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Abstract. We present an automatic, static program transformation
that schedules and generates e�cient memory transfers between a com-
puter host and its hardware accelerator, addressing a well-known per-
formance bottleneck. Our automatic approach uses two simple heuris-
tics: to perform transfers to the accelerator as early as possible and to
delay transfers back from the accelerator as late as possible. We im-
plemented this transformation as a middle-end compilation pass in the
pips/Par4All compiler. In the generated code, redundant communica-
tions due to data reuse between kernel executions are avoided. Instruc-
tions that initiate transfers are scheduled e�ectively at compile-time. We
present experimental results obtained with the Polybench 2.0, some Ro-
dinia benchmarks, and with a real numerical simulation. We obtain an
average speedup of 4 to 5 when compared to a naïve parallelization using
a modern gpu with Par4All, hmpp, and pgi, and 3.5 when compared
to an OpenMP version using a 12-core multiprocessor.

Keywords: Automatic parallelization, communication optimization,
source-to-source compilation, heterogeneous parallel architecture, gpu

1 Introduction

Hybrid computers based on hardware accelerators are growing as a preferred
method to improve performance of massively parallel software. In 2008, Road-

runner, using PowerXCell 8i accelerators, headed the top500 ranking. The June
2011 version of this list and of the Green500 list both include in the top 5 three
hybrid supercomputers employing nvidia gpus. These highly parallel hardware
accelerators allow potentially better performance-price and performance-watts
ratios when compared to classical multi-core cpus. The same evolution is evident
in the embedded and mobile world (nvidia Tegra, etc.). In all, the near future
of high performance computing appears heterogeneous.

The disadvantage of heterogeneity is the complexity of its programming
model: the code executing on the accelerator cannot directly access the host
memory and vice-versa for the cpu. Explicit communications are used to ex-
change data, via slow io buses. For example, pci bus offers 8GB/s. This is gen-
erally thought to be the most important bottleneck for hybrid systems [7,9,10].



Though some recent architectures avoid explicit copy instructions, the low per-
formance pci bus is still a limitation.

We propose with Par4All [15] an open source initiative to unify efforts
concerning compilers for parallel architectures. It supports the automatic inte-
grated compilation of applications for hybrid architectures. Its basic compilation
scheme generates parallel and hybrid code that is correct, but lacks efficiency
due to redundant communications between the host and the accelerator.

Much work has been done regarding communication optimization for dis-
tributed computers. Examples include message fusion in the context of spdd

(Single Program Distributed Data) [12] and data flow analysis based on array
regions to eliminate redundant communications and to overlap the remaining
communications with compute operations [13].

We apply similar methods to offload computation in the context of a host-
accelerator relationship and to integrate in a parallelizing compiler a transfor-
mation that optimizes cpu-gpu communications at compile time. In this paper
we briefly present existing approaches addressing the issue of writing software
for accelerators (§ 2). We identify practical cases for numerical simulations that
can benefit from hardware accelerators. We show the limit of automatic trans-
formation without a specific optimization for communication (§ 3). We present
a new data flow analysis designed to optimize the static generation of memory
transfers between host and accelerator (§ 4). Then, using a 12-core Xeon multi-
processor machine with a nvidia Tesla gpu C2050, we evaluate our solution on
well known benchmarks [22,6]. Finally, we show that our approach scales well
with a real numerical cosmological simulation (§ 5).

2 Automatic or Semi-Automatic Transformations for

Hardware Accelerators

Targeting hardware accelerators is hard work for a software developer when done
fully manually. At the highest level of abstraction and programmer convenience,
there are apis and C-like programming languages such as cuda, OpenCL. At
lower levels there are assembly and hardware description languages like vhdl.
nvidia cuda is a proprietary C-extension with some C++ features, limited to
nvidia gpus. The OpenCL standard includes an api that presents an abstrac-
tion of the target architecture. However, manufacturers can propose proprietary
extensions. In practice, OpenCL still leads to a code tuned for a particular
accelerator or architecture. Devices like fpgas are generally configured with
languages like vhdl. Tools like the Altera C-to-vhdl compiler c2h attempt to
raise the level of abstraction and convenience in device programming.

