pointer:db_void x db_status x

time:int x file_time:int;
db_status = loaded:unit + stored:unit +

required:unit + loaded_and_stored:unit;

Figure 8. Full Newgen Definition of PIPS database metadata

typedef struct {
entity var; bool is_index;

} ctx;

static bool loop_flt(loop l, ctx * c) {
if (loop_index(l)==c->var &&

gen_get_ancestor(test_domain, l)!=NULL) {
c->is_index = true;
gen_recurse_stop(NULL);

}
return true;

}

bool var_is_index_in_test(statement s, entity v) {
ctx cs = { v, false };
gen_context_multi_recurse(s, &cs,

loop_domain, loop_flt, gen_null,
NULL);

return cs.is_index;
}

Figure 9. Is a variable used as a DO loop index within a test?

is illustrated in Figures 9 and 10. When using this facility, the de-
veloper must provide a NULL-terminated, variable-length list of
arguments. The first two are the root Newgen data structure down
from which the recursive traversal will be performed and a context
data structure. Then, as many argument triplets as necessary can be
passed as arguments: each represents a domain tag, a filter func-
tion and a rewrite function. Whenever a domain tag is provided,
this indicates that all Newgen data structures belonging to such a
domain will be visited during the traversal; the corresponding filter
function is applied when going downwards and returns a boolean
indicating whether the recursion must continue below that node,
and the rewrite function is applied when going upwards and if the
filter returned true, and can be used to modify the visited structure
as needed. This walk-through process is optimized so as to only
recurse in structures that contain data from the domains to be vis-
ited, thanks to a transitive closure computed on the domain occur-
rence graph induced by the Newgen definitions; this optimization
typically reduces the number of visited nodes by half. Cyclic and
shared data structures are also properly dealt with and visited only
once.

Figure 9 illustrates a simple but full implementation of the
function var_is_index_in_test that tells whether Variable v is
used, inside Statement s, as a DO loop index that appears within
a test. The context structure cs, of type ctx, passes around to
all the functions called during the recursion both the variable of
interest and the boolean is_index indicating whether a compat-
ible instance has been found. The Newgen-provided convenient
gen_get_ancestors function queries the current recursion stack
to know about enclosing data structures, while gen_null is a nop
function. The whole recursion is interrupted as soon as a compati-
ble variable is found, using the exception-like gen_recurse_stop
function to abort further traversal.

Figure 10 shows a code transformations algorithm which may
modify two domains. The function subs_var intends to replace



typedef struct {
entity from, to;

} ctx;

static void loop_rwt(loop l, ctx * c) {
if (loop_index(l)==c->from)
loop_index(l) = c->to;

}

static void ref_rwt(reference r, ctx * c) {
if (reference_variable(r)==c->from)
reference_variable(r) = c->to;

}

void subs_var(statement s, entity from, entity to) {
ctx cs = { from, to };
gen_context_multi_recurse(s, &cs,
loop_domain, gen_true, loop_rwt,
reference_domain, gen_true, ref_rwt,
NULL);

}

Figure 10. Variable substitution for Fortran

int compute(int n) {
int i = 1;
while (i<n) {

i<<=1;
if (rand()) i++;

}
return i;

}

int compute(int n)
{

int i = 1;
int _if_then_0 = 0,

_if_else_0 = 0,
_while_0 = 0;

while (i<n) {
_while_0 = _while_0+1;
i <<= 1;
if (rand()) {

_if_then_0 = _if_then_0+1;
i++;

}
else

_if_else_0 = _if_else_0+1;
}
return i;

}

Figure 11. Initial (left) and instrumented (right) code

every occurrence of Variable from by another variable, to. Since
variables in a program only occur as loop indices or references,
only these two domains need to be managed; all others are sim-
ply recursively traversed. The Newgen function gen_true always
returns true.

The Add Control Counters transformation instruments a piece
of code with local integer counters on test and loop control struc-
tures, as illustrated in Figures 11. The aim is to test whether adding
such variables may help some semantical analyses, for instance by
finding a loop invariant such as:

_if_then_0+ _if_else_0 = _while_0

in the code. Figure 12 shows an extract from PIPS implementa-
tion of this program transformation. The code has been stripped
of its includes and of some comments, and expurged of half a
dozen instructions or expressions to fit the column length, but oth-
erwise all is there. Three support functions are used to create a
variable with a prefix (create_counter), to generate an incre-
mentation statement (make_increment_statement) and to per-
form the actual insertion on a given statement (add_counter) us-
ing the previous two functions. The Newgen iterator is called from
the add_counters function with a small context that holds the cur-
rent module. The transformation is applied on each target control
structure with a rewrite function which provides the counter vari-
able prefix to be used in its underlying statements. The last func-
tion (add_control_counters) is called by PIPSmake to actually

// (c) 1989-2011 MINES ParisTech
// This file is part of PIPS. PIPS is free software...
// See the GNU General Public License for more details.
#include "..."

// generate: var = var + 1
statement make_increment_statement(entity var) {

return make_assign_statement(...);
}

// create a new integer local variable in module
entity create_counter(entity module, string name) {

return ...;
}

// Add Control Counter recursion context
typedef struct { entity module; } acc_ctx;

// add a new counter at entry of statement "s"
void add_counter(acc_ctx * c, string name, statement s)
{

entity counter = create_counter(c->module, name);
insert_statement(s,

make_increment_statement(counter), true);
}

void test_rwt(test t, acc_ctx * c) {
add_counter(c, "if_then", test_true(t));
add_counter(c, "if_else", test_false(t));

}

void loop_rwt(loop l, acc_ctx * c) {
add_counter(c, "do", loop_body(l));

}

void whileloop_rwt(whileloop w, acc_ctx * c) {
add_counter(c, "while", whileloop_body(w));

}

void forloop_rwt(forloop f, acc_ctx * c) {
add_counter(c, "for", forloop_body(f));

}

// add control counter instrumentation
void add_counters(entity module, statement root)
{

acc_ctx c = { module };
gen_context_multi_recurse

(root, &c,
test_domain, gen_true, test_rwt,
loop_domain, gen_true, loop_rwt,
whileloop_domain, gen_true, whileloop_rwt,
forloop_domain, gen_true, forloop_rwt,
NULL);

}

// PASS: instrument with control structure counters
bool add_control_counters(string module_name) {

// get resources from database
entity module = module_name_to_entity(module_name);
statement stat = (statement)

db_get_memory_resource(DBR_CODE, module_name, true);
set_current_module_entity(module);
set_current_module_statement(stat);

// do the job!
add_counters(module, stat);

// put updated code back in database
DB_PUT_MEMORY_RESOURCE(DBR_CODE, module_name, stat);
reset_current_module_entity();
reset_current_module_statement();
return true;

}

Figure 12. Instrument code with counters on control structures



perform the transformation on a module: it loads the needed data
structures from PIPSdbm, performs the transformation on the mod-
ule’s code and stores the result back in the database.

With the Newgen recursion engine, the developer can imple-
ment simple tests and transformations of the data structures very
simply, with supporting functions to explore the context upwards
from the current point in the recursive descent, and to stop or even
fully abort recursion.

6. Conclusion

Innovative abstraction techniques of data and processes lie at the
core of the Intermediate Representation used within the PIPS op-
timizing compiler. The Newgen Domain Specific Language sup-
ports both: domain definitions provide powerful APIs to manipu-
late data, while the gen_*_recurse family of traversal function-
als abstract typical syntax-directed program transformation algo-
rithms. This methodology has proven to be sound and flexible over
the past two decades, a time period during which PIPS successfully
evolved from a narrowly-focused Fortran parallelizer to a multi-
language, multi-analysis optimization platform able to deal with
Fortran 77, Fortran 95, HPF and C.

If some of the features provided by Newgen are now directly
supported by modern object-oriented languages such as Python or
Java (e.g., serialization and cloning), its generic traversal routines
remain quite innovative. Using Newgen as is might not be optimal
if one were envisioning the development of a brand new optimizing
platform today, but we believe that the approach methodology
pioneered in PIPS and Newgen remain sound, and that applying
it in such a project would significantly increase its success.

A web interface [3] is available to navigate through PIPS inter-
nal representation online, so that interested readers can get a quick
understanding of the look and feel of the PIPS IR of a given pro-
gram.
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terprocedural Parallelization: An Overview of the PIPS Project. In
Conference on Supercomputing. ACM, June 1991.
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