2.1 Semi-Automatic Approach

Recent compilers comprise an incremental way for converting software toward
accelerators. For instance, the pgi Accelerator [23] requires the use of directives.
The programmer must select the pieces of source that are to be executed on the



accelerator, providing optional directives that act as hints for data allocations
and transfers. The compiler generates all code automatically.

hmpp [5], the caps compiler, works in a similar way: the user inserts direc-
tives to describe the parameters required for code generation. Specialization and
optimization possibilities are greater, but with the same drawback as OpenCL

extensions: the resulting code is tied to a specific architecture.
Jcuda [24] offers a simpler interface to target cuda from Java. Data transfers

are automatically generated for each call. Arguments can be declared as IN,
OUT, or INOUT to avoid useless transfers, but no piece of data can be kept
in the gpu memory between two kernel launches. There have also been several
initiatives to automate transformations for OpenMP annotated source code to
cuda [20,21]. The gpu programming model and the host accelerator paradigm
greatly restrict the potential of this approach, since OpenMP is designed for
shared memory computer. Recent work [14,19] adds extensions to OpenMP

that account for cuda specificity. But, these lead again to specialized source
code.

These approaches offer either very limited automatic optimization of host-
accelerator communications or none at all. OpenMPC [19] includes an interpro-
cedural liveness analysis to remove some useless memory transfers, but it does
not optimize their insertion. Recently, new directives were added to the pgi [23]
accelerator compiler to precisely control data movements. These make programs
easier to write, but the developer is still responsible for designing and writing
communications code.

2.2 Fully Automatic Approach: Par4All

Par4All [15] is an open-source initiative that aims to develop a parallelizing
compiler based on source-to-source transformations. The current development
version (1.2.1) generates OpenMP from C and Fortran source code for shared
memory architecture and cuda or OpenCL for hardware accelerators includ-
ing nvidia and ati gpus. The automatic transformation process in Par4All

is heavily based on pips compiler framework phases [17,1]. The latter uses a
linear algebra library [2] to analyze, transform and parallelize programs using
polyhedral representations [11]. Parallel loop nests are outlined (i.e. extracted)
in new functions tagged as eligible on the gpu. They are called kernels in the
hybrid programming terminology. Convex array region analyses [8] are used to
characterize the data used and defined by each kernel.

Par4All often parallelizes computations with no resulting speedup because
communication times dominate. The new transformation presented here obtains
better speedups by improving communication efficiency.

3 Stars-PM Simulation

Small benchmarks like the Polybench suite [22] are limited to a few kernels,
sometimes surrounded with a time step loop. Thus they are not representative



of a whole application when evaluating a global optimization. To address this
issue, we do not limit our experiments to the Polybench benchmarks, but we also
include Stars-PM, a particle mesh cosmological N -body code. The sequential
version was written in C at Observatoire Astronomique de Strasbourg and was
rewritten and optimized by hand using cuda to target gpus [3].

(a) A satellite triggers a bar and
spiral arms in a galactic disc.

int main ( int argc , char ∗argv [ ] ) {
/∗ Read data from a f i l e ∗/
in i t_data ( argv [ 1 ] ) ;
/∗ Main temporal loop ∗/
for ( t = 0 ; t < T; t += DT)

i t e r a t i o n ( . . . ) ;
/∗ Output r e s u l t s to a f i l e ∗/
write_data ( argv [ 2 ] ) ;

}

(b) Simpli�ed scheme for simulations.

void i t e r a t i o n ( coord pos [NP ] [NP ] [NP] ,
coord ve l [NP ] [NP ] [NP] ,
f loat dens [NP ] [NP ] [NP] ,
int data [NP ] [NP ] [NP] ,
int h i s t o [NP ] [NP ] [NP] ) {

/∗ Cut the t r i−dimensionnal space
∗ in a regu lar mesh ∗/
d i s c r e t i s a t i o n ( pos , data ) ;
/∗ Compute dens i ty on the gr id ∗/
histogram ( data , h i s t o ) ;
/∗ Compute po t en t i a l on the mesh
∗ in the Fourier space ∗/
po t en t i a l ( h i s to , dens ) ;
/∗ For each dimension , compute the
∗ force and then update the speed ∗/
f o r c ex ( dens , f o r c e ) ;
updateve l ( vel , f o r ce , data , 0 , dt ) ;
f o r c ey ( dens , f o r c e ) ;
updateve l ( vel , f o r ce , data , 1 , dt ) ;
f o r c e z ( dens , f o r c e ) ;
updateve l ( vel , f o r ce , data , 2 , dt ) ;
/∗ Move pa r t i c l e s ∗/
updatepos ( pos , v e l ) ;

}

(c) Time step in the cosmological simulation.

Fig. 1: Outline of the Stars-PM cosmological simulation code.

This simulation is a model of gravitational interactions between particles in
space. It represents three-dimensional space with a discrete grid. Initial condi-
tions are read from a file. A sequential loop iterates over successive time steps.
Results are computed from the final grid state and stored in an output file. This
general organization is shown in the simplified code shown in Fig. 1b. It is a
common technique in numerical simulations. The processing for a time step is
illustrated Fig. 1c.

3.1 Transformation Process

The automatic transformation process in Par4All is based on parallel loop nest
detection. Loop nests are then outlined to obtain kernel functions.

The simplified code for function discretization(pos, data) is provided
before and after the transformation in Figs. 2 and 3 respectively. The loop nest
is detected as parallel and selected to be transformed into a kernel. The loop
body is outlined in a new function that will be executed by the gpu, and the loop
nest is replaced by a call to a kernel launch function. pips performs several array
regions analyses: W (resp. R) is the region of an array written (resp. read) by
a statement or a sequence of statements, for example a loop or a function. pips



void d i s c r e t i z a t i o n ( coord pos [NP ] [NP ] [NP] ,
int data [NP ] [NP ] [NP] ) {

int i , j , k ;
f loat x , y , z ;
for ( i = 0 ; i < NP; i++)

for ( j = 0 ; j < NP; j++)
for ( k = 0 ; k < NP; k++) {

x = pos [ i ] [ j ] [ k ] . x ;
y = pos [ i ] [ j ] [ k ] . y ;
z = pos [ i ] [ j ] [ k ] . z ;
data [ i ] [ j ] [ k ] = ( int ) ( x/DX)∗NP∗NP

+ ( int ) ( y/DX)∗NP
+ ( int ) ( z/DX) ;

}
}

Fig. 2: Sequential source code for function discretization.

also computes IN and OUT [8] regions. These are conservative over-estimates
of the respective array areas used (IN ) and defined (OUT ) by the kernel. IN
regions must be copied from host to gpu before kernel execution. OUT regions
must be copied back afterward.

Looking at function discretization (Fig. 2) we observe that the pos array
is used in the kernel, whereas data array is written. Two transfers are generated
(Fig. 3). One ensures that data is moved to the gpu before kernel execution and
the other copies the result back to the host memory after kernel execution.

void d i s c r e t i z a t i o n ( coord pos [NP ] [NP ] [NP] , int data [NP ] [NP ] [NP] ) {
// Pointers to memory on acce l e ra tor :
coord (∗ pos0 ) [NP ] [NP ] [NP] = ( coord ( ∗ ) [NP ] [NP ] [NP] ) 0 ;
int (∗ data0 ) [NP ] [NP ] [NP] = ( int ( ∗ ) [NP ] [NP ] [NP] ) 0 ;
// Al loca t ing bu f f e r s on the GPU and copy in
P4A_accel_malloc ( ( void ∗∗) &data0 , s izeof ( int )∗NP∗NP∗NP) ;
P4A_accel_malloc ( ( void ∗∗) &pos0 , s izeof ( coord )∗NP∗NP∗NP) ;
P4A_copy_to_accel ( s izeof ( coord )∗NP∗NP∗NP, pos , ∗pos0 ) ;
P4A_call_accel_kernel_2d ( d i s c r e t i z a t i on_ke rn e l ,NP,NP,∗ pos0 ,∗ data0 ) ;
// Copy out and GPU bu f f e r s dea l l o ca t i on
P4A_copy_from_accel ( s izeof ( int )∗NP∗NP∗NP, data , ∗data0 ) ;
P4A_accel_free ( data0 ) ;
P4A_accel_free ( pos0 ) ;

}
// The kerne l corresponding to sequen t i a l loop body
P4A_accel_kernel d i s c r e t i z a t i o n_ke rn e l ( coord ∗pos , int ∗data ) {

int k ; f loat x , y , z ;
int i = P4A_vp_1 ; // P4A_vp_∗ are mapped from CUDA BlockIdx .∗
int j = P4A_vp_0 ; // and ThreadIdx .∗ to loop ind ices
// I t e ra t i on clamping to avoid GPU i t e r a t i on overrun :
i f ( i<=NP&&j<=NP)

for ( k = 0 ; k < NP; k += 1) {
x = (∗ ( pos+k+NP∗NP∗ i+NP∗ j ) ) . x ;
y = (∗ ( pos+k+NP∗NP∗ i+NP∗ j ) ) . y ;
z = (∗ ( pos+k+NP∗NP∗ i+NP∗ j ) ) . z ;
∗( data+k+NP∗NP∗ i+NP∗ j ) = ( int ) ( x/DX)∗NP∗NP

+ ( int ) ( y/DX)∗NP
+ ( int ) ( z/DX) ;

}
}

Fig. 3: Code for function discretization after automatic gpu code generation.



3.2 Limit of this Approach

Data exchanges between host and accelerator are executed as dma transfers
between ram memories across the pci-express bus, which currently offers a the-
oretical bandwidth of 8 GB/s. This is really small compared to the gpu memory
bandwidth which is close to 150 GB/s. This low bandwidth can annihilate all
gain obtained when offloading computations in kernels, unless they are really
compute intensive.

With our hardware (see § 5), we measure up to 5.6GB/s from the host
to the gpu, and 6.2GB/s back. This is obtained for a few tens of MB, but
decreases dramatically for smaller blocks. Moreover this bandwidth is reduced by
more than a half when the transfered memory areas are not pinned—physically
contiguous and not subject to paging by the virtual memory manager. Figure 5
illustrates this behavior.

In our tests, using as reference a cube with 128 cells per edge and as many
particles as cells, for a function like discretization, one copy to the gpu for
particle positions is a block of 25 MB. One copy back for the particle-to-cell
association is a 8 MB block. The communication time for these two copies is
about 5 ms. Recent gpus offer ecc hardware memory error checking that more
than doubles time needed for the same copies to 12 ms. Each buffer allocation
and deallocation requires 10 ms. In comparison, kernel execution requires only
0.37 ms on the gpu, but 37 ms on the cpu. We note that the memory transfers
and buffer allocations represent the largest potential for obtaining high speedups,
which motivates our work.

3.3 Observations

In each time step, function iteration (Fig. 1c) uses data defined by a previ-
ous one. The parallelized code performs many transfers from the gpu followed
immediately by the opposite transfer.

Our simulation (Fig. 1b) exemplifies the common pattern of data depen-
dencies between loop iterations, where the current iteration uses data defined
during previous ones. There is clear advantage in allowing such data to remain
on the gpu, with copies back to the host only as needed for checkpoints and
final results.

4 Optimization Algorithm

We propose a new analysis for the compiler middle-end to support efficient host-
gpu data copying. The host and the accelerator have separated memory spaces,
this analysis annotates internally the source program with information about
where up-to-date copies of data lie—in host and/or gpu memory. This allows
additional transformation to statically determine good places to insert asyn-
chronous transfers with a simple strategy: Launch transfers from host to gpu

as early as possible and launch those from gpu back to host as late as possible,



while still guaranteeing data integrity. Additionally, we avoid launching transfers
inside loops wherever possible. We use a heuristic to place transfers as high as
possible in the call graph and in the ast.1

4.1 Definitions

The analysis computes the following sets for each statement:

– U>
A is the set of arrays known to be used next (>) to the accelerator;

– D<
A is the set of arrays known to be lastly (<) defined on the accelerator;

– TH→A is the set of arrays to transfer to the accelerator memory space im-
mediately after the statement;

– TA→H is the set of arrays to transfer from the accelerator on the host im-
mediately before the statement.

4.2 Intraprocedural Phase

The analysis begins with the D<
A set in a forward pass. An array is defined on

the gpu for a statement S iff this is also the case for its immediate predecessors
in the control flow graph and if the array is not used or defined by the host, i.e.

is not in the set R(I) or W(I) computed by pips:

D<
A(S) =





⋂

S′∈pred(S)

D<
A(S

′)



−R(S)−W(S) (1)

The initialization is done at the first kernel call site Sk with the arrays defined
by the kernel k and used later (OUT (Sk)). The following equation is used at
each kernel call site:

D<
A(Sk) = OUT (Sk)

⋃





⋂

S′∈pred(Sk)

D<
A(S

′)



 (2)

A backward pass is then performed in order to build U>
A . For a statement

S, an array has its next use on the accelerator iff this is also the case for all
statements immediately following in the control flow graph, and if it is not defined
by S.

U>
A (S) =





⋃

S′∈succ(S)

U>
A (S′)



−W(S) (3)

Just as D<
A , U>

A is initially empty and is initialized at kernel call sites with
the arrays necessary to run the kernel, IN (Sk), and the arrays defined by the

1 PIPS uses a hierarchical control �ow graph [17,1] to preserve as much as possible
of the ast. However, to simplify the presentation of the analyses, we assume that a
cfg is available.



kernel, W(Sk). These defined arrays have to be transferred to the gpu if we
cannot established that they are entirely written by the kernel. Otherwise, we
might overwrite still-valid data when copying back the array from the gpu after
kernel execution:

U>
A (Sk) = IN (Sk)

⋃

W(Sk)
⋃





⋃

S′∈succ(Sk)

U>
A (S′)



 (4)

An array must be transferred from the accelerator to the host after a state-
ment S iff its last definition is in a kernel and if it is not the case for at least one
of the immediately following statements:

TA→H(S) = D<
A(S)−

⋂

S′∈succ(S)

D<
A(S

′) (5)

This set is used to generate a copy operation at the latest possible location.

An array must be transferred from the host to the accelerator if its next use
is on the accelerator. To perform the communication at the earliest, we place its
launch immediately after the statement that defines it, i.e. the statement whose
W(S) set contains it.

TH→A(S) = W(S)
⋂





⋃

S′∈succ(S)

U>
A (S′)



 (6)

4.3 Interprocedural Extension

Kernel calls are potentially localized deep in the call graph. Consequently, a reuse
between kernels requires interprocedural analysis. Function iteration (Fig. 1c)
illustrates this situation, each step corresponds to one or more kernel executions.

Our approach is to perform a backward analysis on the call graph. For each
function f , summary sets D<

A(f) and U>
A (f) are computed. They summarize

information about the formal parameters for the function. These sets can be
viewed as contracts. They specify a data mapping that the call site must conform
to. All arrays present in U>

A (f) must be transferred to the gpu before the call,

and all arrays defined in D<
A(f) must be transferred back from the gpu before

any use on the host. These sets are required in the computation of D<
A and U>

A

when a call site is encountered. Indeed at a call site c for a function f , each
argument of the call that corresponds to a formal parameter present in U>

A must
be transferred to the gpu before the call, because we know that the first use in
the called function occurs in a kernel. Similarly, an argument that is present in
D<

A has been defined in a kernel during the call and not already transferred back
when the call ends. This transfer can be scheduled later, but before any use on
the host.

Equations 1 and 3 are modified for call site by adding a translation operator,
transf→c, between arguments and formal parameters:



D<
A(c) =

(

transf→c(D
<
A(f))

⋃





⋂

S′∈pred(c)

D<
A(S

′)





)

−R(c)−W(c) (7)

U>
A (c) =

(

transf→c(U
>
A (f))

⋃





⋃

S′∈succ(c)

U>
A (S′)





)

−W(c) (8)

On the code Fig. 4, we observe, comparing the result of the interprocedural
optimized code with the very local approach (Fig. 3), that all communications
and memory management (allocation/deallocation) have been eliminated from
the main loop.

void d i s c r e t i z a t i o n ( coord pos [NP ] [NP ] [NP] ,
int data [NP ] [NP ] [NP] ) {

// generated var i a b l e
coord ∗pos0 = P4A_runtime_resolve ( pos ,NP∗NP∗NP∗ s izeof ( coord ) ) ;
int ∗data0 = P4A_runtime_resolve ( pos ,NP∗NP∗NP∗ s izeof ( int ) ) ;
// Cal l kerne l
P4A_call_accel_kernel_2d ( d i s c r e t i z a t i on_ke rn e l ,

NP, NP, ∗pos0 , ∗data0 ) ;
}
int main ( int argc , char ∗argv [ ] ) {

/∗ Read data from input f i l e s ∗/
in i t_data ( argv [ 1 ] , . . . . ) ;
P4A_runtime_copy_to_accel ( pos , . . . ∗ s izeof ( . . . ) ) ;
/∗ Main temporal moop ∗/
for ( t = 0 ; t < T; t+=DT)

i t e r a t i o n ( . . . ) ;
/∗ Output r e s u l t s to a f i l e ∗/
P4A_runtime_copy_from_accel ( pos , . . . ∗ s izeof ( . . . ) ) ;
write_data ( argv [ 2 ] , . . . . ) ;

}

Fig. 4: Simplified code for functions discretization and main after interproce-
dural communication optimization.

4.4 Runtime Library

Our compiler Par4All includes a lightweight runtime library that allows to ab-
stract from the target (OpenCL and cuda). It also supports common functions
such as memory allocation at kernel call and memory transfer sites. It maintains
a hash table that maps host addresses to gpu addresses. This allows flexibility
in the handling of the memory allocations. Using it, the user call sites and his
function signatures can be preserved.

The memory management in the runtime does not free the gpu buffers im-
mediately after they have been used, but preserves them as long as there is
enough memory on the gpu. When a kernel execution requires more memory
than is available, the runtime frees some buffers. The policy used for selecting
a buffer to free can be the same as for cache and virtual memory management,
for instance lru or lfu.

Notice in Fig. 4 the calls to the runtime that retrieve addresses in the gpu

memory space for arrays pos and data.



5 Experiments

We ran several experiments using the Polybench Suite, Rodinia, and Stars-PM.
The Rodinia’s tests had to be partially rewritten to match Par4All coding
guidelines. Specifically, we performed a one-for-one replacement of C89 array
definitions and accesses with C99 variable length array constructs. This was
necessary for the automatic parallelization process of Par4All to succeed and
provide good input to our communication optimization later in the compilation
chain. All benchmarks presented here, including Stars-PM, are available with
the current development version of Par4All [15].

5.1 Metric

The first question is: what should we measure? While speedups in terms of
cpu and wall clock time are most important to users if not to administrators,
many parameters impact the results obtained. Let us consider for example the
popular hotspot benchmark [16]. Its execution time depends on two parameters:
the matrix size and the number of time steps. In the general context of gpu

the matrix size should be large enough to fully load the gpu. In the context of
this paper the time step parameter is at least as important since we move data
transfers out of the time step loop. Figure 6 shows how hotspot is affected by the
number of time step iterations and approaches an asymptote, acceleration ranges
from 1.4 to 14. The single speedup metric is not enough to properly evaluate our
scheme.

We believe that a more objective measurement for evaluating our approach
is the number of communications removed and the comparison with a scheme
written by an expert programmer. Focusing on the speedup would also emphasize
the parallelizer capabilities.

We propose to count the number of memory transfers generated for each
version of the code. When the communication occurs in a loop this metric is
parametrized by the surrounding loop iteration space. For instance many bench-
marks are parametrized with a number of time steps t, thus if 3 memory transfers
are present in the time step loop, and 2 are outside of the loop, the number of
communication will be expressed as 3 × t + 2. Sometimes a loop that iterate
over a matrix dimension cannot be parallelized, either intrinsically or because
of limited capacity of the compiler. Memory transfers in such loop have a huge
performance impact. In this case we use n to emphasize the difference with the
time step iteration space.

5.2 Measurements

Figure 7 shows our results on 20 benchmarks from Polybench suite, 3 from
Rodinia, and the application Stars-PM (§ 3). Measurements where performed
on a machine with two Xeon Westmere X5670 (12 cores at 2.93 GHz) and a
nvidia gpu Tesla C2050. The OpenMP versions used for the experiments are
generated automatically by the parallelizer and are not manually optimized.
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Kernels are exactly the same for the two automatically generated versions
using Par4All. We used the nvidia cuda sdk 4.0, and gcc 4.4.5 with -O3.

For Polybench, we forced Par4All to ignore array initializations because
they are both easily parallelized and occur before any of the timed algorithms.
Our normal optimizer configuration would thus have “optimized away” the initial
data transfer to the gpu within the timed code. The measurements in Fig. 7
includes all communications.

Some of the Polybench test cases use default sizes that are too small to
amortize even the initial data transfer to the accelerator. Following Jablin et

al. [18], we adapted the input size to match capabilities of the gpu.

For the cosmological simulation, the communication optimization speeds up
execution by a factor of 14 compared to the version without our optimization,
and 52 compared to the sequential code.

We include results for hmpp and pgi. Only basic directives were added by
hand. We didn’t use more advanced options of the directives, thus the compiler
doesn’t have any hints on how to optimize communications.

The geometric mean over all test cases shows that this optimization improves
by a 4 to 5 factor over Par4All, pgi and hmpp naïve versions.

When counting the number of memory transfers, the optimized code performs
very close to a hand written mapping. One noticeable exception is gramschmidt.
Communications cannot be moved out of any loop due to data dependencies
introduced by some sequential code. Some aggressive transformations in the
compiler might help by accepting a slower generated code but allowing data to
stay on the gpu. This would still be valuable if the slowdown is significantly lower
than the communication overhead. The difficulty for the compiler is to evaluate
the slowdown and to attempt parallelization only if optimized communications
lead to a net performance increase. This is beyond our current capabilities.
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Fig. 7: Speedup relative to naïve sequential version for an OpenMP version,
a version with basic pgi and hmpp directives, a naïve cuda version, and an
optimized cuda version, all automatically generated from the naïve sequential
code. Tables show the number of memory transfers.

5.3 Comparison with Respect to a Fully Dynamic Approach

While our aim has been to resolve the issue of communication optimization at
compile time, other approaches are addressing it entirely at runtime. This is the
case for the StarPU [4] library.

We took an example included with the Par4All distribution and rewrote
it using StarPU in order to evaluate the overhead of the dynamic management
of communication compared to our static scheme. This example performs 400
iterations of a simple Jacobi scheme on a 500× 500 pixels picture loaded from a
file and stores the result in another file.

We were able to confirm that StarPU removed all spurious communications,
just as our static scheme does. The manual rewrite using StarPU and a gpu



with cuda offers a 4.7 speedup over the sequential version. This is nearly 3
times slower than our optimized scheme, which provides a 12.8 acceleration.

Although StarPU is a library that has capabilities ranging far beyond the
issue of optimizing communications, the overhead we measured confirmed that
our static approach is relevant.

6 Related Work

Among the compilers that we evaluated § 2.1, none implements such an auto-
matic optimization. While Lee et al. address this issue [20, §.4.2.3], their work
is limited to liveness of data and thus quite similar to our unoptimized scheme.

Our proposal is independent of the parallelizing scheme involved, and is ap-
plicable to systems that transform OpenMP in cuda or OpenCL like OM-

PCuda [21] or OpenMP to gpu [20]. It’s also relevant for directives-based com-
piler, such as Jcuda and hicuda [14]. It would also complete the work done on
OpenMPC [19] by not only removing useless communications but moving them
up in the call graph. Finally it would free the programmer of the task of adding
directives to manage data movements in hmpp [5] and pgi Accelerator [23].

In a recent paper [18], Jablin et al. introduce cgcm, a system targeting
exactly the same issue. cgcm, just like our scheme is focused on transferring full
allocation units. While our granularity is the array, cgcm is coarser and considers
a structure of arrays as a single allocation unit. While our decision process is
fully static, cgcm takes decisions dynamically. It relies on a complete runtime to
handle general pointers to the middle of any heap-allocated structure, which we
do not support at this time. We obtain similar overall results, and used the same
input sizes. Jablin et al. measured a less-than 8 geometric mean speedup vs. ours
of more than 14. However, a direct comparison of our measurement is hazardous.
We used gcc while Jablin et al. used Clang, and we made our measurements
on a Xeon Westmere while he uses an older Core2Quad Kentsfield. He optimzed
the whole program and measured wall clock time while we prevent optimization
accross initialization functions and excluded them from our measures. Finally, he
used a llvm ptx backend for gpu code generation, while we used nvidia nvcc

compilation chain. The overhead introduced by the runtime system in cgcm is
thus impossible to evaluate.

7 Conclusion

With the increasing use of hardware accelerators, automatic or semi-automatic
transformations assisted by directives take on an ever greater importance.

We have shown that the communication impact is critical when targeting
hardware accelerators for massively parallel code like numerical simulations. Op-
timizing data movements is thus a key to high performance.

We introduced an optimization scheme that addresses this issue, and we
implemented it in pips and Par4All.



We have experimented and validated our approach on 20 benchmarks of the
Polybench 2.0 suite, 3 from Rodinia, and on a real numerical simulation code.
The geometric mean for our optimization is over 14, while a naïve paralleliza-
tion using cuda achieves 2.22, and the OpenMP loop parallelization provides
3.9. While some benchmarks are not representative of a whole application, we
measured on a real simulation an acceleration of 12 compared to a naïve paral-
lelization and 8 compared to an OpenMP version on two 6-core processors. We
found that our scheme performs very close to a hand written mapping.

We plan to improve the cache management in the runtime. We can go fur-
ther than classic cache management algorithms because, unlike hardware cache,
our runtime is software managed and can be dynamically controlled. Data flow
analyses provide knowledge on the potential future execution of the program.
This can be used in metrics to choose the next buffer to free from the cache.
Cheap computations unlikely to be used again should be chosen first. Costly
results that are certain to be used should be freed last.

The execution times measured with multi-core processors show that atten-
tion should be paid to work sharing between hosts and accelerators rather than
keeping the host idle during the completion of a kernel. Multi-core and multi-gpu

configurations are another track to explore, with new requirements to determine
optimal array region transfers and computation localization.
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